1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavfilter/vf_vibrance.c
Andreas Rheinhardt b4f5201967 avfilter: Replace query_formats callback with union of list and callback
If one looks at the many query_formats callbacks in existence,
one will immediately recognize that there is one type of default
callback for video and a slightly different default callback for
audio: It is "return ff_set_common_formats_from_list(ctx, pix_fmts);"
for video with a filter-specific pix_fmts list. For audio, it is
the same with a filter-specific sample_fmts list together with
ff_set_common_all_samplerates() and ff_set_common_all_channel_counts().

This commit allows to remove the boilerplate query_formats callbacks
by replacing said callback with a union consisting the old callback
and pointers for pixel and sample format arrays. For the not uncommon
case in which these lists only contain a single entry (besides the
sentinel) enum AVPixelFormat and enum AVSampleFormat fields are also
added to the union to store them directly in the AVFilter,
thereby avoiding a relocation.

The state of said union will be contained in a new, dedicated AVFilter
field (the nb_inputs and nb_outputs fields have been shrunk to uint8_t
in order to create a hole for this new field; this is no problem, as
the maximum of all the nb_inputs is four; for nb_outputs it is only
two).

The state's default value coincides with the earlier default of
query_formats being unset, namely that the filter accepts all formats
(and also sample rates and channel counts/layouts for audio)
provided that these properties agree coincide for all inputs and
outputs.

By using different union members for audio and video filters
the type-unsafety of using the same functions for audio and video
lists will furthermore be more confined to formats.c than before.

When the new fields are used, they will also avoid allocations:
Currently something nearly equivalent to ff_default_query_formats()
is called after every successful call to a query_formats callback;
yet in the common case that the newly allocated AVFilterFormats
are not used at all (namely if there are no free links) these newly
allocated AVFilterFormats are freed again without ever being used.
Filters no longer using the callback will not exhibit this any more.

Reviewed-by: Paul B Mahol <onemda@gmail.com>
Reviewed-by: Nicolas George <george@nsup.org>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-10-05 17:48:25 +02:00

384 lines
14 KiB
C

/*
* Copyright (c) 2018 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/opt.h"
#include "libavutil/imgutils.h"
#include "avfilter.h"
#include "drawutils.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#define R 0
#define G 1
#define B 2
typedef struct VibranceContext {
const AVClass *class;
float intensity;
float balance[3];
float lcoeffs[3];
int alternate;
int step;
int depth;
uint8_t rgba_map[4];
int (*do_slice)(AVFilterContext *s, void *arg,
int jobnr, int nb_jobs);
} VibranceContext;
static inline float lerpf(float v0, float v1, float f)
{
return v0 + (v1 - v0) * f;
}
static int vibrance_slice8(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
{
VibranceContext *s = avctx->priv;
AVFrame *frame = arg;
const int width = frame->width;
const int height = frame->height;
const float scale = 1.f / 255.f;
const float gc = s->lcoeffs[0];
const float bc = s->lcoeffs[1];
const float rc = s->lcoeffs[2];
const float intensity = s->intensity;
const float alternate = s->alternate ? 1.f : -1.f;
const float gintensity = intensity * s->balance[0];
const float bintensity = intensity * s->balance[1];
const float rintensity = intensity * s->balance[2];
const float sgintensity = alternate * FFSIGN(gintensity);
const float sbintensity = alternate * FFSIGN(bintensity);
const float srintensity = alternate * FFSIGN(rintensity);
const int slice_start = (height * jobnr) / nb_jobs;
const int slice_end = (height * (jobnr + 1)) / nb_jobs;
const int glinesize = frame->linesize[0];
const int blinesize = frame->linesize[1];
const int rlinesize = frame->linesize[2];
uint8_t *gptr = frame->data[0] + slice_start * glinesize;
uint8_t *bptr = frame->data[1] + slice_start * blinesize;
uint8_t *rptr = frame->data[2] + slice_start * rlinesize;
for (int y = slice_start; y < slice_end; y++) {
for (int x = 0; x < width; x++) {
float g = gptr[x] * scale;
float b = bptr[x] * scale;
float r = rptr[x] * scale;
float max_color = FFMAX3(r, g, b);
float min_color = FFMIN3(r, g, b);
float color_saturation = max_color - min_color;
float luma = g * gc + r * rc + b * bc;
const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation);
const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation);
const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation);
g = lerpf(luma, g, cg);
b = lerpf(luma, b, cb);
r = lerpf(luma, r, cr);
gptr[x] = av_clip_uint8(g * 255.f);
bptr[x] = av_clip_uint8(b * 255.f);
rptr[x] = av_clip_uint8(r * 255.f);
}
gptr += glinesize;
bptr += blinesize;
rptr += rlinesize;
}
return 0;
}
static int vibrance_slice16(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
{
VibranceContext *s = avctx->priv;
AVFrame *frame = arg;
const int depth = s->depth;
const float max = (1 << depth) - 1;
const float scale = 1.f / max;
const float gc = s->lcoeffs[0];
const float bc = s->lcoeffs[1];
const float rc = s->lcoeffs[2];
const int width = frame->width;
const int height = frame->height;
const float intensity = s->intensity;
const float alternate = s->alternate ? 1.f : -1.f;
const float gintensity = intensity * s->balance[0];
const float bintensity = intensity * s->balance[1];
const float rintensity = intensity * s->balance[2];
const float sgintensity = alternate * FFSIGN(gintensity);
const float sbintensity = alternate * FFSIGN(bintensity);
const float srintensity = alternate * FFSIGN(rintensity);
const int slice_start = (height * jobnr) / nb_jobs;
const int slice_end = (height * (jobnr + 1)) / nb_jobs;
const int glinesize = frame->linesize[0] / 2;
const int blinesize = frame->linesize[1] / 2;
const int rlinesize = frame->linesize[2] / 2;
uint16_t *gptr = (uint16_t *)frame->data[0] + slice_start * glinesize;
uint16_t *bptr = (uint16_t *)frame->data[1] + slice_start * blinesize;
uint16_t *rptr = (uint16_t *)frame->data[2] + slice_start * rlinesize;
for (int y = slice_start; y < slice_end; y++) {
for (int x = 0; x < width; x++) {
float g = gptr[x] * scale;
float b = bptr[x] * scale;
float r = rptr[x] * scale;
float max_color = FFMAX3(r, g, b);
float min_color = FFMIN3(r, g, b);
float color_saturation = max_color - min_color;
float luma = g * gc + r * rc + b * bc;
const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation);
const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation);
const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation);
g = lerpf(luma, g, cg);
b = lerpf(luma, b, cb);
r = lerpf(luma, r, cr);
gptr[x] = av_clip_uintp2_c(g * max, depth);
bptr[x] = av_clip_uintp2_c(b * max, depth);
rptr[x] = av_clip_uintp2_c(r * max, depth);
}
gptr += glinesize;
bptr += blinesize;
rptr += rlinesize;
}
return 0;
}
static int vibrance_slice8p(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
{
VibranceContext *s = avctx->priv;
AVFrame *frame = arg;
const int step = s->step;
const int width = frame->width;
const int height = frame->height;
const float scale = 1.f / 255.f;
const float gc = s->lcoeffs[0];
const float bc = s->lcoeffs[1];
const float rc = s->lcoeffs[2];
const uint8_t roffset = s->rgba_map[R];
const uint8_t goffset = s->rgba_map[G];
const uint8_t boffset = s->rgba_map[B];
const float intensity = s->intensity;
const float alternate = s->alternate ? 1.f : -1.f;
const float gintensity = intensity * s->balance[0];
const float bintensity = intensity * s->balance[1];
const float rintensity = intensity * s->balance[2];
const float sgintensity = alternate * FFSIGN(gintensity);
const float sbintensity = alternate * FFSIGN(bintensity);
const float srintensity = alternate * FFSIGN(rintensity);
const int slice_start = (height * jobnr) / nb_jobs;
const int slice_end = (height * (jobnr + 1)) / nb_jobs;
const int linesize = frame->linesize[0];
uint8_t *ptr = frame->data[0] + slice_start * linesize;
for (int y = slice_start; y < slice_end; y++) {
for (int x = 0; x < width; x++) {
float g = ptr[x * step + goffset] * scale;
float b = ptr[x * step + boffset] * scale;
float r = ptr[x * step + roffset] * scale;
float max_color = FFMAX3(r, g, b);
float min_color = FFMIN3(r, g, b);
float color_saturation = max_color - min_color;
float luma = g * gc + r * rc + b * bc;
const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation);
const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation);
const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation);
g = lerpf(luma, g, cg);
b = lerpf(luma, b, cb);
r = lerpf(luma, r, cr);
ptr[x * step + goffset] = av_clip_uint8(g * 255.f);
ptr[x * step + boffset] = av_clip_uint8(b * 255.f);
ptr[x * step + roffset] = av_clip_uint8(r * 255.f);
}
ptr += linesize;
}
return 0;
}
static int vibrance_slice16p(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
{
VibranceContext *s = avctx->priv;
AVFrame *frame = arg;
const int step = s->step;
const int depth = s->depth;
const float max = (1 << depth) - 1;
const float scale = 1.f / max;
const float gc = s->lcoeffs[0];
const float bc = s->lcoeffs[1];
const float rc = s->lcoeffs[2];
const uint8_t roffset = s->rgba_map[R];
const uint8_t goffset = s->rgba_map[G];
const uint8_t boffset = s->rgba_map[B];
const int width = frame->width;
const int height = frame->height;
const float intensity = s->intensity;
const float alternate = s->alternate ? 1.f : -1.f;
const float gintensity = intensity * s->balance[0];
const float bintensity = intensity * s->balance[1];
const float rintensity = intensity * s->balance[2];
const float sgintensity = alternate * FFSIGN(gintensity);
const float sbintensity = alternate * FFSIGN(bintensity);
const float srintensity = alternate * FFSIGN(rintensity);
const int slice_start = (height * jobnr) / nb_jobs;
const int slice_end = (height * (jobnr + 1)) / nb_jobs;
const int linesize = frame->linesize[0] / 2;
uint16_t *ptr = (uint16_t *)frame->data[0] + slice_start * linesize;
for (int y = slice_start; y < slice_end; y++) {
for (int x = 0; x < width; x++) {
float g = ptr[x * step + goffset] * scale;
float b = ptr[x * step + boffset] * scale;
float r = ptr[x * step + roffset] * scale;
float max_color = FFMAX3(r, g, b);
float min_color = FFMIN3(r, g, b);
float color_saturation = max_color - min_color;
float luma = g * gc + r * rc + b * bc;
const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation);
const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation);
const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation);
g = lerpf(luma, g, cg);
b = lerpf(luma, b, cb);
r = lerpf(luma, r, cr);
ptr[x * step + goffset] = av_clip_uintp2_c(g * max, depth);
ptr[x * step + boffset] = av_clip_uintp2_c(b * max, depth);
ptr[x * step + roffset] = av_clip_uintp2_c(r * max, depth);
}
ptr += linesize;
}
return 0;
}
static int filter_frame(AVFilterLink *link, AVFrame *frame)
{
AVFilterContext *avctx = link->dst;
VibranceContext *s = avctx->priv;
int res;
if (res = ff_filter_execute(avctx, s->do_slice, frame, NULL,
FFMIN(frame->height, ff_filter_get_nb_threads(avctx))))
return res;
return ff_filter_frame(avctx->outputs[0], frame);
}
static av_cold int query_formats(AVFilterContext *avctx)
{
static const enum AVPixelFormat pixel_fmts[] = {
AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA,
AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR,
AV_PIX_FMT_0RGB, AV_PIX_FMT_0BGR,
AV_PIX_FMT_RGB0, AV_PIX_FMT_BGR0,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12,
AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48,
AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64,
AV_PIX_FMT_NONE
};
return ff_set_common_formats_from_list(avctx, pixel_fmts);
}
static av_cold int config_input(AVFilterLink *inlink)
{
AVFilterContext *avctx = inlink->dst;
VibranceContext *s = avctx->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
int planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR;
s->step = desc->nb_components;
if (inlink->format == AV_PIX_FMT_RGB0 ||
inlink->format == AV_PIX_FMT_0RGB ||
inlink->format == AV_PIX_FMT_BGR0 ||
inlink->format == AV_PIX_FMT_0BGR)
s->step = 4;
s->depth = desc->comp[0].depth;
s->do_slice = s->depth <= 8 ? vibrance_slice8 : vibrance_slice16;
if (!planar)
s->do_slice = s->depth <= 8 ? vibrance_slice8p : vibrance_slice16p;
ff_fill_rgba_map(s->rgba_map, inlink->format);
return 0;
}
static const AVFilterPad vibrance_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.flags = AVFILTERPAD_FLAG_NEEDS_WRITABLE,
.filter_frame = filter_frame,
.config_props = config_input,
},
};
static const AVFilterPad vibrance_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
};
#define OFFSET(x) offsetof(VibranceContext, x)
#define VF AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption vibrance_options[] = {
{ "intensity", "set the intensity value", OFFSET(intensity), AV_OPT_TYPE_FLOAT, {.dbl=0}, -2, 2, VF },
{ "rbal", "set the red balance value", OFFSET(balance[2]), AV_OPT_TYPE_FLOAT, {.dbl=1}, -10, 10, VF },
{ "gbal", "set the green balance value", OFFSET(balance[0]), AV_OPT_TYPE_FLOAT, {.dbl=1}, -10, 10, VF },
{ "bbal", "set the blue balance value", OFFSET(balance[1]), AV_OPT_TYPE_FLOAT, {.dbl=1}, -10, 10, VF },
{ "rlum", "set the red luma coefficient", OFFSET(lcoeffs[2]), AV_OPT_TYPE_FLOAT, {.dbl=0.072186}, 0, 1, VF },
{ "glum", "set the green luma coefficient", OFFSET(lcoeffs[0]), AV_OPT_TYPE_FLOAT, {.dbl=0.715158}, 0, 1, VF },
{ "blum", "set the blue luma coefficient", OFFSET(lcoeffs[1]), AV_OPT_TYPE_FLOAT, {.dbl=0.212656}, 0, 1, VF },
{ "alternate", "use alternate colors", OFFSET(alternate), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, VF },
{ NULL }
};
AVFILTER_DEFINE_CLASS(vibrance);
const AVFilter ff_vf_vibrance = {
.name = "vibrance",
.description = NULL_IF_CONFIG_SMALL("Boost or alter saturation."),
.priv_size = sizeof(VibranceContext),
.priv_class = &vibrance_class,
FILTER_INPUTS(vibrance_inputs),
FILTER_OUTPUTS(vibrance_outputs),
FILTER_QUERY_FUNC(query_formats),
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
.process_command = ff_filter_process_command,
};