mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-12-28 20:53:54 +02:00
fce3e3e137
suppose we have a detect and classify filter in the future, the detect filter generates some bounding boxes (BBox) as AVFrame sidedata, and the classify filter executes DNN model for each BBox. For each BBox, we need to crop the AVFrame, copy data to DNN model input and do the model execution. So we have to save the in_frame at DNNModel.set_input and use it at DNNModule.execute_model, such saving is not feasible when we support async execute_model. This patch sets the in_frame as execution_model parameter, and so all the information are put together within the same function for each inference. It also makes easy to support BBox async inference.
169 lines
5.6 KiB
C
169 lines
5.6 KiB
C
/*
|
|
* Copyright (c) 2019 Xuewei Meng
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* Filter implementing image derain filter using deep convolutional networks.
|
|
* http://openaccess.thecvf.com/content_ECCV_2018/html/Xia_Li_Recurrent_Squeeze-and-Excitation_Context_ECCV_2018_paper.html
|
|
*/
|
|
|
|
#include "libavformat/avio.h"
|
|
#include "libavutil/opt.h"
|
|
#include "avfilter.h"
|
|
#include "dnn_interface.h"
|
|
#include "formats.h"
|
|
#include "internal.h"
|
|
|
|
typedef struct DRContext {
|
|
const AVClass *class;
|
|
|
|
int filter_type;
|
|
char *model_filename;
|
|
DNNBackendType backend_type;
|
|
DNNModule *dnn_module;
|
|
DNNModel *model;
|
|
} DRContext;
|
|
|
|
#define OFFSET(x) offsetof(DRContext, x)
|
|
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
|
|
static const AVOption derain_options[] = {
|
|
{ "filter_type", "filter type(derain/dehaze)", OFFSET(filter_type), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS, "type" },
|
|
{ "derain", "derain filter flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "type" },
|
|
{ "dehaze", "dehaze filter flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "type" },
|
|
{ "dnn_backend", "DNN backend", OFFSET(backend_type), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS, "backend" },
|
|
{ "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" },
|
|
#if (CONFIG_LIBTENSORFLOW == 1)
|
|
{ "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" },
|
|
#endif
|
|
{ "model", "path to model file", OFFSET(model_filename), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS },
|
|
{ NULL }
|
|
};
|
|
|
|
AVFILTER_DEFINE_CLASS(derain);
|
|
|
|
static int query_formats(AVFilterContext *ctx)
|
|
{
|
|
AVFilterFormats *formats;
|
|
const enum AVPixelFormat pixel_fmts[] = {
|
|
AV_PIX_FMT_RGB24,
|
|
AV_PIX_FMT_NONE
|
|
};
|
|
|
|
formats = ff_make_format_list(pixel_fmts);
|
|
|
|
return ff_set_common_formats(ctx, formats);
|
|
}
|
|
|
|
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
|
|
{
|
|
AVFilterContext *ctx = inlink->dst;
|
|
AVFilterLink *outlink = ctx->outputs[0];
|
|
DRContext *dr_context = ctx->priv;
|
|
DNNReturnType dnn_result;
|
|
const char *model_output_name = "y";
|
|
AVFrame *out;
|
|
|
|
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
|
|
if (!out) {
|
|
av_log(ctx, AV_LOG_ERROR, "could not allocate memory for output frame\n");
|
|
av_frame_free(&in);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
av_frame_copy_props(out, in);
|
|
|
|
dnn_result = (dr_context->dnn_module->execute_model)(dr_context->model, "x", in, &model_output_name, 1, out);
|
|
if (dnn_result != DNN_SUCCESS){
|
|
av_log(ctx, AV_LOG_ERROR, "failed to execute model\n");
|
|
av_frame_free(&in);
|
|
return AVERROR(EIO);
|
|
}
|
|
|
|
av_frame_free(&in);
|
|
|
|
return ff_filter_frame(outlink, out);
|
|
}
|
|
|
|
static av_cold int init(AVFilterContext *ctx)
|
|
{
|
|
DRContext *dr_context = ctx->priv;
|
|
|
|
dr_context->dnn_module = ff_get_dnn_module(dr_context->backend_type);
|
|
if (!dr_context->dnn_module) {
|
|
av_log(ctx, AV_LOG_ERROR, "could not create DNN module for requested backend\n");
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
if (!dr_context->model_filename) {
|
|
av_log(ctx, AV_LOG_ERROR, "model file for network is not specified\n");
|
|
return AVERROR(EINVAL);
|
|
}
|
|
if (!dr_context->dnn_module->load_model) {
|
|
av_log(ctx, AV_LOG_ERROR, "load_model for network is not specified\n");
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
dr_context->model = (dr_context->dnn_module->load_model)(dr_context->model_filename, NULL, NULL);
|
|
if (!dr_context->model) {
|
|
av_log(ctx, AV_LOG_ERROR, "could not load DNN model\n");
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static av_cold void uninit(AVFilterContext *ctx)
|
|
{
|
|
DRContext *dr_context = ctx->priv;
|
|
|
|
if (dr_context->dnn_module) {
|
|
(dr_context->dnn_module->free_model)(&dr_context->model);
|
|
av_freep(&dr_context->dnn_module);
|
|
}
|
|
}
|
|
|
|
static const AVFilterPad derain_inputs[] = {
|
|
{
|
|
.name = "default",
|
|
.type = AVMEDIA_TYPE_VIDEO,
|
|
.filter_frame = filter_frame,
|
|
},
|
|
{ NULL }
|
|
};
|
|
|
|
static const AVFilterPad derain_outputs[] = {
|
|
{
|
|
.name = "default",
|
|
.type = AVMEDIA_TYPE_VIDEO,
|
|
},
|
|
{ NULL }
|
|
};
|
|
|
|
AVFilter ff_vf_derain = {
|
|
.name = "derain",
|
|
.description = NULL_IF_CONFIG_SMALL("Apply derain filter to the input."),
|
|
.priv_size = sizeof(DRContext),
|
|
.init = init,
|
|
.uninit = uninit,
|
|
.query_formats = query_formats,
|
|
.inputs = derain_inputs,
|
|
.outputs = derain_outputs,
|
|
.priv_class = &derain_class,
|
|
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC,
|
|
};
|