1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libavcodec/h264_slice.c
Limin Wang 10c7745ae9 avcodec/h264_slice: add timecode metadata
Please test with below command:
./ffplay -vf drawtext="fontfile=/Library/Fonts/Arial.ttf:text=\\'%{metadata\\:timecode}\\'" \
                       ../fate-suite/h264/crew_cif_timecode-2.h264

Signed-off-by: Limin Wang <lance.lmwang@gmail.com>
2020-07-09 22:18:42 +08:00

2864 lines
107 KiB
C

/*
* H.26L/H.264/AVC/JVT/14496-10/... decoder
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* H.264 / AVC / MPEG-4 part10 codec.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#include "libavutil/avassert.h"
#include "libavutil/display.h"
#include "libavutil/imgutils.h"
#include "libavutil/stereo3d.h"
#include "internal.h"
#include "cabac.h"
#include "cabac_functions.h"
#include "error_resilience.h"
#include "avcodec.h"
#include "h264.h"
#include "h264dec.h"
#include "h264data.h"
#include "h264chroma.h"
#include "h264_mvpred.h"
#include "h264_ps.h"
#include "golomb.h"
#include "mathops.h"
#include "mpegutils.h"
#include "mpegvideo.h"
#include "rectangle.h"
#include "thread.h"
static const uint8_t field_scan[16+1] = {
0 + 0 * 4, 0 + 1 * 4, 1 + 0 * 4, 0 + 2 * 4,
0 + 3 * 4, 1 + 1 * 4, 1 + 2 * 4, 1 + 3 * 4,
2 + 0 * 4, 2 + 1 * 4, 2 + 2 * 4, 2 + 3 * 4,
3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4,
};
static const uint8_t field_scan8x8[64+1] = {
0 + 0 * 8, 0 + 1 * 8, 0 + 2 * 8, 1 + 0 * 8,
1 + 1 * 8, 0 + 3 * 8, 0 + 4 * 8, 1 + 2 * 8,
2 + 0 * 8, 1 + 3 * 8, 0 + 5 * 8, 0 + 6 * 8,
0 + 7 * 8, 1 + 4 * 8, 2 + 1 * 8, 3 + 0 * 8,
2 + 2 * 8, 1 + 5 * 8, 1 + 6 * 8, 1 + 7 * 8,
2 + 3 * 8, 3 + 1 * 8, 4 + 0 * 8, 3 + 2 * 8,
2 + 4 * 8, 2 + 5 * 8, 2 + 6 * 8, 2 + 7 * 8,
3 + 3 * 8, 4 + 1 * 8, 5 + 0 * 8, 4 + 2 * 8,
3 + 4 * 8, 3 + 5 * 8, 3 + 6 * 8, 3 + 7 * 8,
4 + 3 * 8, 5 + 1 * 8, 6 + 0 * 8, 5 + 2 * 8,
4 + 4 * 8, 4 + 5 * 8, 4 + 6 * 8, 4 + 7 * 8,
5 + 3 * 8, 6 + 1 * 8, 6 + 2 * 8, 5 + 4 * 8,
5 + 5 * 8, 5 + 6 * 8, 5 + 7 * 8, 6 + 3 * 8,
7 + 0 * 8, 7 + 1 * 8, 6 + 4 * 8, 6 + 5 * 8,
6 + 6 * 8, 6 + 7 * 8, 7 + 2 * 8, 7 + 3 * 8,
7 + 4 * 8, 7 + 5 * 8, 7 + 6 * 8, 7 + 7 * 8,
};
static const uint8_t field_scan8x8_cavlc[64+1] = {
0 + 0 * 8, 1 + 1 * 8, 2 + 0 * 8, 0 + 7 * 8,
2 + 2 * 8, 2 + 3 * 8, 2 + 4 * 8, 3 + 3 * 8,
3 + 4 * 8, 4 + 3 * 8, 4 + 4 * 8, 5 + 3 * 8,
5 + 5 * 8, 7 + 0 * 8, 6 + 6 * 8, 7 + 4 * 8,
0 + 1 * 8, 0 + 3 * 8, 1 + 3 * 8, 1 + 4 * 8,
1 + 5 * 8, 3 + 1 * 8, 2 + 5 * 8, 4 + 1 * 8,
3 + 5 * 8, 5 + 1 * 8, 4 + 5 * 8, 6 + 1 * 8,
5 + 6 * 8, 7 + 1 * 8, 6 + 7 * 8, 7 + 5 * 8,
0 + 2 * 8, 0 + 4 * 8, 0 + 5 * 8, 2 + 1 * 8,
1 + 6 * 8, 4 + 0 * 8, 2 + 6 * 8, 5 + 0 * 8,
3 + 6 * 8, 6 + 0 * 8, 4 + 6 * 8, 6 + 2 * 8,
5 + 7 * 8, 6 + 4 * 8, 7 + 2 * 8, 7 + 6 * 8,
1 + 0 * 8, 1 + 2 * 8, 0 + 6 * 8, 3 + 0 * 8,
1 + 7 * 8, 3 + 2 * 8, 2 + 7 * 8, 4 + 2 * 8,
3 + 7 * 8, 5 + 2 * 8, 4 + 7 * 8, 5 + 4 * 8,
6 + 3 * 8, 6 + 5 * 8, 7 + 3 * 8, 7 + 7 * 8,
};
// zigzag_scan8x8_cavlc[i] = zigzag_scan8x8[(i/4) + 16*(i%4)]
static const uint8_t zigzag_scan8x8_cavlc[64+1] = {
0 + 0 * 8, 1 + 1 * 8, 1 + 2 * 8, 2 + 2 * 8,
4 + 1 * 8, 0 + 5 * 8, 3 + 3 * 8, 7 + 0 * 8,
3 + 4 * 8, 1 + 7 * 8, 5 + 3 * 8, 6 + 3 * 8,
2 + 7 * 8, 6 + 4 * 8, 5 + 6 * 8, 7 + 5 * 8,
1 + 0 * 8, 2 + 0 * 8, 0 + 3 * 8, 3 + 1 * 8,
3 + 2 * 8, 0 + 6 * 8, 4 + 2 * 8, 6 + 1 * 8,
2 + 5 * 8, 2 + 6 * 8, 6 + 2 * 8, 5 + 4 * 8,
3 + 7 * 8, 7 + 3 * 8, 4 + 7 * 8, 7 + 6 * 8,
0 + 1 * 8, 3 + 0 * 8, 0 + 4 * 8, 4 + 0 * 8,
2 + 3 * 8, 1 + 5 * 8, 5 + 1 * 8, 5 + 2 * 8,
1 + 6 * 8, 3 + 5 * 8, 7 + 1 * 8, 4 + 5 * 8,
4 + 6 * 8, 7 + 4 * 8, 5 + 7 * 8, 6 + 7 * 8,
0 + 2 * 8, 2 + 1 * 8, 1 + 3 * 8, 5 + 0 * 8,
1 + 4 * 8, 2 + 4 * 8, 6 + 0 * 8, 4 + 3 * 8,
0 + 7 * 8, 4 + 4 * 8, 7 + 2 * 8, 3 + 6 * 8,
5 + 5 * 8, 6 + 5 * 8, 6 + 6 * 8, 7 + 7 * 8,
};
static void release_unused_pictures(H264Context *h, int remove_current)
{
int i;
/* release non reference frames */
for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
if (h->DPB[i].f->buf[0] && !h->DPB[i].reference &&
(remove_current || &h->DPB[i] != h->cur_pic_ptr)) {
ff_h264_unref_picture(h, &h->DPB[i]);
}
}
}
static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
{
const H264Context *h = sl->h264;
int alloc_size = FFALIGN(FFABS(linesize) + 32, 32);
av_fast_malloc(&sl->bipred_scratchpad, &sl->bipred_scratchpad_allocated, 16 * 6 * alloc_size);
// edge emu needs blocksize + filter length - 1
// (= 21x21 for H.264)
av_fast_malloc(&sl->edge_emu_buffer, &sl->edge_emu_buffer_allocated, alloc_size * 2 * 21);
av_fast_mallocz(&sl->top_borders[0], &sl->top_borders_allocated[0],
h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
av_fast_mallocz(&sl->top_borders[1], &sl->top_borders_allocated[1],
h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
if (!sl->bipred_scratchpad || !sl->edge_emu_buffer ||
!sl->top_borders[0] || !sl->top_borders[1]) {
av_freep(&sl->bipred_scratchpad);
av_freep(&sl->edge_emu_buffer);
av_freep(&sl->top_borders[0]);
av_freep(&sl->top_borders[1]);
sl->bipred_scratchpad_allocated = 0;
sl->edge_emu_buffer_allocated = 0;
sl->top_borders_allocated[0] = 0;
sl->top_borders_allocated[1] = 0;
return AVERROR(ENOMEM);
}
return 0;
}
static int init_table_pools(H264Context *h)
{
const int big_mb_num = h->mb_stride * (h->mb_height + 1) + 1;
const int mb_array_size = h->mb_stride * h->mb_height;
const int b4_stride = h->mb_width * 4 + 1;
const int b4_array_size = b4_stride * h->mb_height * 4;
h->qscale_table_pool = av_buffer_pool_init(big_mb_num + h->mb_stride,
av_buffer_allocz);
h->mb_type_pool = av_buffer_pool_init((big_mb_num + h->mb_stride) *
sizeof(uint32_t), av_buffer_allocz);
h->motion_val_pool = av_buffer_pool_init(2 * (b4_array_size + 4) *
sizeof(int16_t), av_buffer_allocz);
h->ref_index_pool = av_buffer_pool_init(4 * mb_array_size, av_buffer_allocz);
if (!h->qscale_table_pool || !h->mb_type_pool || !h->motion_val_pool ||
!h->ref_index_pool) {
av_buffer_pool_uninit(&h->qscale_table_pool);
av_buffer_pool_uninit(&h->mb_type_pool);
av_buffer_pool_uninit(&h->motion_val_pool);
av_buffer_pool_uninit(&h->ref_index_pool);
return AVERROR(ENOMEM);
}
return 0;
}
static int alloc_picture(H264Context *h, H264Picture *pic)
{
int i, ret = 0;
av_assert0(!pic->f->data[0]);
pic->tf.f = pic->f;
ret = ff_thread_get_buffer(h->avctx, &pic->tf, pic->reference ?
AV_GET_BUFFER_FLAG_REF : 0);
if (ret < 0)
goto fail;
if (h->avctx->hwaccel) {
const AVHWAccel *hwaccel = h->avctx->hwaccel;
av_assert0(!pic->hwaccel_picture_private);
if (hwaccel->frame_priv_data_size) {
pic->hwaccel_priv_buf = av_buffer_allocz(hwaccel->frame_priv_data_size);
if (!pic->hwaccel_priv_buf)
return AVERROR(ENOMEM);
pic->hwaccel_picture_private = pic->hwaccel_priv_buf->data;
}
}
if (CONFIG_GRAY && !h->avctx->hwaccel && h->flags & AV_CODEC_FLAG_GRAY && pic->f->data[2]) {
int h_chroma_shift, v_chroma_shift;
av_pix_fmt_get_chroma_sub_sample(pic->f->format,
&h_chroma_shift, &v_chroma_shift);
for(i=0; i<AV_CEIL_RSHIFT(pic->f->height, v_chroma_shift); i++) {
memset(pic->f->data[1] + pic->f->linesize[1]*i,
0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift));
memset(pic->f->data[2] + pic->f->linesize[2]*i,
0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift));
}
}
if (!h->qscale_table_pool) {
ret = init_table_pools(h);
if (ret < 0)
goto fail;
}
pic->qscale_table_buf = av_buffer_pool_get(h->qscale_table_pool);
pic->mb_type_buf = av_buffer_pool_get(h->mb_type_pool);
if (!pic->qscale_table_buf || !pic->mb_type_buf)
goto fail;
pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * h->mb_stride + 1;
pic->qscale_table = pic->qscale_table_buf->data + 2 * h->mb_stride + 1;
for (i = 0; i < 2; i++) {
pic->motion_val_buf[i] = av_buffer_pool_get(h->motion_val_pool);
pic->ref_index_buf[i] = av_buffer_pool_get(h->ref_index_pool);
if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i])
goto fail;
pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4;
pic->ref_index[i] = pic->ref_index_buf[i]->data;
}
pic->pps_buf = av_buffer_ref(h->ps.pps_ref);
if (!pic->pps_buf)
goto fail;
pic->pps = (const PPS*)pic->pps_buf->data;
pic->mb_width = h->mb_width;
pic->mb_height = h->mb_height;
pic->mb_stride = h->mb_stride;
return 0;
fail:
ff_h264_unref_picture(h, pic);
return (ret < 0) ? ret : AVERROR(ENOMEM);
}
static int find_unused_picture(H264Context *h)
{
int i;
for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
if (!h->DPB[i].f->buf[0])
return i;
}
return AVERROR_INVALIDDATA;
}
#define IN_RANGE(a, b, size) (((void*)(a) >= (void*)(b)) && ((void*)(a) < (void*)((b) + (size))))
#define REBASE_PICTURE(pic, new_ctx, old_ctx) \
(((pic) && (pic) >= (old_ctx)->DPB && \
(pic) < (old_ctx)->DPB + H264_MAX_PICTURE_COUNT) ? \
&(new_ctx)->DPB[(pic) - (old_ctx)->DPB] : NULL)
static void copy_picture_range(H264Picture **to, H264Picture **from, int count,
H264Context *new_base,
H264Context *old_base)
{
int i;
for (i = 0; i < count; i++) {
av_assert1(!from[i] ||
IN_RANGE(from[i], old_base, 1) ||
IN_RANGE(from[i], old_base->DPB, H264_MAX_PICTURE_COUNT));
to[i] = REBASE_PICTURE(from[i], new_base, old_base);
}
}
static int h264_slice_header_init(H264Context *h);
int ff_h264_update_thread_context(AVCodecContext *dst,
const AVCodecContext *src)
{
H264Context *h = dst->priv_data, *h1 = src->priv_data;
int inited = h->context_initialized, err = 0;
int need_reinit = 0;
int i, ret;
if (dst == src)
return 0;
// We can't fail if SPS isn't set at it breaks current skip_frame code
//if (!h1->ps.sps)
// return AVERROR_INVALIDDATA;
if (inited &&
(h->width != h1->width ||
h->height != h1->height ||
h->mb_width != h1->mb_width ||
h->mb_height != h1->mb_height ||
!h->ps.sps ||
h->ps.sps->bit_depth_luma != h1->ps.sps->bit_depth_luma ||
h->ps.sps->chroma_format_idc != h1->ps.sps->chroma_format_idc ||
h->ps.sps->colorspace != h1->ps.sps->colorspace)) {
need_reinit = 1;
}
/* copy block_offset since frame_start may not be called */
memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
// SPS/PPS
for (i = 0; i < FF_ARRAY_ELEMS(h->ps.sps_list); i++) {
av_buffer_unref(&h->ps.sps_list[i]);
if (h1->ps.sps_list[i]) {
h->ps.sps_list[i] = av_buffer_ref(h1->ps.sps_list[i]);
if (!h->ps.sps_list[i])
return AVERROR(ENOMEM);
}
}
for (i = 0; i < FF_ARRAY_ELEMS(h->ps.pps_list); i++) {
av_buffer_unref(&h->ps.pps_list[i]);
if (h1->ps.pps_list[i]) {
h->ps.pps_list[i] = av_buffer_ref(h1->ps.pps_list[i]);
if (!h->ps.pps_list[i])
return AVERROR(ENOMEM);
}
}
av_buffer_unref(&h->ps.pps_ref);
h->ps.pps = NULL;
h->ps.sps = NULL;
if (h1->ps.pps_ref) {
h->ps.pps_ref = av_buffer_ref(h1->ps.pps_ref);
if (!h->ps.pps_ref)
return AVERROR(ENOMEM);
h->ps.pps = (const PPS*)h->ps.pps_ref->data;
h->ps.sps = h->ps.pps->sps;
}
if (need_reinit || !inited) {
h->width = h1->width;
h->height = h1->height;
h->mb_height = h1->mb_height;
h->mb_width = h1->mb_width;
h->mb_num = h1->mb_num;
h->mb_stride = h1->mb_stride;
h->b_stride = h1->b_stride;
h->x264_build = h1->x264_build;
if (h->context_initialized || h1->context_initialized) {
if ((err = h264_slice_header_init(h)) < 0) {
av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed");
return err;
}
}
/* copy block_offset since frame_start may not be called */
memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
}
h->avctx->coded_height = h1->avctx->coded_height;
h->avctx->coded_width = h1->avctx->coded_width;
h->avctx->width = h1->avctx->width;
h->avctx->height = h1->avctx->height;
h->width_from_caller = h1->width_from_caller;
h->height_from_caller = h1->height_from_caller;
h->coded_picture_number = h1->coded_picture_number;
h->first_field = h1->first_field;
h->picture_structure = h1->picture_structure;
h->mb_aff_frame = h1->mb_aff_frame;
h->droppable = h1->droppable;
for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
ff_h264_unref_picture(h, &h->DPB[i]);
if (h1->DPB[i].f->buf[0] &&
(ret = ff_h264_ref_picture(h, &h->DPB[i], &h1->DPB[i])) < 0)
return ret;
}
h->cur_pic_ptr = REBASE_PICTURE(h1->cur_pic_ptr, h, h1);
ff_h264_unref_picture(h, &h->cur_pic);
if (h1->cur_pic.f->buf[0]) {
ret = ff_h264_ref_picture(h, &h->cur_pic, &h1->cur_pic);
if (ret < 0)
return ret;
}
h->enable_er = h1->enable_er;
h->workaround_bugs = h1->workaround_bugs;
h->droppable = h1->droppable;
// extradata/NAL handling
h->is_avc = h1->is_avc;
h->nal_length_size = h1->nal_length_size;
memcpy(&h->poc, &h1->poc, sizeof(h->poc));
memcpy(h->short_ref, h1->short_ref, sizeof(h->short_ref));
memcpy(h->long_ref, h1->long_ref, sizeof(h->long_ref));
memcpy(h->delayed_pic, h1->delayed_pic, sizeof(h->delayed_pic));
memcpy(h->last_pocs, h1->last_pocs, sizeof(h->last_pocs));
h->next_output_pic = h1->next_output_pic;
h->next_outputed_poc = h1->next_outputed_poc;
memcpy(h->mmco, h1->mmco, sizeof(h->mmco));
h->nb_mmco = h1->nb_mmco;
h->mmco_reset = h1->mmco_reset;
h->explicit_ref_marking = h1->explicit_ref_marking;
h->long_ref_count = h1->long_ref_count;
h->short_ref_count = h1->short_ref_count;
copy_picture_range(h->short_ref, h1->short_ref, 32, h, h1);
copy_picture_range(h->long_ref, h1->long_ref, 32, h, h1);
copy_picture_range(h->delayed_pic, h1->delayed_pic,
MAX_DELAYED_PIC_COUNT + 2, h, h1);
h->frame_recovered = h1->frame_recovered;
av_buffer_unref(&h->sei.a53_caption.buf_ref);
if (h1->sei.a53_caption.buf_ref) {
h->sei.a53_caption.buf_ref = av_buffer_ref(h1->sei.a53_caption.buf_ref);
if (!h->sei.a53_caption.buf_ref)
return AVERROR(ENOMEM);
}
if (!h->cur_pic_ptr)
return 0;
if (!h->droppable) {
err = ff_h264_execute_ref_pic_marking(h);
h->poc.prev_poc_msb = h->poc.poc_msb;
h->poc.prev_poc_lsb = h->poc.poc_lsb;
}
h->poc.prev_frame_num_offset = h->poc.frame_num_offset;
h->poc.prev_frame_num = h->poc.frame_num;
h->recovery_frame = h1->recovery_frame;
return err;
}
static int h264_frame_start(H264Context *h)
{
H264Picture *pic;
int i, ret;
const int pixel_shift = h->pixel_shift;
if (!ff_thread_can_start_frame(h->avctx)) {
av_log(h->avctx, AV_LOG_ERROR, "Attempt to start a frame outside SETUP state\n");
return -1;
}
release_unused_pictures(h, 1);
h->cur_pic_ptr = NULL;
i = find_unused_picture(h);
if (i < 0) {
av_log(h->avctx, AV_LOG_ERROR, "no frame buffer available\n");
return i;
}
pic = &h->DPB[i];
pic->reference = h->droppable ? 0 : h->picture_structure;
pic->f->coded_picture_number = h->coded_picture_number++;
pic->field_picture = h->picture_structure != PICT_FRAME;
pic->frame_num = h->poc.frame_num;
/*
* Zero key_frame here; IDR markings per slice in frame or fields are ORed
* in later.
* See decode_nal_units().
*/
pic->f->key_frame = 0;
pic->mmco_reset = 0;
pic->recovered = 0;
pic->invalid_gap = 0;
pic->sei_recovery_frame_cnt = h->sei.recovery_point.recovery_frame_cnt;
pic->f->pict_type = h->slice_ctx[0].slice_type;
pic->f->crop_left = h->crop_left;
pic->f->crop_right = h->crop_right;
pic->f->crop_top = h->crop_top;
pic->f->crop_bottom = h->crop_bottom;
if ((ret = alloc_picture(h, pic)) < 0)
return ret;
h->cur_pic_ptr = pic;
ff_h264_unref_picture(h, &h->cur_pic);
if (CONFIG_ERROR_RESILIENCE) {
ff_h264_set_erpic(&h->slice_ctx[0].er.cur_pic, NULL);
}
if ((ret = ff_h264_ref_picture(h, &h->cur_pic, h->cur_pic_ptr)) < 0)
return ret;
for (i = 0; i < h->nb_slice_ctx; i++) {
h->slice_ctx[i].linesize = h->cur_pic_ptr->f->linesize[0];
h->slice_ctx[i].uvlinesize = h->cur_pic_ptr->f->linesize[1];
}
if (CONFIG_ERROR_RESILIENCE && h->enable_er) {
ff_er_frame_start(&h->slice_ctx[0].er);
ff_h264_set_erpic(&h->slice_ctx[0].er.last_pic, NULL);
ff_h264_set_erpic(&h->slice_ctx[0].er.next_pic, NULL);
}
for (i = 0; i < 16; i++) {
h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
}
for (i = 0; i < 16; i++) {
h->block_offset[16 + i] =
h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
h->block_offset[48 + 16 + i] =
h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
}
/* We mark the current picture as non-reference after allocating it, so
* that if we break out due to an error it can be released automatically
* in the next ff_mpv_frame_start().
*/
h->cur_pic_ptr->reference = 0;
h->cur_pic_ptr->field_poc[0] = h->cur_pic_ptr->field_poc[1] = INT_MAX;
h->next_output_pic = NULL;
h->postpone_filter = 0;
h->mb_aff_frame = h->ps.sps->mb_aff && (h->picture_structure == PICT_FRAME);
if (h->sei.unregistered.x264_build >= 0)
h->x264_build = h->sei.unregistered.x264_build;
assert(h->cur_pic_ptr->long_ref == 0);
return 0;
}
static av_always_inline void backup_mb_border(const H264Context *h, H264SliceContext *sl,
uint8_t *src_y,
uint8_t *src_cb, uint8_t *src_cr,
int linesize, int uvlinesize,
int simple)
{
uint8_t *top_border;
int top_idx = 1;
const int pixel_shift = h->pixel_shift;
int chroma444 = CHROMA444(h);
int chroma422 = CHROMA422(h);
src_y -= linesize;
src_cb -= uvlinesize;
src_cr -= uvlinesize;
if (!simple && FRAME_MBAFF(h)) {
if (sl->mb_y & 1) {
if (!MB_MBAFF(sl)) {
top_border = sl->top_borders[0][sl->mb_x];
AV_COPY128(top_border, src_y + 15 * linesize);
if (pixel_shift)
AV_COPY128(top_border + 16, src_y + 15 * linesize + 16);
if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
if (chroma444) {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16);
AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize);
AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16);
} else {
AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize);
AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize);
}
} else if (chroma422) {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize);
} else {
AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize);
AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize);
}
} else {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize);
AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize);
} else {
AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
}
}
}
}
} else if (MB_MBAFF(sl)) {
top_idx = 0;
} else
return;
}
top_border = sl->top_borders[top_idx][sl->mb_x];
/* There are two lines saved, the line above the top macroblock
* of a pair, and the line above the bottom macroblock. */
AV_COPY128(top_border, src_y + 16 * linesize);
if (pixel_shift)
AV_COPY128(top_border + 16, src_y + 16 * linesize + 16);
if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
if (chroma444) {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 16 * linesize);
AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16);
AV_COPY128(top_border + 64, src_cr + 16 * linesize);
AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16);
} else {
AV_COPY128(top_border + 16, src_cb + 16 * linesize);
AV_COPY128(top_border + 32, src_cr + 16 * linesize);
}
} else if (chroma422) {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize);
AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize);
} else {
AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize);
AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize);
}
} else {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize);
AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize);
} else {
AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize);
AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize);
}
}
}
}
/**
* Initialize implicit_weight table.
* @param field 0/1 initialize the weight for interlaced MBAFF
* -1 initializes the rest
*/
static void implicit_weight_table(const H264Context *h, H264SliceContext *sl, int field)
{
int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
for (i = 0; i < 2; i++) {
sl->pwt.luma_weight_flag[i] = 0;
sl->pwt.chroma_weight_flag[i] = 0;
}
if (field < 0) {
if (h->picture_structure == PICT_FRAME) {
cur_poc = h->cur_pic_ptr->poc;
} else {
cur_poc = h->cur_pic_ptr->field_poc[h->picture_structure - 1];
}
if (sl->ref_count[0] == 1 && sl->ref_count[1] == 1 && !FRAME_MBAFF(h) &&
sl->ref_list[0][0].poc + (int64_t)sl->ref_list[1][0].poc == 2LL * cur_poc) {
sl->pwt.use_weight = 0;
sl->pwt.use_weight_chroma = 0;
return;
}
ref_start = 0;
ref_count0 = sl->ref_count[0];
ref_count1 = sl->ref_count[1];
} else {
cur_poc = h->cur_pic_ptr->field_poc[field];
ref_start = 16;
ref_count0 = 16 + 2 * sl->ref_count[0];
ref_count1 = 16 + 2 * sl->ref_count[1];
}
sl->pwt.use_weight = 2;
sl->pwt.use_weight_chroma = 2;
sl->pwt.luma_log2_weight_denom = 5;
sl->pwt.chroma_log2_weight_denom = 5;
for (ref0 = ref_start; ref0 < ref_count0; ref0++) {
int64_t poc0 = sl->ref_list[0][ref0].poc;
for (ref1 = ref_start; ref1 < ref_count1; ref1++) {
int w = 32;
if (!sl->ref_list[0][ref0].parent->long_ref && !sl->ref_list[1][ref1].parent->long_ref) {
int poc1 = sl->ref_list[1][ref1].poc;
int td = av_clip_int8(poc1 - poc0);
if (td) {
int tb = av_clip_int8(cur_poc - poc0);
int tx = (16384 + (FFABS(td) >> 1)) / td;
int dist_scale_factor = (tb * tx + 32) >> 8;
if (dist_scale_factor >= -64 && dist_scale_factor <= 128)
w = 64 - dist_scale_factor;
}
}
if (field < 0) {
sl->pwt.implicit_weight[ref0][ref1][0] =
sl->pwt.implicit_weight[ref0][ref1][1] = w;
} else {
sl->pwt.implicit_weight[ref0][ref1][field] = w;
}
}
}
}
/**
* initialize scan tables
*/
static void init_scan_tables(H264Context *h)
{
int i;
for (i = 0; i < 16; i++) {
#define TRANSPOSE(x) ((x) >> 2) | (((x) << 2) & 0xF)
h->zigzag_scan[i] = TRANSPOSE(ff_zigzag_scan[i]);
h->field_scan[i] = TRANSPOSE(field_scan[i]);
#undef TRANSPOSE
}
for (i = 0; i < 64; i++) {
#define TRANSPOSE(x) ((x) >> 3) | (((x) & 7) << 3)
h->zigzag_scan8x8[i] = TRANSPOSE(ff_zigzag_direct[i]);
h->zigzag_scan8x8_cavlc[i] = TRANSPOSE(zigzag_scan8x8_cavlc[i]);
h->field_scan8x8[i] = TRANSPOSE(field_scan8x8[i]);
h->field_scan8x8_cavlc[i] = TRANSPOSE(field_scan8x8_cavlc[i]);
#undef TRANSPOSE
}
if (h->ps.sps->transform_bypass) { // FIXME same ugly
memcpy(h->zigzag_scan_q0 , ff_zigzag_scan , sizeof(h->zigzag_scan_q0 ));
memcpy(h->zigzag_scan8x8_q0 , ff_zigzag_direct , sizeof(h->zigzag_scan8x8_q0 ));
memcpy(h->zigzag_scan8x8_cavlc_q0 , zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0));
memcpy(h->field_scan_q0 , field_scan , sizeof(h->field_scan_q0 ));
memcpy(h->field_scan8x8_q0 , field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
memcpy(h->field_scan8x8_cavlc_q0 , field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 ));
} else {
memcpy(h->zigzag_scan_q0 , h->zigzag_scan , sizeof(h->zigzag_scan_q0 ));
memcpy(h->zigzag_scan8x8_q0 , h->zigzag_scan8x8 , sizeof(h->zigzag_scan8x8_q0 ));
memcpy(h->zigzag_scan8x8_cavlc_q0 , h->zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0));
memcpy(h->field_scan_q0 , h->field_scan , sizeof(h->field_scan_q0 ));
memcpy(h->field_scan8x8_q0 , h->field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
memcpy(h->field_scan8x8_cavlc_q0 , h->field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 ));
}
}
static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
{
#define HWACCEL_MAX (CONFIG_H264_DXVA2_HWACCEL + \
(CONFIG_H264_D3D11VA_HWACCEL * 2) + \
CONFIG_H264_NVDEC_HWACCEL + \
CONFIG_H264_VAAPI_HWACCEL + \
CONFIG_H264_VIDEOTOOLBOX_HWACCEL + \
CONFIG_H264_VDPAU_HWACCEL)
enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
const enum AVPixelFormat *choices = pix_fmts;
int i;
switch (h->ps.sps->bit_depth_luma) {
case 9:
if (CHROMA444(h)) {
if (h->avctx->colorspace == AVCOL_SPC_RGB) {
*fmt++ = AV_PIX_FMT_GBRP9;
} else
*fmt++ = AV_PIX_FMT_YUV444P9;
} else if (CHROMA422(h))
*fmt++ = AV_PIX_FMT_YUV422P9;
else
*fmt++ = AV_PIX_FMT_YUV420P9;
break;
case 10:
if (CHROMA444(h)) {
if (h->avctx->colorspace == AVCOL_SPC_RGB) {
*fmt++ = AV_PIX_FMT_GBRP10;
} else
*fmt++ = AV_PIX_FMT_YUV444P10;
} else if (CHROMA422(h))
*fmt++ = AV_PIX_FMT_YUV422P10;
else
*fmt++ = AV_PIX_FMT_YUV420P10;
break;
case 12:
if (CHROMA444(h)) {
if (h->avctx->colorspace == AVCOL_SPC_RGB) {
*fmt++ = AV_PIX_FMT_GBRP12;
} else
*fmt++ = AV_PIX_FMT_YUV444P12;
} else if (CHROMA422(h))
*fmt++ = AV_PIX_FMT_YUV422P12;
else
*fmt++ = AV_PIX_FMT_YUV420P12;
break;
case 14:
if (CHROMA444(h)) {
if (h->avctx->colorspace == AVCOL_SPC_RGB) {
*fmt++ = AV_PIX_FMT_GBRP14;
} else
*fmt++ = AV_PIX_FMT_YUV444P14;
} else if (CHROMA422(h))
*fmt++ = AV_PIX_FMT_YUV422P14;
else
*fmt++ = AV_PIX_FMT_YUV420P14;
break;
case 8:
#if CONFIG_H264_VDPAU_HWACCEL
*fmt++ = AV_PIX_FMT_VDPAU;
#endif
#if CONFIG_H264_NVDEC_HWACCEL
*fmt++ = AV_PIX_FMT_CUDA;
#endif
if (CHROMA444(h)) {
if (h->avctx->colorspace == AVCOL_SPC_RGB)
*fmt++ = AV_PIX_FMT_GBRP;
else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
*fmt++ = AV_PIX_FMT_YUVJ444P;
else
*fmt++ = AV_PIX_FMT_YUV444P;
} else if (CHROMA422(h)) {
if (h->avctx->color_range == AVCOL_RANGE_JPEG)
*fmt++ = AV_PIX_FMT_YUVJ422P;
else
*fmt++ = AV_PIX_FMT_YUV422P;
} else {
#if CONFIG_H264_DXVA2_HWACCEL
*fmt++ = AV_PIX_FMT_DXVA2_VLD;
#endif
#if CONFIG_H264_D3D11VA_HWACCEL
*fmt++ = AV_PIX_FMT_D3D11VA_VLD;
*fmt++ = AV_PIX_FMT_D3D11;
#endif
#if CONFIG_H264_VAAPI_HWACCEL
*fmt++ = AV_PIX_FMT_VAAPI;
#endif
#if CONFIG_H264_VIDEOTOOLBOX_HWACCEL
*fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
#endif
if (h->avctx->codec->pix_fmts)
choices = h->avctx->codec->pix_fmts;
else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
*fmt++ = AV_PIX_FMT_YUVJ420P;
else
*fmt++ = AV_PIX_FMT_YUV420P;
}
break;
default:
av_log(h->avctx, AV_LOG_ERROR,
"Unsupported bit depth %d\n", h->ps.sps->bit_depth_luma);
return AVERROR_INVALIDDATA;
}
*fmt = AV_PIX_FMT_NONE;
for (i=0; choices[i] != AV_PIX_FMT_NONE; i++)
if (choices[i] == h->avctx->pix_fmt && !force_callback)
return choices[i];
return ff_thread_get_format(h->avctx, choices);
}
/* export coded and cropped frame dimensions to AVCodecContext */
static void init_dimensions(H264Context *h)
{
const SPS *sps = (const SPS*)h->ps.sps;
int cr = sps->crop_right;
int cl = sps->crop_left;
int ct = sps->crop_top;
int cb = sps->crop_bottom;
int width = h->width - (cr + cl);
int height = h->height - (ct + cb);
av_assert0(sps->crop_right + sps->crop_left < (unsigned)h->width);
av_assert0(sps->crop_top + sps->crop_bottom < (unsigned)h->height);
/* handle container cropping */
if (h->width_from_caller > 0 && h->height_from_caller > 0 &&
!sps->crop_top && !sps->crop_left &&
FFALIGN(h->width_from_caller, 16) == FFALIGN(width, 16) &&
FFALIGN(h->height_from_caller, 16) == FFALIGN(height, 16) &&
h->width_from_caller <= width &&
h->height_from_caller <= height) {
width = h->width_from_caller;
height = h->height_from_caller;
cl = 0;
ct = 0;
cr = h->width - width;
cb = h->height - height;
} else {
h->width_from_caller = 0;
h->height_from_caller = 0;
}
h->avctx->coded_width = h->width;
h->avctx->coded_height = h->height;
h->avctx->width = width;
h->avctx->height = height;
h->crop_right = cr;
h->crop_left = cl;
h->crop_top = ct;
h->crop_bottom = cb;
}
static int h264_slice_header_init(H264Context *h)
{
const SPS *sps = h->ps.sps;
int i, ret;
ff_set_sar(h->avctx, sps->sar);
av_pix_fmt_get_chroma_sub_sample(h->avctx->pix_fmt,
&h->chroma_x_shift, &h->chroma_y_shift);
if (sps->timing_info_present_flag) {
int64_t den = sps->time_scale;
if (h->x264_build < 44U)
den *= 2;
av_reduce(&h->avctx->framerate.den, &h->avctx->framerate.num,
sps->num_units_in_tick * h->avctx->ticks_per_frame, den, 1 << 30);
}
ff_h264_free_tables(h);
h->first_field = 0;
h->prev_interlaced_frame = 1;
init_scan_tables(h);
ret = ff_h264_alloc_tables(h);
if (ret < 0) {
av_log(h->avctx, AV_LOG_ERROR, "Could not allocate memory\n");
goto fail;
}
if (sps->bit_depth_luma < 8 || sps->bit_depth_luma > 14 ||
sps->bit_depth_luma == 11 || sps->bit_depth_luma == 13
) {
av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth %d\n",
sps->bit_depth_luma);
ret = AVERROR_INVALIDDATA;
goto fail;
}
h->cur_bit_depth_luma =
h->avctx->bits_per_raw_sample = sps->bit_depth_luma;
h->cur_chroma_format_idc = sps->chroma_format_idc;
h->pixel_shift = sps->bit_depth_luma > 8;
h->chroma_format_idc = sps->chroma_format_idc;
h->bit_depth_luma = sps->bit_depth_luma;
ff_h264dsp_init(&h->h264dsp, sps->bit_depth_luma,
sps->chroma_format_idc);
ff_h264chroma_init(&h->h264chroma, sps->bit_depth_chroma);
ff_h264qpel_init(&h->h264qpel, sps->bit_depth_luma);
ff_h264_pred_init(&h->hpc, h->avctx->codec_id, sps->bit_depth_luma,
sps->chroma_format_idc);
ff_videodsp_init(&h->vdsp, sps->bit_depth_luma);
if (!HAVE_THREADS || !(h->avctx->active_thread_type & FF_THREAD_SLICE)) {
ret = ff_h264_slice_context_init(h, &h->slice_ctx[0]);
if (ret < 0) {
av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
goto fail;
}
} else {
for (i = 0; i < h->nb_slice_ctx; i++) {
H264SliceContext *sl = &h->slice_ctx[i];
sl->h264 = h;
sl->intra4x4_pred_mode = h->intra4x4_pred_mode + i * 8 * 2 * h->mb_stride;
sl->mvd_table[0] = h->mvd_table[0] + i * 8 * 2 * h->mb_stride;
sl->mvd_table[1] = h->mvd_table[1] + i * 8 * 2 * h->mb_stride;
if ((ret = ff_h264_slice_context_init(h, sl)) < 0) {
av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
goto fail;
}
}
}
h->context_initialized = 1;
return 0;
fail:
ff_h264_free_tables(h);
h->context_initialized = 0;
return ret;
}
static enum AVPixelFormat non_j_pixfmt(enum AVPixelFormat a)
{
switch (a) {
case AV_PIX_FMT_YUVJ420P: return AV_PIX_FMT_YUV420P;
case AV_PIX_FMT_YUVJ422P: return AV_PIX_FMT_YUV422P;
case AV_PIX_FMT_YUVJ444P: return AV_PIX_FMT_YUV444P;
default:
return a;
}
}
static int h264_init_ps(H264Context *h, const H264SliceContext *sl, int first_slice)
{
const SPS *sps;
int needs_reinit = 0, must_reinit, ret;
if (first_slice) {
av_buffer_unref(&h->ps.pps_ref);
h->ps.pps = NULL;
h->ps.pps_ref = av_buffer_ref(h->ps.pps_list[sl->pps_id]);
if (!h->ps.pps_ref)
return AVERROR(ENOMEM);
h->ps.pps = (const PPS*)h->ps.pps_ref->data;
}
if (h->ps.sps != h->ps.pps->sps) {
h->ps.sps = (const SPS*)h->ps.pps->sps;
if (h->mb_width != h->ps.sps->mb_width ||
h->mb_height != h->ps.sps->mb_height ||
h->cur_bit_depth_luma != h->ps.sps->bit_depth_luma ||
h->cur_chroma_format_idc != h->ps.sps->chroma_format_idc
)
needs_reinit = 1;
if (h->bit_depth_luma != h->ps.sps->bit_depth_luma ||
h->chroma_format_idc != h->ps.sps->chroma_format_idc)
needs_reinit = 1;
}
sps = h->ps.sps;
must_reinit = (h->context_initialized &&
( 16*sps->mb_width != h->avctx->coded_width
|| 16*sps->mb_height != h->avctx->coded_height
|| h->cur_bit_depth_luma != sps->bit_depth_luma
|| h->cur_chroma_format_idc != sps->chroma_format_idc
|| h->mb_width != sps->mb_width
|| h->mb_height != sps->mb_height
));
if (h->avctx->pix_fmt == AV_PIX_FMT_NONE
|| (non_j_pixfmt(h->avctx->pix_fmt) != non_j_pixfmt(get_pixel_format(h, 0))))
must_reinit = 1;
if (first_slice && av_cmp_q(sps->sar, h->avctx->sample_aspect_ratio))
must_reinit = 1;
if (!h->setup_finished) {
h->avctx->profile = ff_h264_get_profile(sps);
h->avctx->level = sps->level_idc;
h->avctx->refs = sps->ref_frame_count;
h->mb_width = sps->mb_width;
h->mb_height = sps->mb_height;
h->mb_num = h->mb_width * h->mb_height;
h->mb_stride = h->mb_width + 1;
h->b_stride = h->mb_width * 4;
h->chroma_y_shift = sps->chroma_format_idc <= 1; // 400 uses yuv420p
h->width = 16 * h->mb_width;
h->height = 16 * h->mb_height;
init_dimensions(h);
if (sps->video_signal_type_present_flag) {
h->avctx->color_range = sps->full_range > 0 ? AVCOL_RANGE_JPEG
: AVCOL_RANGE_MPEG;
if (sps->colour_description_present_flag) {
if (h->avctx->colorspace != sps->colorspace)
needs_reinit = 1;
h->avctx->color_primaries = sps->color_primaries;
h->avctx->color_trc = sps->color_trc;
h->avctx->colorspace = sps->colorspace;
}
}
if (h->sei.alternative_transfer.present &&
av_color_transfer_name(h->sei.alternative_transfer.preferred_transfer_characteristics) &&
h->sei.alternative_transfer.preferred_transfer_characteristics != AVCOL_TRC_UNSPECIFIED) {
h->avctx->color_trc = h->sei.alternative_transfer.preferred_transfer_characteristics;
}
}
h->avctx->chroma_sample_location = sps->chroma_location;
if (!h->context_initialized || must_reinit || needs_reinit) {
int flush_changes = h->context_initialized;
h->context_initialized = 0;
if (sl != h->slice_ctx) {
av_log(h->avctx, AV_LOG_ERROR,
"changing width %d -> %d / height %d -> %d on "
"slice %d\n",
h->width, h->avctx->coded_width,
h->height, h->avctx->coded_height,
h->current_slice + 1);
return AVERROR_INVALIDDATA;
}
av_assert1(first_slice);
if (flush_changes)
ff_h264_flush_change(h);
if ((ret = get_pixel_format(h, 1)) < 0)
return ret;
h->avctx->pix_fmt = ret;
av_log(h->avctx, AV_LOG_VERBOSE, "Reinit context to %dx%d, "
"pix_fmt: %s\n", h->width, h->height, av_get_pix_fmt_name(h->avctx->pix_fmt));
if ((ret = h264_slice_header_init(h)) < 0) {
av_log(h->avctx, AV_LOG_ERROR,
"h264_slice_header_init() failed\n");
return ret;
}
}
return 0;
}
static int h264_export_frame_props(H264Context *h)
{
const SPS *sps = h->ps.sps;
H264Picture *cur = h->cur_pic_ptr;
AVFrame *out = cur->f;
out->interlaced_frame = 0;
out->repeat_pict = 0;
/* Signal interlacing information externally. */
/* Prioritize picture timing SEI information over used
* decoding process if it exists. */
if (h->sei.picture_timing.present) {
int ret = ff_h264_sei_process_picture_timing(&h->sei.picture_timing, sps,
h->avctx);
if (ret < 0) {
av_log(h->avctx, AV_LOG_ERROR, "Error processing a picture timing SEI\n");
if (h->avctx->err_recognition & AV_EF_EXPLODE)
return ret;
h->sei.picture_timing.present = 0;
}
}
if (sps->pic_struct_present_flag && h->sei.picture_timing.present) {
H264SEIPictureTiming *pt = &h->sei.picture_timing;
switch (pt->pic_struct) {
case H264_SEI_PIC_STRUCT_FRAME:
break;
case H264_SEI_PIC_STRUCT_TOP_FIELD:
case H264_SEI_PIC_STRUCT_BOTTOM_FIELD:
out->interlaced_frame = 1;
break;
case H264_SEI_PIC_STRUCT_TOP_BOTTOM:
case H264_SEI_PIC_STRUCT_BOTTOM_TOP:
if (FIELD_OR_MBAFF_PICTURE(h))
out->interlaced_frame = 1;
else
// try to flag soft telecine progressive
out->interlaced_frame = h->prev_interlaced_frame;
break;
case H264_SEI_PIC_STRUCT_TOP_BOTTOM_TOP:
case H264_SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM:
/* Signal the possibility of telecined film externally
* (pic_struct 5,6). From these hints, let the applications
* decide if they apply deinterlacing. */
out->repeat_pict = 1;
break;
case H264_SEI_PIC_STRUCT_FRAME_DOUBLING:
out->repeat_pict = 2;
break;
case H264_SEI_PIC_STRUCT_FRAME_TRIPLING:
out->repeat_pict = 4;
break;
}
if ((pt->ct_type & 3) &&
pt->pic_struct <= H264_SEI_PIC_STRUCT_BOTTOM_TOP)
out->interlaced_frame = (pt->ct_type & (1 << 1)) != 0;
} else {
/* Derive interlacing flag from used decoding process. */
out->interlaced_frame = FIELD_OR_MBAFF_PICTURE(h);
}
h->prev_interlaced_frame = out->interlaced_frame;
if (cur->field_poc[0] != cur->field_poc[1]) {
/* Derive top_field_first from field pocs. */
out->top_field_first = cur->field_poc[0] < cur->field_poc[1];
} else {
if (sps->pic_struct_present_flag && h->sei.picture_timing.present) {
/* Use picture timing SEI information. Even if it is a
* information of a past frame, better than nothing. */
if (h->sei.picture_timing.pic_struct == H264_SEI_PIC_STRUCT_TOP_BOTTOM ||
h->sei.picture_timing.pic_struct == H264_SEI_PIC_STRUCT_TOP_BOTTOM_TOP)
out->top_field_first = 1;
else
out->top_field_first = 0;
} else if (out->interlaced_frame) {
/* Default to top field first when pic_struct_present_flag
* is not set but interlaced frame detected */
out->top_field_first = 1;
} else {
/* Most likely progressive */
out->top_field_first = 0;
}
}
if (h->sei.frame_packing.present &&
h->sei.frame_packing.arrangement_type <= 6 &&
h->sei.frame_packing.content_interpretation_type > 0 &&
h->sei.frame_packing.content_interpretation_type < 3) {
H264SEIFramePacking *fp = &h->sei.frame_packing;
AVStereo3D *stereo = av_stereo3d_create_side_data(out);
if (stereo) {
switch (fp->arrangement_type) {
case H264_SEI_FPA_TYPE_CHECKERBOARD:
stereo->type = AV_STEREO3D_CHECKERBOARD;
break;
case H264_SEI_FPA_TYPE_INTERLEAVE_COLUMN:
stereo->type = AV_STEREO3D_COLUMNS;
break;
case H264_SEI_FPA_TYPE_INTERLEAVE_ROW:
stereo->type = AV_STEREO3D_LINES;
break;
case H264_SEI_FPA_TYPE_SIDE_BY_SIDE:
if (fp->quincunx_sampling_flag)
stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
else
stereo->type = AV_STEREO3D_SIDEBYSIDE;
break;
case H264_SEI_FPA_TYPE_TOP_BOTTOM:
stereo->type = AV_STEREO3D_TOPBOTTOM;
break;
case H264_SEI_FPA_TYPE_INTERLEAVE_TEMPORAL:
stereo->type = AV_STEREO3D_FRAMESEQUENCE;
break;
case H264_SEI_FPA_TYPE_2D:
stereo->type = AV_STEREO3D_2D;
break;
}
if (fp->content_interpretation_type == 2)
stereo->flags = AV_STEREO3D_FLAG_INVERT;
if (fp->arrangement_type == H264_SEI_FPA_TYPE_INTERLEAVE_TEMPORAL) {
if (fp->current_frame_is_frame0_flag)
stereo->view = AV_STEREO3D_VIEW_LEFT;
else
stereo->view = AV_STEREO3D_VIEW_RIGHT;
}
}
}
if (h->sei.display_orientation.present &&
(h->sei.display_orientation.anticlockwise_rotation ||
h->sei.display_orientation.hflip ||
h->sei.display_orientation.vflip)) {
H264SEIDisplayOrientation *o = &h->sei.display_orientation;
double angle = o->anticlockwise_rotation * 360 / (double) (1 << 16);
AVFrameSideData *rotation = av_frame_new_side_data(out,
AV_FRAME_DATA_DISPLAYMATRIX,
sizeof(int32_t) * 9);
if (rotation) {
av_display_rotation_set((int32_t *)rotation->data, angle);
av_display_matrix_flip((int32_t *)rotation->data,
o->hflip, o->vflip);
}
}
if (h->sei.afd.present) {
AVFrameSideData *sd = av_frame_new_side_data(out, AV_FRAME_DATA_AFD,
sizeof(uint8_t));
if (sd) {
*sd->data = h->sei.afd.active_format_description;
h->sei.afd.present = 0;
}
}
if (h->sei.a53_caption.buf_ref) {
H264SEIA53Caption *a53 = &h->sei.a53_caption;
AVFrameSideData *sd = av_frame_new_side_data_from_buf(out, AV_FRAME_DATA_A53_CC, a53->buf_ref);
if (!sd)
av_buffer_unref(&a53->buf_ref);
a53->buf_ref = NULL;
h->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS;
}
for (int i = 0; i < h->sei.unregistered.nb_buf_ref; i++) {
H264SEIUnregistered *unreg = &h->sei.unregistered;
if (unreg->buf_ref[i]) {
AVFrameSideData *sd = av_frame_new_side_data_from_buf(out,
AV_FRAME_DATA_SEI_UNREGISTERED,
unreg->buf_ref[i]);
if (!sd)
av_buffer_unref(&unreg->buf_ref[i]);
unreg->buf_ref[i] = NULL;
}
}
h->sei.unregistered.nb_buf_ref = 0;
if (h->sei.picture_timing.timecode_cnt > 0) {
uint32_t *tc_sd;
char tcbuf[AV_TIMECODE_STR_SIZE];
AVFrameSideData *tcside = av_frame_new_side_data(out,
AV_FRAME_DATA_S12M_TIMECODE,
sizeof(uint32_t)*4);
if (!tcside)
return AVERROR(ENOMEM);
tc_sd = (uint32_t*)tcside->data;
tc_sd[0] = h->sei.picture_timing.timecode_cnt;
for (int i = 0; i < tc_sd[0]; i++) {
int drop = h->sei.picture_timing.timecode[i].dropframe;
int hh = h->sei.picture_timing.timecode[i].hours;
int mm = h->sei.picture_timing.timecode[i].minutes;
int ss = h->sei.picture_timing.timecode[i].seconds;
int ff = h->sei.picture_timing.timecode[i].frame;
tc_sd[i + 1] = av_timecode_get_smpte(h->avctx->framerate, drop, hh, mm, ss, ff);
av_timecode_make_smpte_tc_string(tcbuf, tc_sd[i + 1], 0);
av_dict_set(&out->metadata, "timecode", tcbuf, 0);
}
h->sei.picture_timing.timecode_cnt = 0;
}
return 0;
}
static int h264_select_output_frame(H264Context *h)
{
const SPS *sps = h->ps.sps;
H264Picture *out = h->cur_pic_ptr;
H264Picture *cur = h->cur_pic_ptr;
int i, pics, out_of_order, out_idx;
cur->mmco_reset = h->mmco_reset;
h->mmco_reset = 0;
if (sps->bitstream_restriction_flag ||
h->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT) {
h->avctx->has_b_frames = FFMAX(h->avctx->has_b_frames, sps->num_reorder_frames);
}
for (i = 0; 1; i++) {
if(i == MAX_DELAYED_PIC_COUNT || cur->poc < h->last_pocs[i]){
if(i)
h->last_pocs[i-1] = cur->poc;
break;
} else if(i) {
h->last_pocs[i-1]= h->last_pocs[i];
}
}
out_of_order = MAX_DELAYED_PIC_COUNT - i;
if( cur->f->pict_type == AV_PICTURE_TYPE_B
|| (h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > INT_MIN && h->last_pocs[MAX_DELAYED_PIC_COUNT-1] - (int64_t)h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > 2))
out_of_order = FFMAX(out_of_order, 1);
if (out_of_order == MAX_DELAYED_PIC_COUNT) {
av_log(h->avctx, AV_LOG_VERBOSE, "Invalid POC %d<%d\n", cur->poc, h->last_pocs[0]);
for (i = 1; i < MAX_DELAYED_PIC_COUNT; i++)
h->last_pocs[i] = INT_MIN;
h->last_pocs[0] = cur->poc;
cur->mmco_reset = 1;
} else if(h->avctx->has_b_frames < out_of_order && !sps->bitstream_restriction_flag){
int loglevel = h->avctx->frame_number > 1 ? AV_LOG_WARNING : AV_LOG_VERBOSE;
av_log(h->avctx, loglevel, "Increasing reorder buffer to %d\n", out_of_order);
h->avctx->has_b_frames = out_of_order;
}
pics = 0;
while (h->delayed_pic[pics])
pics++;
av_assert0(pics <= MAX_DELAYED_PIC_COUNT);
h->delayed_pic[pics++] = cur;
if (cur->reference == 0)
cur->reference = DELAYED_PIC_REF;
out = h->delayed_pic[0];
out_idx = 0;
for (i = 1; h->delayed_pic[i] &&
!h->delayed_pic[i]->f->key_frame &&
!h->delayed_pic[i]->mmco_reset;
i++)
if (h->delayed_pic[i]->poc < out->poc) {
out = h->delayed_pic[i];
out_idx = i;
}
if (h->avctx->has_b_frames == 0 &&
(h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset))
h->next_outputed_poc = INT_MIN;
out_of_order = out->poc < h->next_outputed_poc;
if (out_of_order || pics > h->avctx->has_b_frames) {
out->reference &= ~DELAYED_PIC_REF;
for (i = out_idx; h->delayed_pic[i]; i++)
h->delayed_pic[i] = h->delayed_pic[i + 1];
}
if (!out_of_order && pics > h->avctx->has_b_frames) {
h->next_output_pic = out;
if (out_idx == 0 && h->delayed_pic[0] && (h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset)) {
h->next_outputed_poc = INT_MIN;
} else
h->next_outputed_poc = out->poc;
if (out->recovered) {
// We have reached an recovery point and all frames after it in
// display order are "recovered".
h->frame_recovered |= FRAME_RECOVERED_SEI;
}
out->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_SEI);
if (!out->recovered) {
if (!(h->avctx->flags & AV_CODEC_FLAG_OUTPUT_CORRUPT) &&
!(h->avctx->flags2 & AV_CODEC_FLAG2_SHOW_ALL)) {
h->next_output_pic = NULL;
} else {
out->f->flags |= AV_FRAME_FLAG_CORRUPT;
}
}
} else {
av_log(h->avctx, AV_LOG_DEBUG, "no picture %s\n", out_of_order ? "ooo" : "");
}
return 0;
}
/* This function is called right after decoding the slice header for a first
* slice in a field (or a frame). It decides whether we are decoding a new frame
* or a second field in a pair and does the necessary setup.
*/
static int h264_field_start(H264Context *h, const H264SliceContext *sl,
const H2645NAL *nal, int first_slice)
{
int i;
const SPS *sps;
int last_pic_structure, last_pic_droppable, ret;
ret = h264_init_ps(h, sl, first_slice);
if (ret < 0)
return ret;
sps = h->ps.sps;
if (sps && sps->bitstream_restriction_flag &&
h->avctx->has_b_frames < sps->num_reorder_frames) {
h->avctx->has_b_frames = sps->num_reorder_frames;
}
last_pic_droppable = h->droppable;
last_pic_structure = h->picture_structure;
h->droppable = (nal->ref_idc == 0);
h->picture_structure = sl->picture_structure;
h->poc.frame_num = sl->frame_num;
h->poc.poc_lsb = sl->poc_lsb;
h->poc.delta_poc_bottom = sl->delta_poc_bottom;
h->poc.delta_poc[0] = sl->delta_poc[0];
h->poc.delta_poc[1] = sl->delta_poc[1];
/* Shorten frame num gaps so we don't have to allocate reference
* frames just to throw them away */
if (h->poc.frame_num != h->poc.prev_frame_num) {
int unwrap_prev_frame_num = h->poc.prev_frame_num;
int max_frame_num = 1 << sps->log2_max_frame_num;
if (unwrap_prev_frame_num > h->poc.frame_num)
unwrap_prev_frame_num -= max_frame_num;
if ((h->poc.frame_num - unwrap_prev_frame_num) > sps->ref_frame_count) {
unwrap_prev_frame_num = (h->poc.frame_num - sps->ref_frame_count) - 1;
if (unwrap_prev_frame_num < 0)
unwrap_prev_frame_num += max_frame_num;
h->poc.prev_frame_num = unwrap_prev_frame_num;
}
}
/* See if we have a decoded first field looking for a pair...
* Here, we're using that to see if we should mark previously
* decode frames as "finished".
* We have to do that before the "dummy" in-between frame allocation,
* since that can modify h->cur_pic_ptr. */
if (h->first_field) {
int last_field = last_pic_structure == PICT_BOTTOM_FIELD;
av_assert0(h->cur_pic_ptr);
av_assert0(h->cur_pic_ptr->f->buf[0]);
assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
/* Mark old field/frame as completed */
if (h->cur_pic_ptr->tf.owner[last_field] == h->avctx) {
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, last_field);
}
/* figure out if we have a complementary field pair */
if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
/* Previous field is unmatched. Don't display it, but let it
* remain for reference if marked as such. */
if (last_pic_structure != PICT_FRAME) {
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
last_pic_structure == PICT_TOP_FIELD);
}
} else {
if (h->cur_pic_ptr->frame_num != h->poc.frame_num) {
/* This and previous field were reference, but had
* different frame_nums. Consider this field first in
* pair. Throw away previous field except for reference
* purposes. */
if (last_pic_structure != PICT_FRAME) {
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
last_pic_structure == PICT_TOP_FIELD);
}
} else {
/* Second field in complementary pair */
if (!((last_pic_structure == PICT_TOP_FIELD &&
h->picture_structure == PICT_BOTTOM_FIELD) ||
(last_pic_structure == PICT_BOTTOM_FIELD &&
h->picture_structure == PICT_TOP_FIELD))) {
av_log(h->avctx, AV_LOG_ERROR,
"Invalid field mode combination %d/%d\n",
last_pic_structure, h->picture_structure);
h->picture_structure = last_pic_structure;
h->droppable = last_pic_droppable;
return AVERROR_INVALIDDATA;
} else if (last_pic_droppable != h->droppable) {
avpriv_request_sample(h->avctx,
"Found reference and non-reference fields in the same frame, which");
h->picture_structure = last_pic_structure;
h->droppable = last_pic_droppable;
return AVERROR_PATCHWELCOME;
}
}
}
}
while (h->poc.frame_num != h->poc.prev_frame_num && !h->first_field &&
h->poc.frame_num != (h->poc.prev_frame_num + 1) % (1 << sps->log2_max_frame_num)) {
H264Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL;
av_log(h->avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n",
h->poc.frame_num, h->poc.prev_frame_num);
if (!sps->gaps_in_frame_num_allowed_flag)
for(i=0; i<FF_ARRAY_ELEMS(h->last_pocs); i++)
h->last_pocs[i] = INT_MIN;
ret = h264_frame_start(h);
if (ret < 0) {
h->first_field = 0;
return ret;
}
h->poc.prev_frame_num++;
h->poc.prev_frame_num %= 1 << sps->log2_max_frame_num;
h->cur_pic_ptr->frame_num = h->poc.prev_frame_num;
h->cur_pic_ptr->invalid_gap = !sps->gaps_in_frame_num_allowed_flag;
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
h->explicit_ref_marking = 0;
ret = ff_h264_execute_ref_pic_marking(h);
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
return ret;
/* Error concealment: If a ref is missing, copy the previous ref
* in its place.
* FIXME: Avoiding a memcpy would be nice, but ref handling makes
* many assumptions about there being no actual duplicates.
* FIXME: This does not copy padding for out-of-frame motion
* vectors. Given we are concealing a lost frame, this probably
* is not noticeable by comparison, but it should be fixed. */
if (h->short_ref_count) {
int c[4] = {
1<<(h->ps.sps->bit_depth_luma-1),
1<<(h->ps.sps->bit_depth_chroma-1),
1<<(h->ps.sps->bit_depth_chroma-1),
-1
};
if (prev &&
h->short_ref[0]->f->width == prev->f->width &&
h->short_ref[0]->f->height == prev->f->height &&
h->short_ref[0]->f->format == prev->f->format) {
ff_thread_await_progress(&prev->tf, INT_MAX, 0);
if (prev->field_picture)
ff_thread_await_progress(&prev->tf, INT_MAX, 1);
av_image_copy(h->short_ref[0]->f->data,
h->short_ref[0]->f->linesize,
(const uint8_t **)prev->f->data,
prev->f->linesize,
prev->f->format,
prev->f->width,
prev->f->height);
h->short_ref[0]->poc = prev->poc + 2;
} else if (!h->frame_recovered && !h->avctx->hwaccel)
ff_color_frame(h->short_ref[0]->f, c);
h->short_ref[0]->frame_num = h->poc.prev_frame_num;
}
}
/* See if we have a decoded first field looking for a pair...
* We're using that to see whether to continue decoding in that
* frame, or to allocate a new one. */
if (h->first_field) {
av_assert0(h->cur_pic_ptr);
av_assert0(h->cur_pic_ptr->f->buf[0]);
assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
/* figure out if we have a complementary field pair */
if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
/* Previous field is unmatched. Don't display it, but let it
* remain for reference if marked as such. */
h->missing_fields ++;
h->cur_pic_ptr = NULL;
h->first_field = FIELD_PICTURE(h);
} else {
h->missing_fields = 0;
if (h->cur_pic_ptr->frame_num != h->poc.frame_num) {
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
h->picture_structure==PICT_BOTTOM_FIELD);
/* This and the previous field had different frame_nums.
* Consider this field first in pair. Throw away previous
* one except for reference purposes. */
h->first_field = 1;
h->cur_pic_ptr = NULL;
} else if (h->cur_pic_ptr->reference & DELAYED_PIC_REF) {
/* This frame was already output, we cannot draw into it
* anymore.
*/
h->first_field = 1;
h->cur_pic_ptr = NULL;
} else {
/* Second field in complementary pair */
h->first_field = 0;
}
}
} else {
/* Frame or first field in a potentially complementary pair */
h->first_field = FIELD_PICTURE(h);
}
if (!FIELD_PICTURE(h) || h->first_field) {
if (h264_frame_start(h) < 0) {
h->first_field = 0;
return AVERROR_INVALIDDATA;
}
} else {
int field = h->picture_structure == PICT_BOTTOM_FIELD;
release_unused_pictures(h, 0);
h->cur_pic_ptr->tf.owner[field] = h->avctx;
}
/* Some macroblocks can be accessed before they're available in case
* of lost slices, MBAFF or threading. */
if (FIELD_PICTURE(h)) {
for(i = (h->picture_structure == PICT_BOTTOM_FIELD); i<h->mb_height; i++)
memset(h->slice_table + i*h->mb_stride, -1, (h->mb_stride - (i+1==h->mb_height)) * sizeof(*h->slice_table));
} else {
memset(h->slice_table, -1,
(h->mb_height * h->mb_stride - 1) * sizeof(*h->slice_table));
}
ret = ff_h264_init_poc(h->cur_pic_ptr->field_poc, &h->cur_pic_ptr->poc,
h->ps.sps, &h->poc, h->picture_structure, nal->ref_idc);
if (ret < 0)
return ret;
memcpy(h->mmco, sl->mmco, sl->nb_mmco * sizeof(*h->mmco));
h->nb_mmco = sl->nb_mmco;
h->explicit_ref_marking = sl->explicit_ref_marking;
h->picture_idr = nal->type == H264_NAL_IDR_SLICE;
if (h->sei.recovery_point.recovery_frame_cnt >= 0) {
const int sei_recovery_frame_cnt = h->sei.recovery_point.recovery_frame_cnt;
if (h->poc.frame_num != sei_recovery_frame_cnt || sl->slice_type_nos != AV_PICTURE_TYPE_I)
h->valid_recovery_point = 1;
if ( h->recovery_frame < 0
|| av_mod_uintp2(h->recovery_frame - h->poc.frame_num, h->ps.sps->log2_max_frame_num) > sei_recovery_frame_cnt) {
h->recovery_frame = av_mod_uintp2(h->poc.frame_num + sei_recovery_frame_cnt, h->ps.sps->log2_max_frame_num);
if (!h->valid_recovery_point)
h->recovery_frame = h->poc.frame_num;
}
}
h->cur_pic_ptr->f->key_frame |= (nal->type == H264_NAL_IDR_SLICE);
if (nal->type == H264_NAL_IDR_SLICE ||
(h->recovery_frame == h->poc.frame_num && nal->ref_idc)) {
h->recovery_frame = -1;
h->cur_pic_ptr->recovered = 1;
}
// If we have an IDR, all frames after it in decoded order are
// "recovered".
if (nal->type == H264_NAL_IDR_SLICE)
h->frame_recovered |= FRAME_RECOVERED_IDR;
#if 1
h->cur_pic_ptr->recovered |= h->frame_recovered;
#else
h->cur_pic_ptr->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_IDR);
#endif
/* Set the frame properties/side data. Only done for the second field in
* field coded frames, since some SEI information is present for each field
* and is merged by the SEI parsing code. */
if (!FIELD_PICTURE(h) || !h->first_field || h->missing_fields > 1) {
ret = h264_export_frame_props(h);
if (ret < 0)
return ret;
ret = h264_select_output_frame(h);
if (ret < 0)
return ret;
}
return 0;
}
static int h264_slice_header_parse(const H264Context *h, H264SliceContext *sl,
const H2645NAL *nal)
{
const SPS *sps;
const PPS *pps;
int ret;
unsigned int slice_type, tmp, i;
int field_pic_flag, bottom_field_flag;
int first_slice = sl == h->slice_ctx && !h->current_slice;
int picture_structure;
if (first_slice)
av_assert0(!h->setup_finished);
sl->first_mb_addr = get_ue_golomb_long(&sl->gb);
slice_type = get_ue_golomb_31(&sl->gb);
if (slice_type > 9) {
av_log(h->avctx, AV_LOG_ERROR,
"slice type %d too large at %d\n",
slice_type, sl->first_mb_addr);
return AVERROR_INVALIDDATA;
}
if (slice_type > 4) {
slice_type -= 5;
sl->slice_type_fixed = 1;
} else
sl->slice_type_fixed = 0;
slice_type = ff_h264_golomb_to_pict_type[slice_type];
sl->slice_type = slice_type;
sl->slice_type_nos = slice_type & 3;
if (nal->type == H264_NAL_IDR_SLICE &&
sl->slice_type_nos != AV_PICTURE_TYPE_I) {
av_log(h->avctx, AV_LOG_ERROR, "A non-intra slice in an IDR NAL unit.\n");
return AVERROR_INVALIDDATA;
}
sl->pps_id = get_ue_golomb(&sl->gb);
if (sl->pps_id >= MAX_PPS_COUNT) {
av_log(h->avctx, AV_LOG_ERROR, "pps_id %u out of range\n", sl->pps_id);
return AVERROR_INVALIDDATA;
}
if (!h->ps.pps_list[sl->pps_id]) {
av_log(h->avctx, AV_LOG_ERROR,
"non-existing PPS %u referenced\n",
sl->pps_id);
return AVERROR_INVALIDDATA;
}
pps = (const PPS*)h->ps.pps_list[sl->pps_id]->data;
sps = pps->sps;
sl->frame_num = get_bits(&sl->gb, sps->log2_max_frame_num);
if (!first_slice) {
if (h->poc.frame_num != sl->frame_num) {
av_log(h->avctx, AV_LOG_ERROR, "Frame num change from %d to %d\n",
h->poc.frame_num, sl->frame_num);
return AVERROR_INVALIDDATA;
}
}
sl->mb_mbaff = 0;
if (sps->frame_mbs_only_flag) {
picture_structure = PICT_FRAME;
} else {
if (!sps->direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B) {
av_log(h->avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n");
return -1;
}
field_pic_flag = get_bits1(&sl->gb);
if (field_pic_flag) {
bottom_field_flag = get_bits1(&sl->gb);
picture_structure = PICT_TOP_FIELD + bottom_field_flag;
} else {
picture_structure = PICT_FRAME;
}
}
sl->picture_structure = picture_structure;
sl->mb_field_decoding_flag = picture_structure != PICT_FRAME;
if (picture_structure == PICT_FRAME) {
sl->curr_pic_num = sl->frame_num;
sl->max_pic_num = 1 << sps->log2_max_frame_num;
} else {
sl->curr_pic_num = 2 * sl->frame_num + 1;
sl->max_pic_num = 1 << (sps->log2_max_frame_num + 1);
}
if (nal->type == H264_NAL_IDR_SLICE)
get_ue_golomb_long(&sl->gb); /* idr_pic_id */
if (sps->poc_type == 0) {
sl->poc_lsb = get_bits(&sl->gb, sps->log2_max_poc_lsb);
if (pps->pic_order_present == 1 && picture_structure == PICT_FRAME)
sl->delta_poc_bottom = get_se_golomb(&sl->gb);
}
if (sps->poc_type == 1 && !sps->delta_pic_order_always_zero_flag) {
sl->delta_poc[0] = get_se_golomb(&sl->gb);
if (pps->pic_order_present == 1 && picture_structure == PICT_FRAME)
sl->delta_poc[1] = get_se_golomb(&sl->gb);
}
sl->redundant_pic_count = 0;
if (pps->redundant_pic_cnt_present)
sl->redundant_pic_count = get_ue_golomb(&sl->gb);
if (sl->slice_type_nos == AV_PICTURE_TYPE_B)
sl->direct_spatial_mv_pred = get_bits1(&sl->gb);
ret = ff_h264_parse_ref_count(&sl->list_count, sl->ref_count,
&sl->gb, pps, sl->slice_type_nos,
picture_structure, h->avctx);
if (ret < 0)
return ret;
if (sl->slice_type_nos != AV_PICTURE_TYPE_I) {
ret = ff_h264_decode_ref_pic_list_reordering(sl, h->avctx);
if (ret < 0) {
sl->ref_count[1] = sl->ref_count[0] = 0;
return ret;
}
}
sl->pwt.use_weight = 0;
for (i = 0; i < 2; i++) {
sl->pwt.luma_weight_flag[i] = 0;
sl->pwt.chroma_weight_flag[i] = 0;
}
if ((pps->weighted_pred && sl->slice_type_nos == AV_PICTURE_TYPE_P) ||
(pps->weighted_bipred_idc == 1 &&
sl->slice_type_nos == AV_PICTURE_TYPE_B)) {
ret = ff_h264_pred_weight_table(&sl->gb, sps, sl->ref_count,
sl->slice_type_nos, &sl->pwt,
picture_structure, h->avctx);
if (ret < 0)
return ret;
}
sl->explicit_ref_marking = 0;
if (nal->ref_idc) {
ret = ff_h264_decode_ref_pic_marking(sl, &sl->gb, nal, h->avctx);
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
return AVERROR_INVALIDDATA;
}
if (sl->slice_type_nos != AV_PICTURE_TYPE_I && pps->cabac) {
tmp = get_ue_golomb_31(&sl->gb);
if (tmp > 2) {
av_log(h->avctx, AV_LOG_ERROR, "cabac_init_idc %u overflow\n", tmp);
return AVERROR_INVALIDDATA;
}
sl->cabac_init_idc = tmp;
}
sl->last_qscale_diff = 0;
tmp = pps->init_qp + (unsigned)get_se_golomb(&sl->gb);
if (tmp > 51 + 6 * (sps->bit_depth_luma - 8)) {
av_log(h->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
return AVERROR_INVALIDDATA;
}
sl->qscale = tmp;
sl->chroma_qp[0] = get_chroma_qp(pps, 0, sl->qscale);
sl->chroma_qp[1] = get_chroma_qp(pps, 1, sl->qscale);
// FIXME qscale / qp ... stuff
if (sl->slice_type == AV_PICTURE_TYPE_SP)
get_bits1(&sl->gb); /* sp_for_switch_flag */
if (sl->slice_type == AV_PICTURE_TYPE_SP ||
sl->slice_type == AV_PICTURE_TYPE_SI)
get_se_golomb(&sl->gb); /* slice_qs_delta */
sl->deblocking_filter = 1;
sl->slice_alpha_c0_offset = 0;
sl->slice_beta_offset = 0;
if (pps->deblocking_filter_parameters_present) {
tmp = get_ue_golomb_31(&sl->gb);
if (tmp > 2) {
av_log(h->avctx, AV_LOG_ERROR,
"deblocking_filter_idc %u out of range\n", tmp);
return AVERROR_INVALIDDATA;
}
sl->deblocking_filter = tmp;
if (sl->deblocking_filter < 2)
sl->deblocking_filter ^= 1; // 1<->0
if (sl->deblocking_filter) {
int slice_alpha_c0_offset_div2 = get_se_golomb(&sl->gb);
int slice_beta_offset_div2 = get_se_golomb(&sl->gb);
if (slice_alpha_c0_offset_div2 > 6 ||
slice_alpha_c0_offset_div2 < -6 ||
slice_beta_offset_div2 > 6 ||
slice_beta_offset_div2 < -6) {
av_log(h->avctx, AV_LOG_ERROR,
"deblocking filter parameters %d %d out of range\n",
slice_alpha_c0_offset_div2, slice_beta_offset_div2);
return AVERROR_INVALIDDATA;
}
sl->slice_alpha_c0_offset = slice_alpha_c0_offset_div2 * 2;
sl->slice_beta_offset = slice_beta_offset_div2 * 2;
}
}
return 0;
}
/* do all the per-slice initialization needed before we can start decoding the
* actual MBs */
static int h264_slice_init(H264Context *h, H264SliceContext *sl,
const H2645NAL *nal)
{
int i, j, ret = 0;
if (h->picture_idr && nal->type != H264_NAL_IDR_SLICE) {
av_log(h->avctx, AV_LOG_ERROR, "Invalid mix of IDR and non-IDR slices\n");
return AVERROR_INVALIDDATA;
}
av_assert1(h->mb_num == h->mb_width * h->mb_height);
if (sl->first_mb_addr << FIELD_OR_MBAFF_PICTURE(h) >= h->mb_num ||
sl->first_mb_addr >= h->mb_num) {
av_log(h->avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
return AVERROR_INVALIDDATA;
}
sl->resync_mb_x = sl->mb_x = sl->first_mb_addr % h->mb_width;
sl->resync_mb_y = sl->mb_y = (sl->first_mb_addr / h->mb_width) <<
FIELD_OR_MBAFF_PICTURE(h);
if (h->picture_structure == PICT_BOTTOM_FIELD)
sl->resync_mb_y = sl->mb_y = sl->mb_y + 1;
av_assert1(sl->mb_y < h->mb_height);
ret = ff_h264_build_ref_list(h, sl);
if (ret < 0)
return ret;
if (h->ps.pps->weighted_bipred_idc == 2 &&
sl->slice_type_nos == AV_PICTURE_TYPE_B) {
implicit_weight_table(h, sl, -1);
if (FRAME_MBAFF(h)) {
implicit_weight_table(h, sl, 0);
implicit_weight_table(h, sl, 1);
}
}
if (sl->slice_type_nos == AV_PICTURE_TYPE_B && !sl->direct_spatial_mv_pred)
ff_h264_direct_dist_scale_factor(h, sl);
if (!h->setup_finished)
ff_h264_direct_ref_list_init(h, sl);
if (h->avctx->skip_loop_filter >= AVDISCARD_ALL ||
(h->avctx->skip_loop_filter >= AVDISCARD_NONKEY &&
h->nal_unit_type != H264_NAL_IDR_SLICE) ||
(h->avctx->skip_loop_filter >= AVDISCARD_NONINTRA &&
sl->slice_type_nos != AV_PICTURE_TYPE_I) ||
(h->avctx->skip_loop_filter >= AVDISCARD_BIDIR &&
sl->slice_type_nos == AV_PICTURE_TYPE_B) ||
(h->avctx->skip_loop_filter >= AVDISCARD_NONREF &&
nal->ref_idc == 0))
sl->deblocking_filter = 0;
if (sl->deblocking_filter == 1 && h->nb_slice_ctx > 1) {
if (h->avctx->flags2 & AV_CODEC_FLAG2_FAST) {
/* Cheat slightly for speed:
* Do not bother to deblock across slices. */
sl->deblocking_filter = 2;
} else {
h->postpone_filter = 1;
}
}
sl->qp_thresh = 15 -
FFMIN(sl->slice_alpha_c0_offset, sl->slice_beta_offset) -
FFMAX3(0,
h->ps.pps->chroma_qp_index_offset[0],
h->ps.pps->chroma_qp_index_offset[1]) +
6 * (h->ps.sps->bit_depth_luma - 8);
sl->slice_num = ++h->current_slice;
if (sl->slice_num)
h->slice_row[(sl->slice_num-1)&(MAX_SLICES-1)]= sl->resync_mb_y;
if ( h->slice_row[sl->slice_num&(MAX_SLICES-1)] + 3 >= sl->resync_mb_y
&& h->slice_row[sl->slice_num&(MAX_SLICES-1)] <= sl->resync_mb_y
&& sl->slice_num >= MAX_SLICES) {
//in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case
av_log(h->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", sl->slice_num, MAX_SLICES);
}
for (j = 0; j < 2; j++) {
int id_list[16];
int *ref2frm = h->ref2frm[sl->slice_num & (MAX_SLICES - 1)][j];
for (i = 0; i < 16; i++) {
id_list[i] = 60;
if (j < sl->list_count && i < sl->ref_count[j] &&
sl->ref_list[j][i].parent->f->buf[0]) {
int k;
AVBuffer *buf = sl->ref_list[j][i].parent->f->buf[0]->buffer;
for (k = 0; k < h->short_ref_count; k++)
if (h->short_ref[k]->f->buf[0]->buffer == buf) {
id_list[i] = k;
break;
}
for (k = 0; k < h->long_ref_count; k++)
if (h->long_ref[k] && h->long_ref[k]->f->buf[0]->buffer == buf) {
id_list[i] = h->short_ref_count + k;
break;
}
}
}
ref2frm[0] =
ref2frm[1] = -1;
for (i = 0; i < 16; i++)
ref2frm[i + 2] = 4 * id_list[i] + (sl->ref_list[j][i].reference & 3);
ref2frm[18 + 0] =
ref2frm[18 + 1] = -1;
for (i = 16; i < 48; i++)
ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] +
(sl->ref_list[j][i].reference & 3);
}
if (h->avctx->debug & FF_DEBUG_PICT_INFO) {
av_log(h->avctx, AV_LOG_DEBUG,
"slice:%d %s mb:%d %c%s%s frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
sl->slice_num,
(h->picture_structure == PICT_FRAME ? "F" : h->picture_structure == PICT_TOP_FIELD ? "T" : "B"),
sl->mb_y * h->mb_width + sl->mb_x,
av_get_picture_type_char(sl->slice_type),
sl->slice_type_fixed ? " fix" : "",
nal->type == H264_NAL_IDR_SLICE ? " IDR" : "",
h->poc.frame_num,
h->cur_pic_ptr->field_poc[0],
h->cur_pic_ptr->field_poc[1],
sl->ref_count[0], sl->ref_count[1],
sl->qscale,
sl->deblocking_filter,
sl->slice_alpha_c0_offset, sl->slice_beta_offset,
sl->pwt.use_weight,
sl->pwt.use_weight == 1 && sl->pwt.use_weight_chroma ? "c" : "",
sl->slice_type == AV_PICTURE_TYPE_B ? (sl->direct_spatial_mv_pred ? "SPAT" : "TEMP") : "");
}
return 0;
}
int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal)
{
H264SliceContext *sl = h->slice_ctx + h->nb_slice_ctx_queued;
int first_slice = sl == h->slice_ctx && !h->current_slice;
int ret;
sl->gb = nal->gb;
ret = h264_slice_header_parse(h, sl, nal);
if (ret < 0)
return ret;
// discard redundant pictures
if (sl->redundant_pic_count > 0) {
sl->ref_count[0] = sl->ref_count[1] = 0;
return 0;
}
if (sl->first_mb_addr == 0 || !h->current_slice) {
if (h->setup_finished) {
av_log(h->avctx, AV_LOG_ERROR, "Too many fields\n");
return AVERROR_INVALIDDATA;
}
}
if (sl->first_mb_addr == 0) { // FIXME better field boundary detection
if (h->current_slice) {
// this slice starts a new field
// first decode any pending queued slices
if (h->nb_slice_ctx_queued) {
H264SliceContext tmp_ctx;
ret = ff_h264_execute_decode_slices(h);
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
return ret;
memcpy(&tmp_ctx, h->slice_ctx, sizeof(tmp_ctx));
memcpy(h->slice_ctx, sl, sizeof(tmp_ctx));
memcpy(sl, &tmp_ctx, sizeof(tmp_ctx));
sl = h->slice_ctx;
}
if (h->cur_pic_ptr && FIELD_PICTURE(h) && h->first_field) {
ret = ff_h264_field_end(h, h->slice_ctx, 1);
if (ret < 0)
return ret;
} else if (h->cur_pic_ptr && !FIELD_PICTURE(h) && !h->first_field && h->nal_unit_type == H264_NAL_IDR_SLICE) {
av_log(h, AV_LOG_WARNING, "Broken frame packetizing\n");
ret = ff_h264_field_end(h, h->slice_ctx, 1);
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
h->cur_pic_ptr = NULL;
if (ret < 0)
return ret;
} else
return AVERROR_INVALIDDATA;
}
if (!h->first_field) {
if (h->cur_pic_ptr && !h->droppable) {
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
h->picture_structure == PICT_BOTTOM_FIELD);
}
h->cur_pic_ptr = NULL;
}
}
if (!h->current_slice)
av_assert0(sl == h->slice_ctx);
if (h->current_slice == 0 && !h->first_field) {
if (
(h->avctx->skip_frame >= AVDISCARD_NONREF && !h->nal_ref_idc) ||
(h->avctx->skip_frame >= AVDISCARD_BIDIR && sl->slice_type_nos == AV_PICTURE_TYPE_B) ||
(h->avctx->skip_frame >= AVDISCARD_NONINTRA && sl->slice_type_nos != AV_PICTURE_TYPE_I) ||
(h->avctx->skip_frame >= AVDISCARD_NONKEY && h->nal_unit_type != H264_NAL_IDR_SLICE && h->sei.recovery_point.recovery_frame_cnt < 0) ||
h->avctx->skip_frame >= AVDISCARD_ALL) {
return 0;
}
}
if (!first_slice) {
const PPS *pps = (const PPS*)h->ps.pps_list[sl->pps_id]->data;
if (h->ps.pps->sps_id != pps->sps_id ||
h->ps.pps->transform_8x8_mode != pps->transform_8x8_mode /*||
(h->setup_finished && h->ps.pps != pps)*/) {
av_log(h->avctx, AV_LOG_ERROR, "PPS changed between slices\n");
return AVERROR_INVALIDDATA;
}
if (h->ps.sps != pps->sps) {
av_log(h->avctx, AV_LOG_ERROR,
"SPS changed in the middle of the frame\n");
return AVERROR_INVALIDDATA;
}
}
if (h->current_slice == 0) {
ret = h264_field_start(h, sl, nal, first_slice);
if (ret < 0)
return ret;
} else {
if (h->picture_structure != sl->picture_structure ||
h->droppable != (nal->ref_idc == 0)) {
av_log(h->avctx, AV_LOG_ERROR,
"Changing field mode (%d -> %d) between slices is not allowed\n",
h->picture_structure, sl->picture_structure);
return AVERROR_INVALIDDATA;
} else if (!h->cur_pic_ptr) {
av_log(h->avctx, AV_LOG_ERROR,
"unset cur_pic_ptr on slice %d\n",
h->current_slice + 1);
return AVERROR_INVALIDDATA;
}
}
ret = h264_slice_init(h, sl, nal);
if (ret < 0)
return ret;
h->nb_slice_ctx_queued++;
return 0;
}
int ff_h264_get_slice_type(const H264SliceContext *sl)
{
switch (sl->slice_type) {
case AV_PICTURE_TYPE_P:
return 0;
case AV_PICTURE_TYPE_B:
return 1;
case AV_PICTURE_TYPE_I:
return 2;
case AV_PICTURE_TYPE_SP:
return 3;
case AV_PICTURE_TYPE_SI:
return 4;
default:
return AVERROR_INVALIDDATA;
}
}
static av_always_inline void fill_filter_caches_inter(const H264Context *h,
H264SliceContext *sl,
int mb_type, int top_xy,
int left_xy[LEFT_MBS],
int top_type,
int left_type[LEFT_MBS],
int mb_xy, int list)
{
int b_stride = h->b_stride;
int16_t(*mv_dst)[2] = &sl->mv_cache[list][scan8[0]];
int8_t *ref_cache = &sl->ref_cache[list][scan8[0]];
if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) {
if (USES_LIST(top_type, list)) {
const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
const int b8_xy = 4 * top_xy + 2;
const int *ref2frm = &h->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
AV_COPY128(mv_dst - 1 * 8, h->cur_pic.motion_val[list][b_xy + 0]);
ref_cache[0 - 1 * 8] =
ref_cache[1 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 0]];
ref_cache[2 - 1 * 8] =
ref_cache[3 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 1]];
} else {
AV_ZERO128(mv_dst - 1 * 8);
AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
}
if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) {
if (USES_LIST(left_type[LTOP], list)) {
const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3;
const int b8_xy = 4 * left_xy[LTOP] + 1;
const int *ref2frm = &h->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
AV_COPY32(mv_dst - 1 + 0, h->cur_pic.motion_val[list][b_xy + b_stride * 0]);
AV_COPY32(mv_dst - 1 + 8, h->cur_pic.motion_val[list][b_xy + b_stride * 1]);
AV_COPY32(mv_dst - 1 + 16, h->cur_pic.motion_val[list][b_xy + b_stride * 2]);
AV_COPY32(mv_dst - 1 + 24, h->cur_pic.motion_val[list][b_xy + b_stride * 3]);
ref_cache[-1 + 0] =
ref_cache[-1 + 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 0]];
ref_cache[-1 + 16] =
ref_cache[-1 + 24] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 1]];
} else {
AV_ZERO32(mv_dst - 1 + 0);
AV_ZERO32(mv_dst - 1 + 8);
AV_ZERO32(mv_dst - 1 + 16);
AV_ZERO32(mv_dst - 1 + 24);
ref_cache[-1 + 0] =
ref_cache[-1 + 8] =
ref_cache[-1 + 16] =
ref_cache[-1 + 24] = LIST_NOT_USED;
}
}
}
if (!USES_LIST(mb_type, list)) {
fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4);
AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
return;
}
{
int8_t *ref = &h->cur_pic.ref_index[list][4 * mb_xy];
const int *ref2frm = &h->ref2frm[sl->slice_num & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
uint32_t ref01 = (pack16to32(ref2frm[ref[0]], ref2frm[ref[1]]) & 0x00FF00FF) * 0x0101;
uint32_t ref23 = (pack16to32(ref2frm[ref[2]], ref2frm[ref[3]]) & 0x00FF00FF) * 0x0101;
AV_WN32A(&ref_cache[0 * 8], ref01);
AV_WN32A(&ref_cache[1 * 8], ref01);
AV_WN32A(&ref_cache[2 * 8], ref23);
AV_WN32A(&ref_cache[3 * 8], ref23);
}
{
int16_t(*mv_src)[2] = &h->cur_pic.motion_val[list][4 * sl->mb_x + 4 * sl->mb_y * b_stride];
AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride);
AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride);
AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride);
AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride);
}
}
/**
* @return non zero if the loop filter can be skipped
*/
static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
{
const int mb_xy = sl->mb_xy;
int top_xy, left_xy[LEFT_MBS];
int top_type, left_type[LEFT_MBS];
uint8_t *nnz;
uint8_t *nnz_cache;
top_xy = mb_xy - (h->mb_stride << MB_FIELD(sl));
left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
if (FRAME_MBAFF(h)) {
const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]);
const int curr_mb_field_flag = IS_INTERLACED(mb_type);
if (sl->mb_y & 1) {
if (left_mb_field_flag != curr_mb_field_flag)
left_xy[LTOP] -= h->mb_stride;
} else {
if (curr_mb_field_flag)
top_xy += h->mb_stride &
(((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1);
if (left_mb_field_flag != curr_mb_field_flag)
left_xy[LBOT] += h->mb_stride;
}
}
sl->top_mb_xy = top_xy;
sl->left_mb_xy[LTOP] = left_xy[LTOP];
sl->left_mb_xy[LBOT] = left_xy[LBOT];
{
/* For sufficiently low qp, filtering wouldn't do anything.
* This is a conservative estimate: could also check beta_offset
* and more accurate chroma_qp. */
int qp_thresh = sl->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice
int qp = h->cur_pic.qscale_table[mb_xy];
if (qp <= qp_thresh &&
(left_xy[LTOP] < 0 ||
((qp + h->cur_pic.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) &&
(top_xy < 0 ||
((qp + h->cur_pic.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) {
if (!FRAME_MBAFF(h))
return 1;
if ((left_xy[LTOP] < 0 ||
((qp + h->cur_pic.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) &&
(top_xy < h->mb_stride ||
((qp + h->cur_pic.qscale_table[top_xy - h->mb_stride] + 1) >> 1) <= qp_thresh))
return 1;
}
}
top_type = h->cur_pic.mb_type[top_xy];
left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]];
left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]];
if (sl->deblocking_filter == 2) {
if (h->slice_table[top_xy] != sl->slice_num)
top_type = 0;
if (h->slice_table[left_xy[LBOT]] != sl->slice_num)
left_type[LTOP] = left_type[LBOT] = 0;
} else {
if (h->slice_table[top_xy] == 0xFFFF)
top_type = 0;
if (h->slice_table[left_xy[LBOT]] == 0xFFFF)
left_type[LTOP] = left_type[LBOT] = 0;
}
sl->top_type = top_type;
sl->left_type[LTOP] = left_type[LTOP];
sl->left_type[LBOT] = left_type[LBOT];
if (IS_INTRA(mb_type))
return 0;
fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
top_type, left_type, mb_xy, 0);
if (sl->list_count == 2)
fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
top_type, left_type, mb_xy, 1);
nnz = h->non_zero_count[mb_xy];
nnz_cache = sl->non_zero_count_cache;
AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]);
AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]);
AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]);
AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]);
sl->cbp = h->cbp_table[mb_xy];
if (top_type) {
nnz = h->non_zero_count[top_xy];
AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]);
}
if (left_type[LTOP]) {
nnz = h->non_zero_count[left_xy[LTOP]];
nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4];
nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4];
nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4];
nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4];
}
/* CAVLC 8x8dct requires NNZ values for residual decoding that differ
* from what the loop filter needs */
if (!CABAC(h) && h->ps.pps->transform_8x8_mode) {
if (IS_8x8DCT(top_type)) {
nnz_cache[4 + 8 * 0] =
nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12;
nnz_cache[6 + 8 * 0] =
nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12;
}
if (IS_8x8DCT(left_type[LTOP])) {
nnz_cache[3 + 8 * 1] =
nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF
}
if (IS_8x8DCT(left_type[LBOT])) {
nnz_cache[3 + 8 * 3] =
nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF
}
if (IS_8x8DCT(mb_type)) {
nnz_cache[scan8[0]] =
nnz_cache[scan8[1]] =
nnz_cache[scan8[2]] =
nnz_cache[scan8[3]] = (sl->cbp & 0x1000) >> 12;
nnz_cache[scan8[0 + 4]] =
nnz_cache[scan8[1 + 4]] =
nnz_cache[scan8[2 + 4]] =
nnz_cache[scan8[3 + 4]] = (sl->cbp & 0x2000) >> 12;
nnz_cache[scan8[0 + 8]] =
nnz_cache[scan8[1 + 8]] =
nnz_cache[scan8[2 + 8]] =
nnz_cache[scan8[3 + 8]] = (sl->cbp & 0x4000) >> 12;
nnz_cache[scan8[0 + 12]] =
nnz_cache[scan8[1 + 12]] =
nnz_cache[scan8[2 + 12]] =
nnz_cache[scan8[3 + 12]] = (sl->cbp & 0x8000) >> 12;
}
}
return 0;
}
static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
{
uint8_t *dest_y, *dest_cb, *dest_cr;
int linesize, uvlinesize, mb_x, mb_y;
const int end_mb_y = sl->mb_y + FRAME_MBAFF(h);
const int old_slice_type = sl->slice_type;
const int pixel_shift = h->pixel_shift;
const int block_h = 16 >> h->chroma_y_shift;
if (h->postpone_filter)
return;
if (sl->deblocking_filter) {
for (mb_x = start_x; mb_x < end_x; mb_x++)
for (mb_y = end_mb_y - FRAME_MBAFF(h); mb_y <= end_mb_y; mb_y++) {
int mb_xy, mb_type;
mb_xy = sl->mb_xy = mb_x + mb_y * h->mb_stride;
mb_type = h->cur_pic.mb_type[mb_xy];
if (FRAME_MBAFF(h))
sl->mb_mbaff =
sl->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
sl->mb_x = mb_x;
sl->mb_y = mb_y;
dest_y = h->cur_pic.f->data[0] +
((mb_x << pixel_shift) + mb_y * sl->linesize) * 16;
dest_cb = h->cur_pic.f->data[1] +
(mb_x << pixel_shift) * (8 << CHROMA444(h)) +
mb_y * sl->uvlinesize * block_h;
dest_cr = h->cur_pic.f->data[2] +
(mb_x << pixel_shift) * (8 << CHROMA444(h)) +
mb_y * sl->uvlinesize * block_h;
// FIXME simplify above
if (MB_FIELD(sl)) {
linesize = sl->mb_linesize = sl->linesize * 2;
uvlinesize = sl->mb_uvlinesize = sl->uvlinesize * 2;
if (mb_y & 1) { // FIXME move out of this function?
dest_y -= sl->linesize * 15;
dest_cb -= sl->uvlinesize * (block_h - 1);
dest_cr -= sl->uvlinesize * (block_h - 1);
}
} else {
linesize = sl->mb_linesize = sl->linesize;
uvlinesize = sl->mb_uvlinesize = sl->uvlinesize;
}
backup_mb_border(h, sl, dest_y, dest_cb, dest_cr, linesize,
uvlinesize, 0);
if (fill_filter_caches(h, sl, mb_type))
continue;
sl->chroma_qp[0] = get_chroma_qp(h->ps.pps, 0, h->cur_pic.qscale_table[mb_xy]);
sl->chroma_qp[1] = get_chroma_qp(h->ps.pps, 1, h->cur_pic.qscale_table[mb_xy]);
if (FRAME_MBAFF(h)) {
ff_h264_filter_mb(h, sl, mb_x, mb_y, dest_y, dest_cb, dest_cr,
linesize, uvlinesize);
} else {
ff_h264_filter_mb_fast(h, sl, mb_x, mb_y, dest_y, dest_cb,
dest_cr, linesize, uvlinesize);
}
}
}
sl->slice_type = old_slice_type;
sl->mb_x = end_x;
sl->mb_y = end_mb_y - FRAME_MBAFF(h);
sl->chroma_qp[0] = get_chroma_qp(h->ps.pps, 0, sl->qscale);
sl->chroma_qp[1] = get_chroma_qp(h->ps.pps, 1, sl->qscale);
}
static void predict_field_decoding_flag(const H264Context *h, H264SliceContext *sl)
{
const int mb_xy = sl->mb_x + sl->mb_y * h->mb_stride;
int mb_type = (h->slice_table[mb_xy - 1] == sl->slice_num) ?
h->cur_pic.mb_type[mb_xy - 1] :
(h->slice_table[mb_xy - h->mb_stride] == sl->slice_num) ?
h->cur_pic.mb_type[mb_xy - h->mb_stride] : 0;
sl->mb_mbaff = sl->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
}
/**
* Draw edges and report progress for the last MB row.
*/
static void decode_finish_row(const H264Context *h, H264SliceContext *sl)
{
int top = 16 * (sl->mb_y >> FIELD_PICTURE(h));
int pic_height = 16 * h->mb_height >> FIELD_PICTURE(h);
int height = 16 << FRAME_MBAFF(h);
int deblock_border = (16 + 4) << FRAME_MBAFF(h);
if (sl->deblocking_filter) {
if ((top + height) >= pic_height)
height += deblock_border;
top -= deblock_border;
}
if (top >= pic_height || (top + height) < 0)
return;
height = FFMIN(height, pic_height - top);
if (top < 0) {
height = top + height;
top = 0;
}
ff_h264_draw_horiz_band(h, sl, top, height);
if (h->droppable || sl->h264->slice_ctx[0].er.error_occurred)
return;
ff_thread_report_progress(&h->cur_pic_ptr->tf, top + height - 1,
h->picture_structure == PICT_BOTTOM_FIELD);
}
static void er_add_slice(H264SliceContext *sl,
int startx, int starty,
int endx, int endy, int status)
{
if (!sl->h264->enable_er)
return;
if (CONFIG_ERROR_RESILIENCE) {
ERContext *er = &sl->h264->slice_ctx[0].er;
ff_er_add_slice(er, startx, starty, endx, endy, status);
}
}
static int decode_slice(struct AVCodecContext *avctx, void *arg)
{
H264SliceContext *sl = arg;
const H264Context *h = sl->h264;
int lf_x_start = sl->mb_x;
int orig_deblock = sl->deblocking_filter;
int ret;
sl->linesize = h->cur_pic_ptr->f->linesize[0];
sl->uvlinesize = h->cur_pic_ptr->f->linesize[1];
ret = alloc_scratch_buffers(sl, sl->linesize);
if (ret < 0)
return ret;
sl->mb_skip_run = -1;
av_assert0(h->block_offset[15] == (4 * ((scan8[15] - scan8[0]) & 7) << h->pixel_shift) + 4 * sl->linesize * ((scan8[15] - scan8[0]) >> 3));
if (h->postpone_filter)
sl->deblocking_filter = 0;
sl->is_complex = FRAME_MBAFF(h) || h->picture_structure != PICT_FRAME ||
(CONFIG_GRAY && (h->flags & AV_CODEC_FLAG_GRAY));
if (!(h->avctx->active_thread_type & FF_THREAD_SLICE) && h->picture_structure == PICT_FRAME && h->slice_ctx[0].er.error_status_table) {
const int start_i = av_clip(sl->resync_mb_x + sl->resync_mb_y * h->mb_width, 0, h->mb_num - 1);
if (start_i) {
int prev_status = h->slice_ctx[0].er.error_status_table[h->slice_ctx[0].er.mb_index2xy[start_i - 1]];
prev_status &= ~ VP_START;
if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END))
h->slice_ctx[0].er.error_occurred = 1;
}
}
if (h->ps.pps->cabac) {
/* realign */
align_get_bits(&sl->gb);
/* init cabac */
ret = ff_init_cabac_decoder(&sl->cabac,
sl->gb.buffer + get_bits_count(&sl->gb) / 8,
(get_bits_left(&sl->gb) + 7) / 8);
if (ret < 0)
return ret;
ff_h264_init_cabac_states(h, sl);
for (;;) {
int ret, eos;
if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) {
av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n",
sl->next_slice_idx);
er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
sl->mb_y, ER_MB_ERROR);
return AVERROR_INVALIDDATA;
}
ret = ff_h264_decode_mb_cabac(h, sl);
if (ret >= 0)
ff_h264_hl_decode_mb(h, sl);
// FIXME optimal? or let mb_decode decode 16x32 ?
if (ret >= 0 && FRAME_MBAFF(h)) {
sl->mb_y++;
ret = ff_h264_decode_mb_cabac(h, sl);
if (ret >= 0)
ff_h264_hl_decode_mb(h, sl);
sl->mb_y--;
}
eos = get_cabac_terminate(&sl->cabac);
if ((h->workaround_bugs & FF_BUG_TRUNCATED) &&
sl->cabac.bytestream > sl->cabac.bytestream_end + 2) {
er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
sl->mb_y, ER_MB_END);
if (sl->mb_x >= lf_x_start)
loop_filter(h, sl, lf_x_start, sl->mb_x + 1);
goto finish;
}
if (sl->cabac.bytestream > sl->cabac.bytestream_end + 2 )
av_log(h->avctx, AV_LOG_DEBUG, "bytestream overread %"PTRDIFF_SPECIFIER"\n", sl->cabac.bytestream_end - sl->cabac.bytestream);
if (ret < 0 || sl->cabac.bytestream > sl->cabac.bytestream_end + 4) {
av_log(h->avctx, AV_LOG_ERROR,
"error while decoding MB %d %d, bytestream %"PTRDIFF_SPECIFIER"\n",
sl->mb_x, sl->mb_y,
sl->cabac.bytestream_end - sl->cabac.bytestream);
er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
sl->mb_y, ER_MB_ERROR);
return AVERROR_INVALIDDATA;
}
if (++sl->mb_x >= h->mb_width) {
loop_filter(h, sl, lf_x_start, sl->mb_x);
sl->mb_x = lf_x_start = 0;
decode_finish_row(h, sl);
++sl->mb_y;
if (FIELD_OR_MBAFF_PICTURE(h)) {
++sl->mb_y;
if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
predict_field_decoding_flag(h, sl);
}
}
if (eos || sl->mb_y >= h->mb_height) {
ff_tlog(h->avctx, "slice end %d %d\n",
get_bits_count(&sl->gb), sl->gb.size_in_bits);
er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
sl->mb_y, ER_MB_END);
if (sl->mb_x > lf_x_start)
loop_filter(h, sl, lf_x_start, sl->mb_x);
goto finish;
}
}
} else {
for (;;) {
int ret;
if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) {
av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n",
sl->next_slice_idx);
er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
sl->mb_y, ER_MB_ERROR);
return AVERROR_INVALIDDATA;
}
ret = ff_h264_decode_mb_cavlc(h, sl);
if (ret >= 0)
ff_h264_hl_decode_mb(h, sl);
// FIXME optimal? or let mb_decode decode 16x32 ?
if (ret >= 0 && FRAME_MBAFF(h)) {
sl->mb_y++;
ret = ff_h264_decode_mb_cavlc(h, sl);
if (ret >= 0)
ff_h264_hl_decode_mb(h, sl);
sl->mb_y--;
}
if (ret < 0) {
av_log(h->avctx, AV_LOG_ERROR,
"error while decoding MB %d %d\n", sl->mb_x, sl->mb_y);
er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
sl->mb_y, ER_MB_ERROR);
return ret;
}
if (++sl->mb_x >= h->mb_width) {
loop_filter(h, sl, lf_x_start, sl->mb_x);
sl->mb_x = lf_x_start = 0;
decode_finish_row(h, sl);
++sl->mb_y;
if (FIELD_OR_MBAFF_PICTURE(h)) {
++sl->mb_y;
if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
predict_field_decoding_flag(h, sl);
}
if (sl->mb_y >= h->mb_height) {
ff_tlog(h->avctx, "slice end %d %d\n",
get_bits_count(&sl->gb), sl->gb.size_in_bits);
if ( get_bits_left(&sl->gb) == 0
|| get_bits_left(&sl->gb) > 0 && !(h->avctx->err_recognition & AV_EF_AGGRESSIVE)) {
er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
sl->mb_x - 1, sl->mb_y, ER_MB_END);
goto finish;
} else {
er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
sl->mb_x, sl->mb_y, ER_MB_END);
return AVERROR_INVALIDDATA;
}
}
}
if (get_bits_left(&sl->gb) <= 0 && sl->mb_skip_run <= 0) {
ff_tlog(h->avctx, "slice end %d %d\n",
get_bits_count(&sl->gb), sl->gb.size_in_bits);
if (get_bits_left(&sl->gb) == 0) {
er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
sl->mb_x - 1, sl->mb_y, ER_MB_END);
if (sl->mb_x > lf_x_start)
loop_filter(h, sl, lf_x_start, sl->mb_x);
goto finish;
} else {
er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
sl->mb_y, ER_MB_ERROR);
return AVERROR_INVALIDDATA;
}
}
}
}
finish:
sl->deblocking_filter = orig_deblock;
return 0;
}
/**
* Call decode_slice() for each context.
*
* @param h h264 master context
*/
int ff_h264_execute_decode_slices(H264Context *h)
{
AVCodecContext *const avctx = h->avctx;
H264SliceContext *sl;
int context_count = h->nb_slice_ctx_queued;
int ret = 0;
int i, j;
h->slice_ctx[0].next_slice_idx = INT_MAX;
if (h->avctx->hwaccel || context_count < 1)
return 0;
av_assert0(context_count && h->slice_ctx[context_count - 1].mb_y < h->mb_height);
if (context_count == 1) {
h->slice_ctx[0].next_slice_idx = h->mb_width * h->mb_height;
h->postpone_filter = 0;
ret = decode_slice(avctx, &h->slice_ctx[0]);
h->mb_y = h->slice_ctx[0].mb_y;
if (ret < 0)
goto finish;
} else {
av_assert0(context_count > 0);
for (i = 0; i < context_count; i++) {
int next_slice_idx = h->mb_width * h->mb_height;
int slice_idx;
sl = &h->slice_ctx[i];
if (CONFIG_ERROR_RESILIENCE) {
sl->er.error_count = 0;
}
/* make sure none of those slices overlap */
slice_idx = sl->mb_y * h->mb_width + sl->mb_x;
for (j = 0; j < context_count; j++) {
H264SliceContext *sl2 = &h->slice_ctx[j];
int slice_idx2 = sl2->mb_y * h->mb_width + sl2->mb_x;
if (i == j || slice_idx2 < slice_idx)
continue;
next_slice_idx = FFMIN(next_slice_idx, slice_idx2);
}
sl->next_slice_idx = next_slice_idx;
}
avctx->execute(avctx, decode_slice, h->slice_ctx,
NULL, context_count, sizeof(h->slice_ctx[0]));
/* pull back stuff from slices to master context */
sl = &h->slice_ctx[context_count - 1];
h->mb_y = sl->mb_y;
if (CONFIG_ERROR_RESILIENCE) {
for (i = 1; i < context_count; i++)
h->slice_ctx[0].er.error_count += h->slice_ctx[i].er.error_count;
}
if (h->postpone_filter) {
h->postpone_filter = 0;
for (i = 0; i < context_count; i++) {
int y_end, x_end;
sl = &h->slice_ctx[i];
y_end = FFMIN(sl->mb_y + 1, h->mb_height);
x_end = (sl->mb_y >= h->mb_height) ? h->mb_width : sl->mb_x;
for (j = sl->resync_mb_y; j < y_end; j += 1 + FIELD_OR_MBAFF_PICTURE(h)) {
sl->mb_y = j;
loop_filter(h, sl, j > sl->resync_mb_y ? 0 : sl->resync_mb_x,
j == y_end - 1 ? x_end : h->mb_width);
}
}
}
}
finish:
h->nb_slice_ctx_queued = 0;
return ret;
}