1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavcodec/svq1dec.c
2016-11-24 11:22:12 +01:00

844 lines
27 KiB
C

/*
* SVQ1 decoder
* ported to MPlayer by Arpi <arpi@thot.banki.hu>
* ported to libavcodec by Nick Kurshev <nickols_k@mail.ru>
*
* Copyright (C) 2002 the xine project
* Copyright (C) 2002 The FFmpeg project
*
* SVQ1 Encoder (c) 2004 Mike Melanson <melanson@pcisys.net>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Sorenson Vector Quantizer #1 (SVQ1) video codec.
* For more information of the SVQ1 algorithm, visit:
* http://www.pcisys.net/~melanson/codecs/
*/
#include "avcodec.h"
#include "bitstream.h"
#include "h263.h"
#include "hpeldsp.h"
#include "internal.h"
#include "mathops.h"
#include "svq1.h"
static VLC svq1_block_type;
static VLC svq1_motion_component;
static VLC svq1_intra_multistage[6];
static VLC svq1_inter_multistage[6];
static VLC svq1_intra_mean;
static VLC svq1_inter_mean;
/* motion vector (prediction) */
typedef struct svq1_pmv_s {
int x;
int y;
} svq1_pmv;
typedef struct SVQ1Context {
HpelDSPContext hdsp;
BitstreamContext bc;
AVFrame *prev;
uint8_t *pkt_swapped;
int pkt_swapped_allocated;
int width;
int height;
int frame_code;
int nonref; // 1 if the current frame won't be referenced
} SVQ1Context;
static const uint8_t string_table[256] = {
0x00, 0xD5, 0x7F, 0xAA, 0xFE, 0x2B, 0x81, 0x54,
0x29, 0xFC, 0x56, 0x83, 0xD7, 0x02, 0xA8, 0x7D,
0x52, 0x87, 0x2D, 0xF8, 0xAC, 0x79, 0xD3, 0x06,
0x7B, 0xAE, 0x04, 0xD1, 0x85, 0x50, 0xFA, 0x2F,
0xA4, 0x71, 0xDB, 0x0E, 0x5A, 0x8F, 0x25, 0xF0,
0x8D, 0x58, 0xF2, 0x27, 0x73, 0xA6, 0x0C, 0xD9,
0xF6, 0x23, 0x89, 0x5C, 0x08, 0xDD, 0x77, 0xA2,
0xDF, 0x0A, 0xA0, 0x75, 0x21, 0xF4, 0x5E, 0x8B,
0x9D, 0x48, 0xE2, 0x37, 0x63, 0xB6, 0x1C, 0xC9,
0xB4, 0x61, 0xCB, 0x1E, 0x4A, 0x9F, 0x35, 0xE0,
0xCF, 0x1A, 0xB0, 0x65, 0x31, 0xE4, 0x4E, 0x9B,
0xE6, 0x33, 0x99, 0x4C, 0x18, 0xCD, 0x67, 0xB2,
0x39, 0xEC, 0x46, 0x93, 0xC7, 0x12, 0xB8, 0x6D,
0x10, 0xC5, 0x6F, 0xBA, 0xEE, 0x3B, 0x91, 0x44,
0x6B, 0xBE, 0x14, 0xC1, 0x95, 0x40, 0xEA, 0x3F,
0x42, 0x97, 0x3D, 0xE8, 0xBC, 0x69, 0xC3, 0x16,
0xEF, 0x3A, 0x90, 0x45, 0x11, 0xC4, 0x6E, 0xBB,
0xC6, 0x13, 0xB9, 0x6C, 0x38, 0xED, 0x47, 0x92,
0xBD, 0x68, 0xC2, 0x17, 0x43, 0x96, 0x3C, 0xE9,
0x94, 0x41, 0xEB, 0x3E, 0x6A, 0xBF, 0x15, 0xC0,
0x4B, 0x9E, 0x34, 0xE1, 0xB5, 0x60, 0xCA, 0x1F,
0x62, 0xB7, 0x1D, 0xC8, 0x9C, 0x49, 0xE3, 0x36,
0x19, 0xCC, 0x66, 0xB3, 0xE7, 0x32, 0x98, 0x4D,
0x30, 0xE5, 0x4F, 0x9A, 0xCE, 0x1B, 0xB1, 0x64,
0x72, 0xA7, 0x0D, 0xD8, 0x8C, 0x59, 0xF3, 0x26,
0x5B, 0x8E, 0x24, 0xF1, 0xA5, 0x70, 0xDA, 0x0F,
0x20, 0xF5, 0x5F, 0x8A, 0xDE, 0x0B, 0xA1, 0x74,
0x09, 0xDC, 0x76, 0xA3, 0xF7, 0x22, 0x88, 0x5D,
0xD6, 0x03, 0xA9, 0x7C, 0x28, 0xFD, 0x57, 0x82,
0xFF, 0x2A, 0x80, 0x55, 0x01, 0xD4, 0x7E, 0xAB,
0x84, 0x51, 0xFB, 0x2E, 0x7A, 0xAF, 0x05, 0xD0,
0xAD, 0x78, 0xD2, 0x07, 0x53, 0x86, 0x2C, 0xF9
};
#define SVQ1_PROCESS_VECTOR() \
for (; level > 0; i++) { \
/* process next depth */ \
if (i == m) { \
m = n; \
if (--level == 0) \
break; \
} \
/* divide block if next bit set */ \
if (bitstream_read_bit(bc) == 0) \
break; \
/* add child nodes */ \
list[n++] = list[i]; \
list[n++] = list[i] + \
(((level & 1) ? pitch : 1) << (level / 2 + 1)); \
}
#define SVQ1_ADD_CODEBOOK() \
/* add codebook entries to vector */ \
for (j = 0; j < stages; j++) { \
n3 = codebook[entries[j]] ^ 0x80808080; \
n1 += (n3 & 0xFF00FF00) >> 8; \
n2 += n3 & 0x00FF00FF; \
} \
\
/* clip to [0..255] */ \
if (n1 & 0xFF00FF00) { \
n3 = (n1 >> 15 & 0x00010001 | 0x01000100) - 0x00010001; \
n1 += 0x7F007F00; \
n1 |= (~n1 >> 15 & 0x00010001 | 0x01000100) - 0x00010001; \
n1 &= n3 & 0x00FF00FF; \
} \
\
if (n2 & 0xFF00FF00) { \
n3 = (n2 >> 15 & 0x00010001 | 0x01000100) - 0x00010001; \
n2 += 0x7F007F00; \
n2 |= (~n2 >> 15 & 0x00010001 | 0x01000100) - 0x00010001; \
n2 &= n3 & 0x00FF00FF; \
}
#define SVQ1_CALC_CODEBOOK_ENTRIES(cbook) \
codebook = (const uint32_t *)cbook[level]; \
if (stages > 0) \
bit_cache = bitstream_read(bc, 4 * stages); \
/* calculate codebook entries for this vector */ \
for (j = 0; j < stages; j++) { \
entries[j] = (((bit_cache >> (4 * (stages - j - 1))) & 0xF) + \
16 * j) << (level + 1); \
} \
mean -= stages * 128; \
n4 = mean + (mean >> 31) << 16 | (mean & 0xFFFF);
static int svq1_decode_block_intra(BitstreamContext *bc, uint8_t *pixels,
ptrdiff_t pitch)
{
uint32_t bit_cache;
uint8_t *list[63];
uint32_t *dst;
const uint32_t *codebook;
int entries[6];
int i, j, m, n;
int mean, stages;
unsigned x, y, width, height, level;
uint32_t n1, n2, n3, n4;
/* initialize list for breadth first processing of vectors */
list[0] = pixels;
/* recursively process vector */
for (i = 0, m = 1, n = 1, level = 5; i < n; i++) {
SVQ1_PROCESS_VECTOR();
/* destination address and vector size */
dst = (uint32_t *)list[i];
width = 1 << ((4 + level) / 2);
height = 1 << ((3 + level) / 2);
/* get number of stages (-1 skips vector, 0 for mean only) */
stages = bitstream_read_vlc(bc, svq1_intra_multistage[level].table, 3, 3) - 1;
if (stages == -1) {
for (y = 0; y < height; y++)
memset(&dst[y * (pitch / 4)], 0, width);
continue; /* skip vector */
}
if ((stages > 0 && level >= 4) || stages < 0) {
ff_dlog(NULL,
"Error (svq1_decode_block_intra): invalid vector: stages=%i level=%i\n",
stages, level);
return AVERROR_INVALIDDATA; /* invalid vector */
}
mean = bitstream_read_vlc(bc, svq1_intra_mean.table, 8, 3);
if (stages == 0) {
for (y = 0; y < height; y++)
memset(&dst[y * (pitch / 4)], mean, width);
} else {
SVQ1_CALC_CODEBOOK_ENTRIES(ff_svq1_intra_codebooks);
for (y = 0; y < height; y++) {
for (x = 0; x < width / 4; x++, codebook++) {
n1 = n4;
n2 = n4;
SVQ1_ADD_CODEBOOK()
/* store result */
dst[x] = n1 << 8 | n2;
}
dst += pitch / 4;
}
}
}
return 0;
}
static int svq1_decode_block_non_intra(BitstreamContext *bc, uint8_t *pixels,
ptrdiff_t pitch)
{
uint32_t bit_cache;
uint8_t *list[63];
uint32_t *dst;
const uint32_t *codebook;
int entries[6];
int i, j, m, n;
int mean, stages;
int x, y, width, height, level;
uint32_t n1, n2, n3, n4;
/* initialize list for breadth first processing of vectors */
list[0] = pixels;
/* recursively process vector */
for (i = 0, m = 1, n = 1, level = 5; i < n; i++) {
SVQ1_PROCESS_VECTOR();
/* destination address and vector size */
dst = (uint32_t *)list[i];
width = 1 << ((4 + level) / 2);
height = 1 << ((3 + level) / 2);
/* get number of stages (-1 skips vector, 0 for mean only) */
stages = bitstream_read_vlc(bc, svq1_inter_multistage[level].table, 3, 2) - 1;
if (stages == -1)
continue; /* skip vector */
if ((stages > 0 && level >= 4) || stages < 0) {
ff_dlog(NULL,
"Error (svq1_decode_block_non_intra): invalid vector: stages=%i level=%i\n",
stages, level);
return AVERROR_INVALIDDATA; /* invalid vector */
}
mean = bitstream_read_vlc(bc, svq1_inter_mean.table, 9, 3) - 256;
SVQ1_CALC_CODEBOOK_ENTRIES(ff_svq1_inter_codebooks);
for (y = 0; y < height; y++) {
for (x = 0; x < width / 4; x++, codebook++) {
n3 = dst[x];
/* add mean value to vector */
n1 = n4 + ((n3 & 0xFF00FF00) >> 8);
n2 = n4 + (n3 & 0x00FF00FF);
SVQ1_ADD_CODEBOOK()
/* store result */
dst[x] = n1 << 8 | n2;
}
dst += pitch / 4;
}
}
return 0;
}
static int svq1_decode_motion_vector(BitstreamContext *bc, svq1_pmv *mv,
svq1_pmv **pmv)
{
int diff;
int i;
for (i = 0; i < 2; i++) {
/* get motion code */
diff = bitstream_read_vlc(bc, svq1_motion_component.table, 7, 2);
if (diff < 0)
return AVERROR_INVALIDDATA;
else if (diff) {
if (bitstream_read_bit(bc))
diff = -diff;
}
/* add median of motion vector predictors and clip result */
if (i == 1)
mv->y = sign_extend(diff + mid_pred(pmv[0]->y, pmv[1]->y, pmv[2]->y), 6);
else
mv->x = sign_extend(diff + mid_pred(pmv[0]->x, pmv[1]->x, pmv[2]->x), 6);
}
return 0;
}
static void svq1_skip_block(uint8_t *current, uint8_t *previous,
ptrdiff_t pitch, int x, int y)
{
uint8_t *src;
uint8_t *dst;
int i;
src = &previous[x + y * pitch];
dst = current;
for (i = 0; i < 16; i++) {
memcpy(dst, src, 16);
src += pitch;
dst += pitch;
}
}
static int svq1_motion_inter_block(HpelDSPContext *hdsp, BitstreamContext *bc,
uint8_t *current, uint8_t *previous,
ptrdiff_t pitch, svq1_pmv *motion, int x, int y,
int width, int height)
{
uint8_t *src;
uint8_t *dst;
svq1_pmv mv;
svq1_pmv *pmv[3];
int result;
/* predict and decode motion vector */
pmv[0] = &motion[0];
if (y == 0) {
pmv[1] =
pmv[2] = pmv[0];
} else {
pmv[1] = &motion[x / 8 + 2];
pmv[2] = &motion[x / 8 + 4];
}
result = svq1_decode_motion_vector(bc, &mv, pmv);
if (result != 0)
return result;
motion[0].x =
motion[x / 8 + 2].x =
motion[x / 8 + 3].x = mv.x;
motion[0].y =
motion[x / 8 + 2].y =
motion[x / 8 + 3].y = mv.y;
mv.x = av_clip(mv.x, -2 * x, 2 * (width - x - 16));
mv.y = av_clip(mv.y, -2 * y, 2 * (height - y - 16));
src = &previous[(x + (mv.x >> 1)) + (y + (mv.y >> 1)) * pitch];
dst = current;
hdsp->put_pixels_tab[0][(mv.y & 1) << 1 | (mv.x & 1)](dst, src, pitch, 16);
return 0;
}
static int svq1_motion_inter_4v_block(HpelDSPContext *hdsp, BitstreamContext *bc,
uint8_t *current, uint8_t *previous,
ptrdiff_t pitch, svq1_pmv *motion, int x, int y,
int width, int height)
{
uint8_t *src;
uint8_t *dst;
svq1_pmv mv;
svq1_pmv *pmv[4];
int i, result;
/* predict and decode motion vector (0) */
pmv[0] = &motion[0];
if (y == 0) {
pmv[1] =
pmv[2] = pmv[0];
} else {
pmv[1] = &motion[(x / 8) + 2];
pmv[2] = &motion[(x / 8) + 4];
}
result = svq1_decode_motion_vector(bc, &mv, pmv);
if (result != 0)
return result;
/* predict and decode motion vector (1) */
pmv[0] = &mv;
if (y == 0) {
pmv[1] =
pmv[2] = pmv[0];
} else {
pmv[1] = &motion[(x / 8) + 3];
}
result = svq1_decode_motion_vector(bc, &motion[0], pmv);
if (result != 0)
return result;
/* predict and decode motion vector (2) */
pmv[1] = &motion[0];
pmv[2] = &motion[(x / 8) + 1];
result = svq1_decode_motion_vector(bc, &motion[(x / 8) + 2], pmv);
if (result != 0)
return result;
/* predict and decode motion vector (3) */
pmv[2] = &motion[(x / 8) + 2];
pmv[3] = &motion[(x / 8) + 3];
result = svq1_decode_motion_vector(bc, pmv[3], pmv);
if (result != 0)
return result;
/* form predictions */
for (i = 0; i < 4; i++) {
int mvx = pmv[i]->x + (i & 1) * 16;
int mvy = pmv[i]->y + (i >> 1) * 16;
// FIXME: clipping or padding?
mvx = av_clip(mvx, -2 * x, 2 * (width - x - 8));
mvy = av_clip(mvy, -2 * y, 2 * (height - y - 8));
src = &previous[(x + (mvx >> 1)) + (y + (mvy >> 1)) * pitch];
dst = current;
hdsp->put_pixels_tab[1][((mvy & 1) << 1) | (mvx & 1)](dst, src, pitch, 8);
/* select next block */
if (i & 1)
current += 8 * (pitch - 1);
else
current += 8;
}
return 0;
}
static int svq1_decode_delta_block(AVCodecContext *avctx, HpelDSPContext *hdsp,
BitstreamContext *bc,
uint8_t *current, uint8_t *previous,
ptrdiff_t pitch, svq1_pmv *motion, int x, int y,
int width, int height)
{
uint32_t block_type;
int result = 0;
/* get block type */
block_type = bitstream_read_vlc(bc, svq1_block_type.table, 2, 2);
/* reset motion vectors */
if (block_type == SVQ1_BLOCK_SKIP || block_type == SVQ1_BLOCK_INTRA) {
motion[0].x =
motion[0].y =
motion[x / 8 + 2].x =
motion[x / 8 + 2].y =
motion[x / 8 + 3].x =
motion[x / 8 + 3].y = 0;
}
switch (block_type) {
case SVQ1_BLOCK_SKIP:
svq1_skip_block(current, previous, pitch, x, y);
break;
case SVQ1_BLOCK_INTER:
result = svq1_motion_inter_block(hdsp, bc, current, previous,
pitch, motion, x, y, width, height);
if (result != 0) {
ff_dlog(avctx, "Error in svq1_motion_inter_block %i\n", result);
break;
}
result = svq1_decode_block_non_intra(bc, current, pitch);
break;
case SVQ1_BLOCK_INTER_4V:
result = svq1_motion_inter_4v_block(hdsp, bc, current, previous,
pitch, motion, x, y, width, height);
if (result != 0) {
ff_dlog(avctx, "Error in svq1_motion_inter_4v_block %i\n", result);
break;
}
result = svq1_decode_block_non_intra(bc, current, pitch);
break;
case SVQ1_BLOCK_INTRA:
result = svq1_decode_block_intra(bc, current, pitch);
break;
}
return result;
}
static void svq1_parse_string(BitstreamContext *bc, uint8_t *out)
{
uint8_t seed;
int i;
out[0] = bitstream_read(bc, 8);
seed = string_table[out[0]];
for (i = 1; i <= out[0]; i++) {
out[i] = bitstream_read(bc, 8) ^ seed;
seed = string_table[out[i] ^ seed];
}
}
static int svq1_decode_frame_header(AVCodecContext *avctx, AVFrame *frame)
{
SVQ1Context *s = avctx->priv_data;
BitstreamContext *bc = &s->bc;
int frame_size_code;
bitstream_skip(bc, 8); /* temporal_reference */
/* frame type */
s->nonref = 0;
switch (bitstream_read(bc, 2)) {
case 0:
frame->pict_type = AV_PICTURE_TYPE_I;
break;
case 2:
s->nonref = 1;
case 1:
frame->pict_type = AV_PICTURE_TYPE_P;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Invalid frame type.\n");
return AVERROR_INVALIDDATA;
}
if (frame->pict_type == AV_PICTURE_TYPE_I) {
/* unknown fields */
if (s->frame_code == 0x50 || s->frame_code == 0x60) {
int csum = bitstream_read(bc, 16);
csum = ff_svq1_packet_checksum(bc->buffer, bc->size_in_bits >> 3,
csum);
ff_dlog(avctx, "%s checksum (%02x) for packet data\n",
(csum == 0) ? "correct" : "incorrect", csum);
}
if ((s->frame_code ^ 0x10) >= 0x50) {
uint8_t msg[256];
svq1_parse_string(bc, msg);
av_log(avctx, AV_LOG_INFO,
"embedded message: \"%s\"\n", (char *)msg);
}
bitstream_skip(bc, 2);
bitstream_skip(bc, 2);
bitstream_skip(bc, 1);
/* load frame size */
frame_size_code = bitstream_read(bc, 3);
if (frame_size_code == 7) {
/* load width, height (12 bits each) */
s->width = bitstream_read(bc, 12);
s->height = bitstream_read(bc, 12);
if (!s->width || !s->height)
return AVERROR_INVALIDDATA;
} else {
/* get width, height from table */
s->width = ff_svq1_frame_size_table[frame_size_code][0];
s->height = ff_svq1_frame_size_table[frame_size_code][1];
}
}
/* unknown fields */
if (bitstream_read_bit(bc) == 1) {
bitstream_skip(bc, 1); /* use packet checksum if (1) */
bitstream_skip(bc, 1); /* component checksums after image data if (1) */
if (bitstream_read(bc, 2) != 0)
return AVERROR_INVALIDDATA;
}
if (bitstream_read_bit(bc) == 1) {
bitstream_skip(bc, 1);
bitstream_skip(bc, 4);
bitstream_skip(bc, 1);
bitstream_skip(bc, 2);
while (bitstream_read_bit(bc) == 1)
bitstream_skip(bc, 8);
}
return 0;
}
static int svq1_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
SVQ1Context *s = avctx->priv_data;
AVFrame *cur = data;
uint8_t *current;
int result, i, x, y, width, height;
svq1_pmv *pmv;
/* initialize bit buffer */
bitstream_init(&s->bc, buf, buf_size * 8);
/* decode frame header */
s->frame_code = bitstream_read(&s->bc, 22);
if ((s->frame_code & ~0x70) || !(s->frame_code & 0x60))
return AVERROR_INVALIDDATA;
/* swap some header bytes (why?) */
if (s->frame_code != 0x20) {
uint32_t *src;
if (buf_size < 9 * 4) {
av_log(avctx, AV_LOG_ERROR, "Input packet too small\n");
return AVERROR_INVALIDDATA;
}
av_fast_padded_malloc(&s->pkt_swapped,
&s->pkt_swapped_allocated,
buf_size);
if (!s->pkt_swapped)
return AVERROR(ENOMEM);
memcpy(s->pkt_swapped, buf, buf_size);
buf = s->pkt_swapped;
src = (uint32_t *)(s->pkt_swapped + 4);
for (i = 0; i < 4; i++)
src[i] = ((src[i] << 16) | (src[i] >> 16)) ^ src[7 - i];
bitstream_init(&s->bc, buf, buf_size * 8);
bitstream_skip(&s->bc, 22);
}
result = svq1_decode_frame_header(avctx, cur);
if (result != 0) {
ff_dlog(avctx, "Error in svq1_decode_frame_header %i\n", result);
return result;
}
result = ff_set_dimensions(avctx, s->width, s->height);
if (result < 0)
return result;
if ((avctx->skip_frame >= AVDISCARD_NONREF && s->nonref) ||
(avctx->skip_frame >= AVDISCARD_NONKEY &&
cur->pict_type != AV_PICTURE_TYPE_I) ||
avctx->skip_frame >= AVDISCARD_ALL)
return buf_size;
result = ff_get_buffer(avctx, cur, s->nonref ? 0 : AV_GET_BUFFER_FLAG_REF);
if (result < 0)
return result;
pmv = av_malloc((FFALIGN(s->width, 16) / 8 + 3) * sizeof(*pmv));
if (!pmv)
return AVERROR(ENOMEM);
/* decode y, u and v components */
for (i = 0; i < 3; i++) {
int linesize = cur->linesize[i];
if (i == 0) {
width = FFALIGN(s->width, 16);
height = FFALIGN(s->height, 16);
} else {
if (avctx->flags & AV_CODEC_FLAG_GRAY)
break;
width = FFALIGN(s->width / 4, 16);
height = FFALIGN(s->height / 4, 16);
}
current = cur->data[i];
if (cur->pict_type == AV_PICTURE_TYPE_I) {
/* keyframe */
for (y = 0; y < height; y += 16) {
for (x = 0; x < width; x += 16) {
result = svq1_decode_block_intra(&s->bc, &current[x],
linesize);
if (result != 0) {
av_log(avctx, AV_LOG_INFO,
"Error in svq1_decode_block %i (keyframe)\n",
result);
goto err;
}
}
current += 16 * linesize;
}
} else {
/* delta frame */
uint8_t *previous = s->prev->data[i];
if (!previous ||
s->prev->width != s->width || s->prev->height != s->height) {
av_log(avctx, AV_LOG_ERROR, "Missing reference frame.\n");
result = AVERROR_INVALIDDATA;
goto err;
}
memset(pmv, 0, ((width / 8) + 3) * sizeof(svq1_pmv));
for (y = 0; y < height; y += 16) {
for (x = 0; x < width; x += 16) {
result = svq1_decode_delta_block(avctx, &s->hdsp,
&s->bc, &current[x],
previous, linesize,
pmv, x, y, width, height);
if (result != 0) {
ff_dlog(avctx,
"Error in svq1_decode_delta_block %i\n",
result);
goto err;
}
}
pmv[0].x =
pmv[0].y = 0;
current += 16 * linesize;
}
}
}
if (!s->nonref) {
av_frame_unref(s->prev);
result = av_frame_ref(s->prev, cur);
if (result < 0)
goto err;
}
*got_frame = 1;
result = buf_size;
err:
av_free(pmv);
return result;
}
static av_cold int svq1_decode_init(AVCodecContext *avctx)
{
SVQ1Context *s = avctx->priv_data;
int i;
int offset = 0;
s->prev = av_frame_alloc();
if (!s->prev)
return AVERROR(ENOMEM);
s->width = avctx->width + 3 & ~3;
s->height = avctx->height + 3 & ~3;
avctx->pix_fmt = AV_PIX_FMT_YUV410P;
ff_hpeldsp_init(&s->hdsp, avctx->flags);
INIT_VLC_STATIC(&svq1_block_type, 2, 4,
&ff_svq1_block_type_vlc[0][1], 2, 1,
&ff_svq1_block_type_vlc[0][0], 2, 1, 6);
INIT_VLC_STATIC(&svq1_motion_component, 7, 33,
&ff_mvtab[0][1], 2, 1,
&ff_mvtab[0][0], 2, 1, 176);
for (i = 0; i < 6; i++) {
static const uint8_t sizes[2][6] = { { 14, 10, 14, 18, 16, 18 },
{ 10, 10, 14, 14, 14, 16 } };
static VLC_TYPE table[168][2];
svq1_intra_multistage[i].table = &table[offset];
svq1_intra_multistage[i].table_allocated = sizes[0][i];
offset += sizes[0][i];
init_vlc(&svq1_intra_multistage[i], 3, 8,
&ff_svq1_intra_multistage_vlc[i][0][1], 2, 1,
&ff_svq1_intra_multistage_vlc[i][0][0], 2, 1,
INIT_VLC_USE_NEW_STATIC);
svq1_inter_multistage[i].table = &table[offset];
svq1_inter_multistage[i].table_allocated = sizes[1][i];
offset += sizes[1][i];
init_vlc(&svq1_inter_multistage[i], 3, 8,
&ff_svq1_inter_multistage_vlc[i][0][1], 2, 1,
&ff_svq1_inter_multistage_vlc[i][0][0], 2, 1,
INIT_VLC_USE_NEW_STATIC);
}
INIT_VLC_STATIC(&svq1_intra_mean, 8, 256,
&ff_svq1_intra_mean_vlc[0][1], 4, 2,
&ff_svq1_intra_mean_vlc[0][0], 4, 2, 632);
INIT_VLC_STATIC(&svq1_inter_mean, 9, 512,
&ff_svq1_inter_mean_vlc[0][1], 4, 2,
&ff_svq1_inter_mean_vlc[0][0], 4, 2, 1434);
return 0;
}
static av_cold int svq1_decode_end(AVCodecContext *avctx)
{
SVQ1Context *s = avctx->priv_data;
av_frame_free(&s->prev);
av_freep(&s->pkt_swapped);
return 0;
}
static void svq1_flush(AVCodecContext *avctx)
{
SVQ1Context *s = avctx->priv_data;
av_frame_unref(s->prev);
}
AVCodec ff_svq1_decoder = {
.name = "svq1",
.long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 1 / Sorenson Video 1 / SVQ1"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_SVQ1,
.priv_data_size = sizeof(SVQ1Context),
.init = svq1_decode_init,
.close = svq1_decode_end,
.decode = svq1_decode_frame,
.capabilities = AV_CODEC_CAP_DR1,
.flush = svq1_flush,
.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUV410P,
AV_PIX_FMT_NONE },
};