1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/ffv1enc.c
Marton Balint 7033654f7f Use AV_PIX_FMT_FLAG_ALPHA for detecting transparency where nb_components was used
Temporarily keep the old method for ffmpeg_filters.c choose_pix_fmt and
avfiltergraph.c pick_format() until a paletted pixel format without alpha is
introduced.

Signed-off-by: Marton Balint <cus@passwd.hu>
2018-04-30 21:51:31 +02:00

1356 lines
50 KiB
C

/*
* FFV1 encoder
*
* Copyright (c) 2003-2013 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* FF Video Codec 1 (a lossless codec) encoder
*/
#include "libavutil/attributes.h"
#include "libavutil/avassert.h"
#include "libavutil/crc.h"
#include "libavutil/opt.h"
#include "libavutil/imgutils.h"
#include "libavutil/pixdesc.h"
#include "libavutil/timer.h"
#include "avcodec.h"
#include "internal.h"
#include "put_bits.h"
#include "rangecoder.h"
#include "golomb.h"
#include "mathops.h"
#include "ffv1.h"
static const int8_t quant5_10bit[256] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0,
};
static const int8_t quant5[256] = {
0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1,
};
static const int8_t quant9_10bit[256] = {
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
-4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
-4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
-4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
-4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
-4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3,
-3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,
-3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -0, -0, -0, -0,
};
static const int8_t quant11[256] = {
0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
-5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
-5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
-5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
-5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
-5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
-5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -4, -4,
-4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
-4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -1,
};
static const uint8_t ver2_state[256] = {
0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69,
87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97,
85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98,
105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
};
static void find_best_state(uint8_t best_state[256][256],
const uint8_t one_state[256])
{
int i, j, k, m;
double l2tab[256];
for (i = 1; i < 256; i++)
l2tab[i] = log2(i / 256.0);
for (i = 0; i < 256; i++) {
double best_len[256];
double p = i / 256.0;
for (j = 0; j < 256; j++)
best_len[j] = 1 << 30;
for (j = FFMAX(i - 10, 1); j < FFMIN(i + 11, 256); j++) {
double occ[256] = { 0 };
double len = 0;
occ[j] = 1.0;
if (!one_state[j])
continue;
for (k = 0; k < 256; k++) {
double newocc[256] = { 0 };
for (m = 1; m < 256; m++)
if (occ[m]) {
len -=occ[m]*( p *l2tab[ m]
+ (1-p)*l2tab[256-m]);
}
if (len < best_len[k]) {
best_len[k] = len;
best_state[i][k] = j;
}
for (m = 1; m < 256; m++)
if (occ[m]) {
newocc[ one_state[ m]] += occ[m] * p;
newocc[256 - one_state[256 - m]] += occ[m] * (1 - p);
}
memcpy(occ, newocc, sizeof(occ));
}
}
}
}
static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c,
uint8_t *state, int v,
int is_signed,
uint64_t rc_stat[256][2],
uint64_t rc_stat2[32][2])
{
int i;
#define put_rac(C, S, B) \
do { \
if (rc_stat) { \
rc_stat[*(S)][B]++; \
rc_stat2[(S) - state][B]++; \
} \
put_rac(C, S, B); \
} while (0)
if (v) {
const int a = FFABS(v);
const int e = av_log2(a);
put_rac(c, state + 0, 0);
if (e <= 9) {
for (i = 0; i < e; i++)
put_rac(c, state + 1 + i, 1); // 1..10
put_rac(c, state + 1 + i, 0);
for (i = e - 1; i >= 0; i--)
put_rac(c, state + 22 + i, (a >> i) & 1); // 22..31
if (is_signed)
put_rac(c, state + 11 + e, v < 0); // 11..21
} else {
for (i = 0; i < e; i++)
put_rac(c, state + 1 + FFMIN(i, 9), 1); // 1..10
put_rac(c, state + 1 + 9, 0);
for (i = e - 1; i >= 0; i--)
put_rac(c, state + 22 + FFMIN(i, 9), (a >> i) & 1); // 22..31
if (is_signed)
put_rac(c, state + 11 + 10, v < 0); // 11..21
}
} else {
put_rac(c, state + 0, 1);
}
#undef put_rac
}
static av_noinline void put_symbol(RangeCoder *c, uint8_t *state,
int v, int is_signed)
{
put_symbol_inline(c, state, v, is_signed, NULL, NULL);
}
static inline void put_vlc_symbol(PutBitContext *pb, VlcState *const state,
int v, int bits)
{
int i, k, code;
v = fold(v - state->bias, bits);
i = state->count;
k = 0;
while (i < state->error_sum) { // FIXME: optimize
k++;
i += i;
}
av_assert2(k <= 13);
code = v ^ ((2 * state->drift + state->count) >> 31);
ff_dlog(NULL, "v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code,
state->bias, state->error_sum, state->drift, state->count, k);
set_sr_golomb(pb, code, k, 12, bits);
update_vlc_state(state, v);
}
#define TYPE int16_t
#define RENAME(name) name
#include "ffv1enc_template.c"
#undef TYPE
#undef RENAME
#define TYPE int32_t
#define RENAME(name) name ## 32
#include "ffv1enc_template.c"
static int encode_plane(FFV1Context *s, uint8_t *src, int w, int h,
int stride, int plane_index, int pixel_stride)
{
int x, y, i, ret;
const int ring_size = s->context_model ? 3 : 2;
int16_t *sample[3];
s->run_index = 0;
memset(s->sample_buffer, 0, ring_size * (w + 6) * sizeof(*s->sample_buffer));
for (y = 0; y < h; y++) {
for (i = 0; i < ring_size; i++)
sample[i] = s->sample_buffer + (w + 6) * ((h + i - y) % ring_size) + 3;
sample[0][-1]= sample[1][0 ];
sample[1][ w]= sample[1][w-1];
// { START_TIMER
if (s->bits_per_raw_sample <= 8) {
for (x = 0; x < w; x++)
sample[0][x] = src[x * pixel_stride + stride * y];
if((ret = encode_line(s, w, sample, plane_index, 8)) < 0)
return ret;
} else {
if (s->packed_at_lsb) {
for (x = 0; x < w; x++) {
sample[0][x] = ((uint16_t*)(src + stride*y))[x];
}
} else {
for (x = 0; x < w; x++) {
sample[0][x] = ((uint16_t*)(src + stride*y))[x] >> (16 - s->bits_per_raw_sample);
}
}
if((ret = encode_line(s, w, sample, plane_index, s->bits_per_raw_sample)) < 0)
return ret;
}
// STOP_TIMER("encode line") }
}
return 0;
}
static void write_quant_table(RangeCoder *c, int16_t *quant_table)
{
int last = 0;
int i;
uint8_t state[CONTEXT_SIZE];
memset(state, 128, sizeof(state));
for (i = 1; i < 128; i++)
if (quant_table[i] != quant_table[i - 1]) {
put_symbol(c, state, i - last - 1, 0);
last = i;
}
put_symbol(c, state, i - last - 1, 0);
}
static void write_quant_tables(RangeCoder *c,
int16_t quant_table[MAX_CONTEXT_INPUTS][256])
{
int i;
for (i = 0; i < 5; i++)
write_quant_table(c, quant_table[i]);
}
static void write_header(FFV1Context *f)
{
uint8_t state[CONTEXT_SIZE];
int i, j;
RangeCoder *const c = &f->slice_context[0]->c;
memset(state, 128, sizeof(state));
if (f->version < 2) {
put_symbol(c, state, f->version, 0);
put_symbol(c, state, f->ac, 0);
if (f->ac == AC_RANGE_CUSTOM_TAB) {
for (i = 1; i < 256; i++)
put_symbol(c, state,
f->state_transition[i] - c->one_state[i], 1);
}
put_symbol(c, state, f->colorspace, 0); //YUV cs type
if (f->version > 0)
put_symbol(c, state, f->bits_per_raw_sample, 0);
put_rac(c, state, f->chroma_planes);
put_symbol(c, state, f->chroma_h_shift, 0);
put_symbol(c, state, f->chroma_v_shift, 0);
put_rac(c, state, f->transparency);
write_quant_tables(c, f->quant_table);
} else if (f->version < 3) {
put_symbol(c, state, f->slice_count, 0);
for (i = 0; i < f->slice_count; i++) {
FFV1Context *fs = f->slice_context[i];
put_symbol(c, state,
(fs->slice_x + 1) * f->num_h_slices / f->width, 0);
put_symbol(c, state,
(fs->slice_y + 1) * f->num_v_slices / f->height, 0);
put_symbol(c, state,
(fs->slice_width + 1) * f->num_h_slices / f->width - 1,
0);
put_symbol(c, state,
(fs->slice_height + 1) * f->num_v_slices / f->height - 1,
0);
for (j = 0; j < f->plane_count; j++) {
put_symbol(c, state, f->plane[j].quant_table_index, 0);
av_assert0(f->plane[j].quant_table_index == f->context_model);
}
}
}
}
static int write_extradata(FFV1Context *f)
{
RangeCoder *const c = &f->c;
uint8_t state[CONTEXT_SIZE];
int i, j, k;
uint8_t state2[32][CONTEXT_SIZE];
unsigned v;
memset(state2, 128, sizeof(state2));
memset(state, 128, sizeof(state));
f->avctx->extradata_size = 10000 + 4 +
(11 * 11 * 5 * 5 * 5 + 11 * 11 * 11) * 32;
f->avctx->extradata = av_malloc(f->avctx->extradata_size + AV_INPUT_BUFFER_PADDING_SIZE);
if (!f->avctx->extradata)
return AVERROR(ENOMEM);
ff_init_range_encoder(c, f->avctx->extradata, f->avctx->extradata_size);
ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
put_symbol(c, state, f->version, 0);
if (f->version > 2) {
if (f->version == 3) {
f->micro_version = 4;
} else if (f->version == 4)
f->micro_version = 2;
put_symbol(c, state, f->micro_version, 0);
}
put_symbol(c, state, f->ac, 0);
if (f->ac == AC_RANGE_CUSTOM_TAB)
for (i = 1; i < 256; i++)
put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
put_symbol(c, state, f->colorspace, 0); // YUV cs type
put_symbol(c, state, f->bits_per_raw_sample, 0);
put_rac(c, state, f->chroma_planes);
put_symbol(c, state, f->chroma_h_shift, 0);
put_symbol(c, state, f->chroma_v_shift, 0);
put_rac(c, state, f->transparency);
put_symbol(c, state, f->num_h_slices - 1, 0);
put_symbol(c, state, f->num_v_slices - 1, 0);
put_symbol(c, state, f->quant_table_count, 0);
for (i = 0; i < f->quant_table_count; i++)
write_quant_tables(c, f->quant_tables[i]);
for (i = 0; i < f->quant_table_count; i++) {
for (j = 0; j < f->context_count[i] * CONTEXT_SIZE; j++)
if (f->initial_states[i] && f->initial_states[i][0][j] != 128)
break;
if (j < f->context_count[i] * CONTEXT_SIZE) {
put_rac(c, state, 1);
for (j = 0; j < f->context_count[i]; j++)
for (k = 0; k < CONTEXT_SIZE; k++) {
int pred = j ? f->initial_states[i][j - 1][k] : 128;
put_symbol(c, state2[k],
(int8_t)(f->initial_states[i][j][k] - pred), 1);
}
} else {
put_rac(c, state, 0);
}
}
if (f->version > 2) {
put_symbol(c, state, f->ec, 0);
put_symbol(c, state, f->intra = (f->avctx->gop_size < 2), 0);
}
f->avctx->extradata_size = ff_rac_terminate(c);
v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, f->avctx->extradata, f->avctx->extradata_size);
AV_WL32(f->avctx->extradata + f->avctx->extradata_size, v);
f->avctx->extradata_size += 4;
return 0;
}
static int sort_stt(FFV1Context *s, uint8_t stt[256])
{
int i, i2, changed, print = 0;
do {
changed = 0;
for (i = 12; i < 244; i++) {
for (i2 = i + 1; i2 < 245 && i2 < i + 4; i2++) {
#define COST(old, new) \
s->rc_stat[old][0] * -log2((256 - (new)) / 256.0) + \
s->rc_stat[old][1] * -log2((new) / 256.0)
#define COST2(old, new) \
COST(old, new) + COST(256 - (old), 256 - (new))
double size0 = COST2(i, i) + COST2(i2, i2);
double sizeX = COST2(i, i2) + COST2(i2, i);
if (size0 - sizeX > size0*(1e-14) && i != 128 && i2 != 128) {
int j;
FFSWAP(int, stt[i], stt[i2]);
FFSWAP(int, s->rc_stat[i][0], s->rc_stat[i2][0]);
FFSWAP(int, s->rc_stat[i][1], s->rc_stat[i2][1]);
if (i != 256 - i2) {
FFSWAP(int, stt[256 - i], stt[256 - i2]);
FFSWAP(int, s->rc_stat[256 - i][0], s->rc_stat[256 - i2][0]);
FFSWAP(int, s->rc_stat[256 - i][1], s->rc_stat[256 - i2][1]);
}
for (j = 1; j < 256; j++) {
if (stt[j] == i)
stt[j] = i2;
else if (stt[j] == i2)
stt[j] = i;
if (i != 256 - i2) {
if (stt[256 - j] == 256 - i)
stt[256 - j] = 256 - i2;
else if (stt[256 - j] == 256 - i2)
stt[256 - j] = 256 - i;
}
}
print = changed = 1;
}
}
}
} while (changed);
return print;
}
static av_cold int encode_init(AVCodecContext *avctx)
{
FFV1Context *s = avctx->priv_data;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt);
int i, j, k, m, ret;
if ((ret = ff_ffv1_common_init(avctx)) < 0)
return ret;
s->version = 0;
if ((avctx->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) ||
avctx->slices > 1)
s->version = FFMAX(s->version, 2);
// Unspecified level & slices, we choose version 1.2+ to ensure multithreaded decodability
if (avctx->slices == 0 && avctx->level < 0 && avctx->width * avctx->height > 720*576)
s->version = FFMAX(s->version, 2);
if (avctx->level <= 0 && s->version == 2) {
s->version = 3;
}
if (avctx->level >= 0 && avctx->level <= 4) {
if (avctx->level < s->version) {
av_log(avctx, AV_LOG_ERROR, "Version %d needed for requested features but %d requested\n", s->version, avctx->level);
return AVERROR(EINVAL);
}
s->version = avctx->level;
}
if (s->ec < 0) {
s->ec = (s->version >= 3);
}
// CRC requires version 3+
if (s->ec)
s->version = FFMAX(s->version, 3);
if ((s->version == 2 || s->version>3) && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
av_log(avctx, AV_LOG_ERROR, "Version 2 needed for requested features but version 2 is experimental and not enabled\n");
return AVERROR_INVALIDDATA;
}
#if FF_API_CODER_TYPE
FF_DISABLE_DEPRECATION_WARNINGS
if (avctx->coder_type != -1)
s->ac = avctx->coder_type > 0 ? AC_RANGE_CUSTOM_TAB : AC_GOLOMB_RICE;
else
FF_ENABLE_DEPRECATION_WARNINGS
#endif
if (s->ac == 1) // Compatbility with common command line usage
s->ac = AC_RANGE_CUSTOM_TAB;
else if (s->ac == AC_RANGE_DEFAULT_TAB_FORCE)
s->ac = AC_RANGE_DEFAULT_TAB;
s->plane_count = 3;
switch(avctx->pix_fmt) {
case AV_PIX_FMT_GRAY9:
case AV_PIX_FMT_YUV444P9:
case AV_PIX_FMT_YUV422P9:
case AV_PIX_FMT_YUV420P9:
case AV_PIX_FMT_YUVA444P9:
case AV_PIX_FMT_YUVA422P9:
case AV_PIX_FMT_YUVA420P9:
if (!avctx->bits_per_raw_sample)
s->bits_per_raw_sample = 9;
case AV_PIX_FMT_GRAY10:
case AV_PIX_FMT_YUV444P10:
case AV_PIX_FMT_YUV440P10:
case AV_PIX_FMT_YUV420P10:
case AV_PIX_FMT_YUV422P10:
case AV_PIX_FMT_YUVA444P10:
case AV_PIX_FMT_YUVA422P10:
case AV_PIX_FMT_YUVA420P10:
if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
s->bits_per_raw_sample = 10;
case AV_PIX_FMT_GRAY12:
case AV_PIX_FMT_YUV444P12:
case AV_PIX_FMT_YUV440P12:
case AV_PIX_FMT_YUV420P12:
case AV_PIX_FMT_YUV422P12:
if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
s->bits_per_raw_sample = 12;
case AV_PIX_FMT_YUV444P14:
case AV_PIX_FMT_YUV420P14:
case AV_PIX_FMT_YUV422P14:
if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
s->bits_per_raw_sample = 14;
s->packed_at_lsb = 1;
case AV_PIX_FMT_GRAY16:
case AV_PIX_FMT_YUV444P16:
case AV_PIX_FMT_YUV422P16:
case AV_PIX_FMT_YUV420P16:
case AV_PIX_FMT_YUVA444P16:
case AV_PIX_FMT_YUVA422P16:
case AV_PIX_FMT_YUVA420P16:
if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample) {
s->bits_per_raw_sample = 16;
} else if (!s->bits_per_raw_sample) {
s->bits_per_raw_sample = avctx->bits_per_raw_sample;
}
if (s->bits_per_raw_sample <= 8) {
av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
return AVERROR_INVALIDDATA;
}
s->version = FFMAX(s->version, 1);
case AV_PIX_FMT_GRAY8:
case AV_PIX_FMT_YA8:
case AV_PIX_FMT_YUV444P:
case AV_PIX_FMT_YUV440P:
case AV_PIX_FMT_YUV422P:
case AV_PIX_FMT_YUV420P:
case AV_PIX_FMT_YUV411P:
case AV_PIX_FMT_YUV410P:
case AV_PIX_FMT_YUVA444P:
case AV_PIX_FMT_YUVA422P:
case AV_PIX_FMT_YUVA420P:
s->chroma_planes = desc->nb_components < 3 ? 0 : 1;
s->colorspace = 0;
s->transparency = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
s->bits_per_raw_sample = 8;
else if (!s->bits_per_raw_sample)
s->bits_per_raw_sample = 8;
break;
case AV_PIX_FMT_RGB32:
s->colorspace = 1;
s->transparency = 1;
s->chroma_planes = 1;
s->bits_per_raw_sample = 8;
break;
case AV_PIX_FMT_RGBA64:
s->colorspace = 1;
s->transparency = 1;
s->chroma_planes = 1;
s->bits_per_raw_sample = 16;
s->use32bit = 1;
s->version = FFMAX(s->version, 1);
break;
case AV_PIX_FMT_RGB48:
s->colorspace = 1;
s->chroma_planes = 1;
s->bits_per_raw_sample = 16;
s->use32bit = 1;
s->version = FFMAX(s->version, 1);
break;
case AV_PIX_FMT_0RGB32:
s->colorspace = 1;
s->chroma_planes = 1;
s->bits_per_raw_sample = 8;
break;
case AV_PIX_FMT_GBRP9:
if (!avctx->bits_per_raw_sample)
s->bits_per_raw_sample = 9;
case AV_PIX_FMT_GBRP10:
case AV_PIX_FMT_GBRAP10:
if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
s->bits_per_raw_sample = 10;
case AV_PIX_FMT_GBRP12:
case AV_PIX_FMT_GBRAP12:
if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
s->bits_per_raw_sample = 12;
case AV_PIX_FMT_GBRP14:
if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
s->bits_per_raw_sample = 14;
case AV_PIX_FMT_GBRP16:
case AV_PIX_FMT_GBRAP16:
if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
s->bits_per_raw_sample = 16;
else if (!s->bits_per_raw_sample)
s->bits_per_raw_sample = avctx->bits_per_raw_sample;
s->transparency = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
s->colorspace = 1;
s->chroma_planes = 1;
if (s->bits_per_raw_sample >= 16) {
s->use32bit = 1;
}
s->version = FFMAX(s->version, 1);
break;
default:
av_log(avctx, AV_LOG_ERROR, "format not supported\n");
return AVERROR(ENOSYS);
}
av_assert0(s->bits_per_raw_sample >= 8);
if (s->bits_per_raw_sample > 8) {
if (s->ac == AC_GOLOMB_RICE) {
av_log(avctx, AV_LOG_INFO,
"bits_per_raw_sample > 8, forcing range coder\n");
s->ac = AC_RANGE_CUSTOM_TAB;
}
}
#if FF_API_PRIVATE_OPT
FF_DISABLE_DEPRECATION_WARNINGS
if (avctx->context_model)
s->context_model = avctx->context_model;
if (avctx->context_model > 1U) {
av_log(avctx, AV_LOG_ERROR, "Invalid context model %d, valid values are 0 and 1\n", avctx->context_model);
return AVERROR(EINVAL);
}
FF_ENABLE_DEPRECATION_WARNINGS
#endif
if (s->ac == AC_RANGE_CUSTOM_TAB) {
for (i = 1; i < 256; i++)
s->state_transition[i] = ver2_state[i];
} else {
RangeCoder c;
ff_build_rac_states(&c, 0.05 * (1LL << 32), 256 - 8);
for (i = 1; i < 256; i++)
s->state_transition[i] = c.one_state[i];
}
for (i = 0; i < 256; i++) {
s->quant_table_count = 2;
if (s->bits_per_raw_sample <= 8) {
s->quant_tables[0][0][i]= quant11[i];
s->quant_tables[0][1][i]= 11*quant11[i];
s->quant_tables[0][2][i]= 11*11*quant11[i];
s->quant_tables[1][0][i]= quant11[i];
s->quant_tables[1][1][i]= 11*quant11[i];
s->quant_tables[1][2][i]= 11*11*quant5 [i];
s->quant_tables[1][3][i]= 5*11*11*quant5 [i];
s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i];
} else {
s->quant_tables[0][0][i]= quant9_10bit[i];
s->quant_tables[0][1][i]= 11*quant9_10bit[i];
s->quant_tables[0][2][i]= 11*11*quant9_10bit[i];
s->quant_tables[1][0][i]= quant9_10bit[i];
s->quant_tables[1][1][i]= 11*quant9_10bit[i];
s->quant_tables[1][2][i]= 11*11*quant5_10bit[i];
s->quant_tables[1][3][i]= 5*11*11*quant5_10bit[i];
s->quant_tables[1][4][i]= 5*5*11*11*quant5_10bit[i];
}
}
s->context_count[0] = (11 * 11 * 11 + 1) / 2;
s->context_count[1] = (11 * 11 * 5 * 5 * 5 + 1) / 2;
memcpy(s->quant_table, s->quant_tables[s->context_model],
sizeof(s->quant_table));
for (i = 0; i < s->plane_count; i++) {
PlaneContext *const p = &s->plane[i];
memcpy(p->quant_table, s->quant_table, sizeof(p->quant_table));
p->quant_table_index = s->context_model;
p->context_count = s->context_count[p->quant_table_index];
}
if ((ret = ff_ffv1_allocate_initial_states(s)) < 0)
return ret;
#if FF_API_CODED_FRAME
FF_DISABLE_DEPRECATION_WARNINGS
avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
if (!s->transparency)
s->plane_count = 2;
if (!s->chroma_planes && s->version > 3)
s->plane_count--;
ret = av_pix_fmt_get_chroma_sub_sample (avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
if (ret)
return ret;
s->picture_number = 0;
if (avctx->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) {
for (i = 0; i < s->quant_table_count; i++) {
s->rc_stat2[i] = av_mallocz(s->context_count[i] *
sizeof(*s->rc_stat2[i]));
if (!s->rc_stat2[i])
return AVERROR(ENOMEM);
}
}
if (avctx->stats_in) {
char *p = avctx->stats_in;
uint8_t (*best_state)[256] = av_malloc_array(256, 256);
int gob_count = 0;
char *next;
if (!best_state)
return AVERROR(ENOMEM);
av_assert0(s->version >= 2);
for (;;) {
for (j = 0; j < 256; j++)
for (i = 0; i < 2; i++) {
s->rc_stat[j][i] = strtol(p, &next, 0);
if (next == p) {
av_log(avctx, AV_LOG_ERROR,
"2Pass file invalid at %d %d [%s]\n", j, i, p);
av_freep(&best_state);
return AVERROR_INVALIDDATA;
}
p = next;
}
for (i = 0; i < s->quant_table_count; i++)
for (j = 0; j < s->context_count[i]; j++) {
for (k = 0; k < 32; k++)
for (m = 0; m < 2; m++) {
s->rc_stat2[i][j][k][m] = strtol(p, &next, 0);
if (next == p) {
av_log(avctx, AV_LOG_ERROR,
"2Pass file invalid at %d %d %d %d [%s]\n",
i, j, k, m, p);
av_freep(&best_state);
return AVERROR_INVALIDDATA;
}
p = next;
}
}
gob_count = strtol(p, &next, 0);
if (next == p || gob_count <= 0) {
av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n");
av_freep(&best_state);
return AVERROR_INVALIDDATA;
}
p = next;
while (*p == '\n' || *p == ' ')
p++;
if (p[0] == 0)
break;
}
if (s->ac == AC_RANGE_CUSTOM_TAB)
sort_stt(s, s->state_transition);
find_best_state(best_state, s->state_transition);
for (i = 0; i < s->quant_table_count; i++) {
for (k = 0; k < 32; k++) {
double a=0, b=0;
int jp = 0;
for (j = 0; j < s->context_count[i]; j++) {
double p = 128;
if (s->rc_stat2[i][j][k][0] + s->rc_stat2[i][j][k][1] > 200 && j || a+b > 200) {
if (a+b)
p = 256.0 * b / (a + b);
s->initial_states[i][jp][k] =
best_state[av_clip(round(p), 1, 255)][av_clip_uint8((a + b) / gob_count)];
for(jp++; jp<j; jp++)
s->initial_states[i][jp][k] = s->initial_states[i][jp-1][k];
a=b=0;
}
a += s->rc_stat2[i][j][k][0];
b += s->rc_stat2[i][j][k][1];
if (a+b) {
p = 256.0 * b / (a + b);
}
s->initial_states[i][j][k] =
best_state[av_clip(round(p), 1, 255)][av_clip_uint8((a + b) / gob_count)];
}
}
}
av_freep(&best_state);
}
if (s->version > 1) {
int plane_count = 1 + 2*s->chroma_planes + s->transparency;
int max_h_slices = AV_CEIL_RSHIFT(avctx->width , s->chroma_h_shift);
int max_v_slices = AV_CEIL_RSHIFT(avctx->height, s->chroma_v_shift);
s->num_v_slices = (avctx->width > 352 || avctx->height > 288 || !avctx->slices) ? 2 : 1;
s->num_v_slices = FFMIN(s->num_v_slices, max_v_slices);
for (; s->num_v_slices < 32; s->num_v_slices++) {
for (s->num_h_slices = s->num_v_slices; s->num_h_slices < 2*s->num_v_slices; s->num_h_slices++) {
int maxw = (avctx->width + s->num_h_slices - 1) / s->num_h_slices;
int maxh = (avctx->height + s->num_v_slices - 1) / s->num_v_slices;
if (s->num_h_slices > max_h_slices || s->num_v_slices > max_v_slices)
continue;
if (maxw * maxh * (int64_t)(s->bits_per_raw_sample+1) * plane_count > 8<<24)
continue;
if (avctx->slices == s->num_h_slices * s->num_v_slices && avctx->slices <= MAX_SLICES || !avctx->slices)
goto slices_ok;
}
}
av_log(avctx, AV_LOG_ERROR,
"Unsupported number %d of slices requested, please specify a "
"supported number with -slices (ex:4,6,9,12,16, ...)\n",
avctx->slices);
return AVERROR(ENOSYS);
slices_ok:
if ((ret = write_extradata(s)) < 0)
return ret;
}
if ((ret = ff_ffv1_init_slice_contexts(s)) < 0)
return ret;
s->slice_count = s->max_slice_count;
if ((ret = ff_ffv1_init_slices_state(s)) < 0)
return ret;
#define STATS_OUT_SIZE 1024 * 1024 * 6
if (avctx->flags & AV_CODEC_FLAG_PASS1) {
avctx->stats_out = av_mallocz(STATS_OUT_SIZE);
if (!avctx->stats_out)
return AVERROR(ENOMEM);
for (i = 0; i < s->quant_table_count; i++)
for (j = 0; j < s->max_slice_count; j++) {
FFV1Context *sf = s->slice_context[j];
av_assert0(!sf->rc_stat2[i]);
sf->rc_stat2[i] = av_mallocz(s->context_count[i] *
sizeof(*sf->rc_stat2[i]));
if (!sf->rc_stat2[i])
return AVERROR(ENOMEM);
}
}
return 0;
}
static void encode_slice_header(FFV1Context *f, FFV1Context *fs)
{
RangeCoder *c = &fs->c;
uint8_t state[CONTEXT_SIZE];
int j;
memset(state, 128, sizeof(state));
put_symbol(c, state, (fs->slice_x +1)*f->num_h_slices / f->width , 0);
put_symbol(c, state, (fs->slice_y +1)*f->num_v_slices / f->height , 0);
put_symbol(c, state, (fs->slice_width +1)*f->num_h_slices / f->width -1, 0);
put_symbol(c, state, (fs->slice_height+1)*f->num_v_slices / f->height-1, 0);
for (j=0; j<f->plane_count; j++) {
put_symbol(c, state, f->plane[j].quant_table_index, 0);
av_assert0(f->plane[j].quant_table_index == f->context_model);
}
if (!f->picture.f->interlaced_frame)
put_symbol(c, state, 3, 0);
else
put_symbol(c, state, 1 + !f->picture.f->top_field_first, 0);
put_symbol(c, state, f->picture.f->sample_aspect_ratio.num, 0);
put_symbol(c, state, f->picture.f->sample_aspect_ratio.den, 0);
if (f->version > 3) {
put_rac(c, state, fs->slice_coding_mode == 1);
if (fs->slice_coding_mode == 1)
ff_ffv1_clear_slice_state(f, fs);
put_symbol(c, state, fs->slice_coding_mode, 0);
if (fs->slice_coding_mode != 1) {
put_symbol(c, state, fs->slice_rct_by_coef, 0);
put_symbol(c, state, fs->slice_rct_ry_coef, 0);
}
}
}
static void choose_rct_params(FFV1Context *fs, const uint8_t *src[3], const int stride[3], int w, int h)
{
#define NB_Y_COEFF 15
static const int rct_y_coeff[15][2] = {
{0, 0}, // 4G
{1, 1}, // R + 2G + B
{2, 2}, // 2R + 2B
{0, 2}, // 2G + 2B
{2, 0}, // 2R + 2G
{4, 0}, // 4R
{0, 4}, // 4B
{0, 3}, // 1G + 3B
{3, 0}, // 3R + 1G
{3, 1}, // 3R + B
{1, 3}, // R + 3B
{1, 2}, // R + G + 2B
{2, 1}, // 2R + G + B
{0, 1}, // 3G + B
{1, 0}, // R + 3G
};
int stat[NB_Y_COEFF] = {0};
int x, y, i, p, best;
int16_t *sample[3];
int lbd = fs->bits_per_raw_sample <= 8;
for (y = 0; y < h; y++) {
int lastr=0, lastg=0, lastb=0;
for (p = 0; p < 3; p++)
sample[p] = fs->sample_buffer + p*w;
for (x = 0; x < w; x++) {
int b, g, r;
int ab, ag, ar;
if (lbd) {
unsigned v = *((const uint32_t*)(src[0] + x*4 + stride[0]*y));
b = v & 0xFF;
g = (v >> 8) & 0xFF;
r = (v >> 16) & 0xFF;
} else {
b = *((const uint16_t*)(src[0] + x*2 + stride[0]*y));
g = *((const uint16_t*)(src[1] + x*2 + stride[1]*y));
r = *((const uint16_t*)(src[2] + x*2 + stride[2]*y));
}
ar = r - lastr;
ag = g - lastg;
ab = b - lastb;
if (x && y) {
int bg = ag - sample[0][x];
int bb = ab - sample[1][x];
int br = ar - sample[2][x];
br -= bg;
bb -= bg;
for (i = 0; i<NB_Y_COEFF; i++) {
stat[i] += FFABS(bg + ((br*rct_y_coeff[i][0] + bb*rct_y_coeff[i][1])>>2));
}
}
sample[0][x] = ag;
sample[1][x] = ab;
sample[2][x] = ar;
lastr = r;
lastg = g;
lastb = b;
}
}
best = 0;
for (i=1; i<NB_Y_COEFF; i++) {
if (stat[i] < stat[best])
best = i;
}
fs->slice_rct_by_coef = rct_y_coeff[best][1];
fs->slice_rct_ry_coef = rct_y_coeff[best][0];
}
static int encode_slice(AVCodecContext *c, void *arg)
{
FFV1Context *fs = *(void **)arg;
FFV1Context *f = fs->avctx->priv_data;
int width = fs->slice_width;
int height = fs->slice_height;
int x = fs->slice_x;
int y = fs->slice_y;
const AVFrame *const p = f->picture.f;
const int ps = av_pix_fmt_desc_get(c->pix_fmt)->comp[0].step;
int ret;
RangeCoder c_bak = fs->c;
const uint8_t *planes[4] = {p->data[0] + ps*x + y*p->linesize[0],
p->data[1] ? p->data[1] + ps*x + y*p->linesize[1] : NULL,
p->data[2] ? p->data[2] + ps*x + y*p->linesize[2] : NULL,
p->data[3] ? p->data[3] + ps*x + y*p->linesize[3] : NULL};
fs->slice_coding_mode = 0;
if (f->version > 3) {
choose_rct_params(fs, planes, p->linesize, width, height);
} else {
fs->slice_rct_by_coef = 1;
fs->slice_rct_ry_coef = 1;
}
retry:
if (f->key_frame)
ff_ffv1_clear_slice_state(f, fs);
if (f->version > 2) {
encode_slice_header(f, fs);
}
if (fs->ac == AC_GOLOMB_RICE) {
if (f->version > 2)
put_rac(&fs->c, (uint8_t[]) { 129 }, 0);
fs->ac_byte_count = f->version > 2 || (!x && !y) ? ff_rac_terminate(&fs->c) : 0;
init_put_bits(&fs->pb,
fs->c.bytestream_start + fs->ac_byte_count,
fs->c.bytestream_end - fs->c.bytestream_start - fs->ac_byte_count);
}
if (f->colorspace == 0 && c->pix_fmt != AV_PIX_FMT_YA8) {
const int chroma_width = AV_CEIL_RSHIFT(width, f->chroma_h_shift);
const int chroma_height = AV_CEIL_RSHIFT(height, f->chroma_v_shift);
const int cx = x >> f->chroma_h_shift;
const int cy = y >> f->chroma_v_shift;
ret = encode_plane(fs, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 1);
if (f->chroma_planes) {
ret |= encode_plane(fs, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1, 1);
ret |= encode_plane(fs, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1, 1);
}
if (fs->transparency)
ret |= encode_plane(fs, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2, 1);
} else if (c->pix_fmt == AV_PIX_FMT_YA8) {
ret = encode_plane(fs, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 2);
ret |= encode_plane(fs, p->data[0] + 1 + ps*x + y*p->linesize[0], width, height, p->linesize[0], 1, 2);
} else if (f->use32bit) {
ret = encode_rgb_frame32(fs, planes, width, height, p->linesize);
} else {
ret = encode_rgb_frame(fs, planes, width, height, p->linesize);
}
emms_c();
if (ret < 0) {
av_assert0(fs->slice_coding_mode == 0);
if (fs->version < 4 || !fs->ac) {
av_log(c, AV_LOG_ERROR, "Buffer too small\n");
return ret;
}
av_log(c, AV_LOG_DEBUG, "Coding slice as PCM\n");
fs->slice_coding_mode = 1;
fs->c = c_bak;
goto retry;
}
return 0;
}
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *pict, int *got_packet)
{
FFV1Context *f = avctx->priv_data;
RangeCoder *const c = &f->slice_context[0]->c;
AVFrame *const p = f->picture.f;
uint8_t keystate = 128;
uint8_t *buf_p;
int i, ret;
int64_t maxsize = AV_INPUT_BUFFER_MIN_SIZE
+ avctx->width*avctx->height*37LL*4;
if(!pict) {
if (avctx->flags & AV_CODEC_FLAG_PASS1) {
int j, k, m;
char *p = avctx->stats_out;
char *end = p + STATS_OUT_SIZE;
memset(f->rc_stat, 0, sizeof(f->rc_stat));
for (i = 0; i < f->quant_table_count; i++)
memset(f->rc_stat2[i], 0, f->context_count[i] * sizeof(*f->rc_stat2[i]));
av_assert0(f->slice_count == f->max_slice_count);
for (j = 0; j < f->slice_count; j++) {
FFV1Context *fs = f->slice_context[j];
for (i = 0; i < 256; i++) {
f->rc_stat[i][0] += fs->rc_stat[i][0];
f->rc_stat[i][1] += fs->rc_stat[i][1];
}
for (i = 0; i < f->quant_table_count; i++) {
for (k = 0; k < f->context_count[i]; k++)
for (m = 0; m < 32; m++) {
f->rc_stat2[i][k][m][0] += fs->rc_stat2[i][k][m][0];
f->rc_stat2[i][k][m][1] += fs->rc_stat2[i][k][m][1];
}
}
}
for (j = 0; j < 256; j++) {
snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
f->rc_stat[j][0], f->rc_stat[j][1]);
p += strlen(p);
}
snprintf(p, end - p, "\n");
for (i = 0; i < f->quant_table_count; i++) {
for (j = 0; j < f->context_count[i]; j++)
for (m = 0; m < 32; m++) {
snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]);
p += strlen(p);
}
}
snprintf(p, end - p, "%d\n", f->gob_count);
}
return 0;
}
if (f->version > 3)
maxsize = AV_INPUT_BUFFER_MIN_SIZE + avctx->width*avctx->height*3LL*4;
if (maxsize > INT_MAX - AV_INPUT_BUFFER_PADDING_SIZE - 32) {
av_log(avctx, AV_LOG_WARNING, "Cannot allocate worst case packet size, the encoding could fail\n");
maxsize = INT_MAX - AV_INPUT_BUFFER_PADDING_SIZE - 32;
}
if ((ret = ff_alloc_packet2(avctx, pkt, maxsize, 0)) < 0)
return ret;
ff_init_range_encoder(c, pkt->data, pkt->size);
ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
av_frame_unref(p);
if ((ret = av_frame_ref(p, pict)) < 0)
return ret;
#if FF_API_CODED_FRAME
FF_DISABLE_DEPRECATION_WARNINGS
avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
if (avctx->gop_size == 0 || f->picture_number % avctx->gop_size == 0) {
put_rac(c, &keystate, 1);
f->key_frame = 1;
f->gob_count++;
write_header(f);
} else {
put_rac(c, &keystate, 0);
f->key_frame = 0;
}
if (f->ac == AC_RANGE_CUSTOM_TAB) {
int i;
for (i = 1; i < 256; i++) {
c->one_state[i] = f->state_transition[i];
c->zero_state[256 - i] = 256 - c->one_state[i];
}
}
for (i = 0; i < f->slice_count; i++) {
FFV1Context *fs = f->slice_context[i];
uint8_t *start = pkt->data + pkt->size * (int64_t)i / f->slice_count;
int len = pkt->size / f->slice_count;
if (i) {
ff_init_range_encoder(&fs->c, start, len);
} else {
av_assert0(fs->c.bytestream_end >= fs->c.bytestream_start + len);
av_assert0(fs->c.bytestream < fs->c.bytestream_start + len);
fs->c.bytestream_end = fs->c.bytestream_start + len;
}
}
avctx->execute(avctx, encode_slice, &f->slice_context[0], NULL,
f->slice_count, sizeof(void *));
buf_p = pkt->data;
for (i = 0; i < f->slice_count; i++) {
FFV1Context *fs = f->slice_context[i];
int bytes;
if (fs->ac != AC_GOLOMB_RICE) {
uint8_t state = 129;
put_rac(&fs->c, &state, 0);
bytes = ff_rac_terminate(&fs->c);
} else {
flush_put_bits(&fs->pb); // FIXME: nicer padding
bytes = fs->ac_byte_count + (put_bits_count(&fs->pb) + 7) / 8;
}
if (i > 0 || f->version > 2) {
av_assert0(bytes < pkt->size / f->slice_count);
memmove(buf_p, fs->c.bytestream_start, bytes);
av_assert0(bytes < (1 << 24));
AV_WB24(buf_p + bytes, bytes);
bytes += 3;
}
if (f->ec) {
unsigned v;
buf_p[bytes++] = 0;
v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, buf_p, bytes);
AV_WL32(buf_p + bytes, v);
bytes += 4;
}
buf_p += bytes;
}
if (avctx->flags & AV_CODEC_FLAG_PASS1)
avctx->stats_out[0] = '\0';
#if FF_API_CODED_FRAME
FF_DISABLE_DEPRECATION_WARNINGS
avctx->coded_frame->key_frame = f->key_frame;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
f->picture_number++;
pkt->size = buf_p - pkt->data;
pkt->pts =
pkt->dts = pict->pts;
pkt->flags |= AV_PKT_FLAG_KEY * f->key_frame;
*got_packet = 1;
return 0;
}
static av_cold int encode_close(AVCodecContext *avctx)
{
ff_ffv1_close(avctx);
return 0;
}
#define OFFSET(x) offsetof(FFV1Context, x)
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
static const AVOption options[] = {
{ "slicecrc", "Protect slices with CRCs", OFFSET(ec), AV_OPT_TYPE_BOOL, { .i64 = -1 }, -1, 1, VE },
{ "coder", "Coder type", OFFSET(ac), AV_OPT_TYPE_INT,
{ .i64 = 0 }, -2, 2, VE, "coder" },
{ "rice", "Golomb rice", 0, AV_OPT_TYPE_CONST,
{ .i64 = AC_GOLOMB_RICE }, INT_MIN, INT_MAX, VE, "coder" },
{ "range_def", "Range with default table", 0, AV_OPT_TYPE_CONST,
{ .i64 = AC_RANGE_DEFAULT_TAB_FORCE }, INT_MIN, INT_MAX, VE, "coder" },
{ "range_tab", "Range with custom table", 0, AV_OPT_TYPE_CONST,
{ .i64 = AC_RANGE_CUSTOM_TAB }, INT_MIN, INT_MAX, VE, "coder" },
{ "ac", "Range with custom table (the ac option exists for compatibility and is deprecated)", 0, AV_OPT_TYPE_CONST,
{ .i64 = 1 }, INT_MIN, INT_MAX, VE, "coder" },
{ "context", "Context model", OFFSET(context_model), AV_OPT_TYPE_INT,
{ .i64 = 0 }, 0, 1, VE },
{ NULL }
};
static const AVClass ffv1_class = {
.class_name = "ffv1 encoder",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
#if FF_API_CODER_TYPE
static const AVCodecDefault ffv1_defaults[] = {
{ "coder", "-1" },
{ NULL },
};
#endif
AVCodec ff_ffv1_encoder = {
.name = "ffv1",
.long_name = NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_FFV1,
.priv_data_size = sizeof(FFV1Context),
.init = encode_init,
.encode2 = encode_frame,
.close = encode_close,
.capabilities = AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_DELAY,
.pix_fmts = (const enum AVPixelFormat[]) {
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUV410P, AV_PIX_FMT_0RGB32, AV_PIX_FMT_RGB32, AV_PIX_FMT_YUV420P16,
AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV422P9,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12,
AV_PIX_FMT_YUVA444P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA420P16,
AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA420P10,
AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA420P9,
AV_PIX_FMT_GRAY16, AV_PIX_FMT_GRAY8, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14,
AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12,
AV_PIX_FMT_YA8,
AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
AV_PIX_FMT_GBRP16, AV_PIX_FMT_RGB48,
AV_PIX_FMT_GBRAP16, AV_PIX_FMT_RGBA64,
AV_PIX_FMT_GRAY9,
AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14,
AV_PIX_FMT_YUV440P10, AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_NONE
},
#if FF_API_CODER_TYPE
.defaults = ffv1_defaults,
#endif
.priv_class = &ffv1_class,
};