1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-03 05:10:03 +02:00
FFmpeg/libavcodec/vp56.c
Aurelien Jacobs eba0fcad9e cleanup setting of returned data frame
Originally committed as revision 8125 to svn://svn.ffmpeg.org/ffmpeg/trunk
2007-02-25 16:02:32 +00:00

666 lines
21 KiB
C

/**
* @file vp56.c
* VP5 and VP6 compatible video decoder (common features)
*
* Copyright (C) 2006 Aurelien Jacobs <aurel@gnuage.org>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "avcodec.h"
#include "vp56.h"
#include "vp56data.h"
void vp56_init_dequant(vp56_context_t *s, int quantizer)
{
s->quantizer = quantizer;
s->dequant_dc = vp56_dc_dequant[quantizer] << 2;
s->dequant_ac = vp56_ac_dequant[quantizer] << 2;
}
static int vp56_get_vectors_predictors(vp56_context_t *s, int row, int col,
vp56_frame_t ref_frame)
{
int nb_pred = 0;
vp56_mv_t vect[2] = {{0,0}, {0,0}};
int pos, offset;
vp56_mv_t mvp;
for (pos=0; pos<12; pos++) {
mvp.x = col + vp56_candidate_predictor_pos[pos][0];
mvp.y = row + vp56_candidate_predictor_pos[pos][1];
if (mvp.x < 0 || mvp.x >= s->mb_width ||
mvp.y < 0 || mvp.y >= s->mb_height)
continue;
offset = mvp.x + s->mb_width*mvp.y;
if (vp56_reference_frame[s->macroblocks[offset].type] != ref_frame)
continue;
if ((s->macroblocks[offset].mv.x == vect[0].x &&
s->macroblocks[offset].mv.y == vect[0].y) ||
(s->macroblocks[offset].mv.x == 0 &&
s->macroblocks[offset].mv.y == 0))
continue;
vect[nb_pred++] = s->macroblocks[offset].mv;
if (nb_pred > 1) {
nb_pred = -1;
break;
}
s->vector_candidate_pos = pos;
}
s->vector_candidate[0] = vect[0];
s->vector_candidate[1] = vect[1];
return nb_pred+1;
}
static void vp56_parse_mb_type_models(vp56_context_t *s)
{
vp56_range_coder_t *c = &s->c;
int i, ctx, type;
for (ctx=0; ctx<3; ctx++) {
if (vp56_rac_get_prob(c, 174)) {
int idx = vp56_rac_gets(c, 4);
memcpy(s->mb_types_stats[ctx],vp56_pre_def_mb_type_stats[idx][ctx],
sizeof(s->mb_types_stats[ctx]));
}
if (vp56_rac_get_prob(c, 254)) {
for (type=0; type<10; type++) {
for(i=0; i<2; i++) {
if (vp56_rac_get_prob(c, 205)) {
int delta, sign = vp56_rac_get(c);
delta = vp56_rac_get_tree(c, vp56_pmbtm_tree,
vp56_mb_type_model_model);
if (!delta)
delta = 4 * vp56_rac_gets(c, 7);
s->mb_types_stats[ctx][type][i] += (delta ^ -sign) + sign;
}
}
}
}
}
/* compute MB type probability tables based on previous MB type */
for (ctx=0; ctx<3; ctx++) {
int p[10];
for (type=0; type<10; type++)
p[type] = 100 * s->mb_types_stats[ctx][type][1];
for (type=0; type<10; type++) {
int p02, p34, p0234, p17, p56, p89, p5689, p156789;
/* conservative MB type probability */
s->mb_type_model[ctx][type][0] = 255 - (255 * s->mb_types_stats[ctx][type][0]) / (1 + s->mb_types_stats[ctx][type][0] + s->mb_types_stats[ctx][type][1]);
p[type] = 0; /* same MB type => weight is null */
/* binary tree parsing probabilities */
p02 = p[0] + p[2];
p34 = p[3] + p[4];
p0234 = p02 + p34;
p17 = p[1] + p[7];
p56 = p[5] + p[6];
p89 = p[8] + p[9];
p5689 = p56 + p89;
p156789 = p17 + p5689;
s->mb_type_model[ctx][type][1] = 1 + 255 * p0234/(1+p0234+p156789);
s->mb_type_model[ctx][type][2] = 1 + 255 * p02 / (1+p0234);
s->mb_type_model[ctx][type][3] = 1 + 255 * p17 / (1+p156789);
s->mb_type_model[ctx][type][4] = 1 + 255 * p[0] / (1+p02);
s->mb_type_model[ctx][type][5] = 1 + 255 * p[3] / (1+p34);
s->mb_type_model[ctx][type][6] = 1 + 255 * p[1] / (1+p17);
s->mb_type_model[ctx][type][7] = 1 + 255 * p56 / (1+p5689);
s->mb_type_model[ctx][type][8] = 1 + 255 * p[5] / (1+p56);
s->mb_type_model[ctx][type][9] = 1 + 255 * p[8] / (1+p89);
/* restore initial value */
p[type] = 100 * s->mb_types_stats[ctx][type][1];
}
}
}
static vp56_mb_t vp56_parse_mb_type(vp56_context_t *s,
vp56_mb_t prev_type, int ctx)
{
uint8_t *mb_type_model = s->mb_type_model[ctx][prev_type];
vp56_range_coder_t *c = &s->c;
if (vp56_rac_get_prob(c, mb_type_model[0]))
return prev_type;
else
return vp56_rac_get_tree(c, vp56_pmbt_tree, mb_type_model);
}
static void vp56_decode_4mv(vp56_context_t *s, int row, int col)
{
vp56_mv_t mv = {0,0};
int type[4];
int b;
/* parse each block type */
for (b=0; b<4; b++) {
type[b] = vp56_rac_gets(&s->c, 2);
if (type[b])
type[b]++; /* only returns 0, 2, 3 or 4 (all INTER_PF) */
}
/* get vectors */
for (b=0; b<4; b++) {
switch (type[b]) {
case VP56_MB_INTER_NOVEC_PF:
s->mv[b] = (vp56_mv_t) {0,0};
break;
case VP56_MB_INTER_DELTA_PF:
s->parse_vector_adjustment(s, &s->mv[b]);
break;
case VP56_MB_INTER_V1_PF:
s->mv[b] = s->vector_candidate[0];
break;
case VP56_MB_INTER_V2_PF:
s->mv[b] = s->vector_candidate[1];
break;
}
mv.x += s->mv[b].x;
mv.y += s->mv[b].y;
}
/* this is the one selected for the whole MB for prediction */
s->macroblocks[row * s->mb_width + col].mv = s->mv[3];
/* chroma vectors are average luma vectors */
if (s->avctx->codec->id == CODEC_ID_VP5) {
s->mv[4].x = s->mv[5].x = RSHIFT(mv.x,2);
s->mv[4].y = s->mv[5].y = RSHIFT(mv.y,2);
} else {
s->mv[4] = s->mv[5] = (vp56_mv_t) {mv.x/4, mv.y/4};
}
}
static vp56_mb_t vp56_decode_mv(vp56_context_t *s, int row, int col)
{
vp56_mv_t *mv, vect = {0,0};
int ctx, b;
ctx = vp56_get_vectors_predictors(s, row, col, VP56_FRAME_PREVIOUS);
s->mb_type = vp56_parse_mb_type(s, s->mb_type, ctx);
s->macroblocks[row * s->mb_width + col].type = s->mb_type;
switch (s->mb_type) {
case VP56_MB_INTER_V1_PF:
mv = &s->vector_candidate[0];
break;
case VP56_MB_INTER_V2_PF:
mv = &s->vector_candidate[1];
break;
case VP56_MB_INTER_V1_GF:
vp56_get_vectors_predictors(s, row, col, VP56_FRAME_GOLDEN);
mv = &s->vector_candidate[0];
break;
case VP56_MB_INTER_V2_GF:
vp56_get_vectors_predictors(s, row, col, VP56_FRAME_GOLDEN);
mv = &s->vector_candidate[1];
break;
case VP56_MB_INTER_DELTA_PF:
s->parse_vector_adjustment(s, &vect);
mv = &vect;
break;
case VP56_MB_INTER_DELTA_GF:
vp56_get_vectors_predictors(s, row, col, VP56_FRAME_GOLDEN);
s->parse_vector_adjustment(s, &vect);
mv = &vect;
break;
case VP56_MB_INTER_4V:
vp56_decode_4mv(s, row, col);
return s->mb_type;
default:
mv = &vect;
break;
}
s->macroblocks[row*s->mb_width + col].mv = *mv;
/* same vector for all blocks */
for (b=0; b<6; b++)
s->mv[b] = *mv;
return s->mb_type;
}
static void vp56_add_predictors_dc(vp56_context_t *s, vp56_frame_t ref_frame)
{
int idx = s->scantable.permutated[0];
int i;
for (i=0; i<6; i++) {
vp56_ref_dc_t *ab = &s->above_blocks[s->above_block_idx[i]];
vp56_ref_dc_t *lb = &s->left_block[vp56_b6to4[i]];
int count = 0;
int dc = 0;
if (ref_frame == lb->ref_frame) {
dc += lb->dc_coeff;
count++;
}
if (ref_frame == ab->ref_frame) {
dc += ab->dc_coeff;
count++;
}
if (s->avctx->codec->id == CODEC_ID_VP5) {
if (count < 2 && ref_frame == ab[-1].ref_frame) {
dc += ab[-1].dc_coeff;
count++;
}
if (count < 2 && ref_frame == ab[1].ref_frame) {
dc += ab[1].dc_coeff;
count++;
}
}
if (count == 0)
dc = s->prev_dc[vp56_b6to3[i]][ref_frame];
else if (count == 2)
dc /= 2;
s->block_coeff[i][idx] += dc;
s->prev_dc[vp56_b6to3[i]][ref_frame] = s->block_coeff[i][idx];
ab->dc_coeff = s->block_coeff[i][idx];
ab->ref_frame = ref_frame;
lb->dc_coeff = s->block_coeff[i][idx];
lb->ref_frame = ref_frame;
s->block_coeff[i][idx] *= s->dequant_dc;
}
}
static void vp56_edge_filter(vp56_context_t *s, uint8_t *yuv,
int pix_inc, int line_inc, int t)
{
int pix2_inc = 2 * pix_inc;
int i, v;
for (i=0; i<12; i++) {
v = (yuv[-pix2_inc] + 3*(yuv[0]-yuv[-pix_inc]) - yuv[pix_inc] + 4) >>3;
v = s->adjust(v, t);
yuv[-pix_inc] = av_clip_uint8(yuv[-pix_inc] + v);
yuv[0] = av_clip_uint8(yuv[0] - v);
yuv += line_inc;
}
}
static void vp56_deblock_filter(vp56_context_t *s, uint8_t *yuv,
int stride, int dx, int dy)
{
int t = vp56_filter_threshold[s->quantizer];
if (dx) vp56_edge_filter(s, yuv + 10-dx , 1, stride, t);
if (dy) vp56_edge_filter(s, yuv + stride*(10-dy), stride, 1, t);
}
static void vp56_mc(vp56_context_t *s, int b, uint8_t *src,
int stride, int x, int y)
{
int plane = vp56_b6to3[b];
uint8_t *dst=s->framep[VP56_FRAME_CURRENT]->data[plane]+s->block_offset[b];
uint8_t *src_block;
int src_offset;
int overlap_offset = 0;
int mask = s->vp56_coord_div[b] - 1;
int deblock_filtering = s->deblock_filtering;
int dx;
int dy;
if (s->avctx->skip_loop_filter >= AVDISCARD_ALL ||
(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY
&& !s->framep[VP56_FRAME_CURRENT]->key_frame))
deblock_filtering = 0;
dx = s->mv[b].x / s->vp56_coord_div[b];
dy = s->mv[b].y / s->vp56_coord_div[b];
if (b >= 4) {
x /= 2;
y /= 2;
}
x += dx - 2;
y += dy - 2;
if (x<0 || x+12>=s->plane_width[plane] ||
y<0 || y+12>=s->plane_height[plane]) {
ff_emulated_edge_mc(s->edge_emu_buffer,
src + s->block_offset[b] + (dy-2)*stride + (dx-2),
stride, 12, 12, x, y,
s->plane_width[plane],
s->plane_height[plane]);
src_block = s->edge_emu_buffer;
src_offset = 2 + 2*stride;
} else if (deblock_filtering) {
/* only need a 12x12 block, but there is no such dsp function, */
/* so copy a 16x12 block */
s->dsp.put_pixels_tab[0][0](s->edge_emu_buffer,
src + s->block_offset[b] + (dy-2)*stride + (dx-2),
stride, 12);
src_block = s->edge_emu_buffer;
src_offset = 2 + 2*stride;
} else {
src_block = src;
src_offset = s->block_offset[b] + dy*stride + dx;
}
if (deblock_filtering)
vp56_deblock_filter(s, src_block, stride, dx&7, dy&7);
if (s->mv[b].x & mask)
overlap_offset += (s->mv[b].x > 0) ? 1 : -1;
if (s->mv[b].y & mask)
overlap_offset += (s->mv[b].y > 0) ? stride : -stride;
if (overlap_offset) {
if (s->filter)
s->filter(s, dst, src_block, src_offset, src_offset+overlap_offset,
stride, s->mv[b], mask, s->filter_selection, b<4);
else
s->dsp.put_no_rnd_pixels_l2[1](dst, src_block+src_offset,
src_block+src_offset+overlap_offset,
stride, 8);
} else {
s->dsp.put_pixels_tab[1][0](dst, src_block+src_offset, stride, 8);
}
}
static void vp56_decode_mb(vp56_context_t *s, int row, int col)
{
AVFrame *frame_current, *frame_ref;
vp56_mb_t mb_type;
vp56_frame_t ref_frame;
int b, plan, off;
if (s->framep[VP56_FRAME_CURRENT]->key_frame)
mb_type = VP56_MB_INTRA;
else
mb_type = vp56_decode_mv(s, row, col);
ref_frame = vp56_reference_frame[mb_type];
memset(s->block_coeff, 0, sizeof(s->block_coeff));
s->parse_coeff(s);
vp56_add_predictors_dc(s, ref_frame);
frame_current = s->framep[VP56_FRAME_CURRENT];
frame_ref = s->framep[ref_frame];
switch (mb_type) {
case VP56_MB_INTRA:
for (b=0; b<6; b++) {
plan = vp56_b6to3[b];
s->dsp.idct_put(frame_current->data[plan] + s->block_offset[b],
s->stride[plan], s->block_coeff[b]);
}
break;
case VP56_MB_INTER_NOVEC_PF:
case VP56_MB_INTER_NOVEC_GF:
for (b=0; b<6; b++) {
plan = vp56_b6to3[b];
off = s->block_offset[b];
s->dsp.put_pixels_tab[1][0](frame_current->data[plan] + off,
frame_ref->data[plan] + off,
s->stride[plan], 8);
s->dsp.idct_add(frame_current->data[plan] + off,
s->stride[plan], s->block_coeff[b]);
}
break;
case VP56_MB_INTER_DELTA_PF:
case VP56_MB_INTER_V1_PF:
case VP56_MB_INTER_V2_PF:
case VP56_MB_INTER_DELTA_GF:
case VP56_MB_INTER_4V:
case VP56_MB_INTER_V1_GF:
case VP56_MB_INTER_V2_GF:
for (b=0; b<6; b++) {
int x_off = b==1 || b==3 ? 8 : 0;
int y_off = b==2 || b==3 ? 8 : 0;
plan = vp56_b6to3[b];
vp56_mc(s, b, frame_ref->data[plan], s->stride[plan],
16*col+x_off, 16*row+y_off);
s->dsp.idct_add(frame_current->data[plan] + s->block_offset[b],
s->stride[plan], s->block_coeff[b]);
}
break;
}
}
static int vp56_size_changed(AVCodecContext *avctx, vp56_context_t *s)
{
int stride = s->framep[VP56_FRAME_CURRENT]->linesize[0];
int i;
s->plane_width[0] = s->avctx->coded_width;
s->plane_width[1] = s->plane_width[2] = s->avctx->coded_width/2;
s->plane_height[0] = s->avctx->coded_height;
s->plane_height[1] = s->plane_height[2] = s->avctx->coded_height/2;
for (i=0; i<3; i++)
s->stride[i] = s->flip * s->framep[VP56_FRAME_CURRENT]->linesize[i];
s->mb_width = (s->avctx->coded_width+15) / 16;
s->mb_height = (s->avctx->coded_height+15) / 16;
if (s->mb_width > 1000 || s->mb_height > 1000) {
av_log(avctx, AV_LOG_ERROR, "picture too big\n");
return -1;
}
s->above_blocks = av_realloc(s->above_blocks,
(4*s->mb_width+6) * sizeof(*s->above_blocks));
s->macroblocks = av_realloc(s->macroblocks,
s->mb_width*s->mb_height*sizeof(*s->macroblocks));
av_free(s->edge_emu_buffer_alloc);
s->edge_emu_buffer_alloc = av_malloc(16*stride);
s->edge_emu_buffer = s->edge_emu_buffer_alloc;
if (s->flip < 0)
s->edge_emu_buffer += 15 * stride;
return 0;
}
int vp56_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
uint8_t *buf, int buf_size)
{
vp56_context_t *s = avctx->priv_data;
AVFrame *const p = s->framep[VP56_FRAME_CURRENT];
int mb_row, mb_col, mb_row_flip, mb_offset = 0;
int block, y, uv, stride_y, stride_uv;
int golden_frame = 0;
int res;
res = s->parse_header(s, buf, buf_size, &golden_frame);
if (!res)
return -1;
p->reference = 1;
if (avctx->get_buffer(avctx, p) < 0) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return -1;
}
if (res == 2)
if (vp56_size_changed(avctx, s)) {
avctx->release_buffer(avctx, p);
return -1;
}
if (p->key_frame) {
p->pict_type = FF_I_TYPE;
s->default_models_init(s);
for (block=0; block<s->mb_height*s->mb_width; block++)
s->macroblocks[block].type = VP56_MB_INTRA;
} else {
p->pict_type = FF_P_TYPE;
vp56_parse_mb_type_models(s);
s->parse_vector_models(s);
s->mb_type = VP56_MB_INTER_NOVEC_PF;
}
s->parse_coeff_models(s);
memset(s->prev_dc, 0, sizeof(s->prev_dc));
s->prev_dc[1][VP56_FRAME_CURRENT] = 128;
s->prev_dc[2][VP56_FRAME_CURRENT] = 128;
for (block=0; block < 4*s->mb_width+6; block++) {
s->above_blocks[block].ref_frame = -1;
s->above_blocks[block].dc_coeff = 0;
s->above_blocks[block].not_null_dc = 0;
}
s->above_blocks[2*s->mb_width + 2].ref_frame = 0;
s->above_blocks[3*s->mb_width + 4].ref_frame = 0;
stride_y = p->linesize[0];
stride_uv = p->linesize[1];
if (s->flip < 0)
mb_offset = 7;
/* main macroblocks loop */
for (mb_row=0; mb_row<s->mb_height; mb_row++) {
if (s->flip < 0)
mb_row_flip = s->mb_height - mb_row - 1;
else
mb_row_flip = mb_row;
for (block=0; block<4; block++) {
s->left_block[block].ref_frame = -1;
s->left_block[block].dc_coeff = 0;
s->left_block[block].not_null_dc = 0;
memset(s->coeff_ctx[block], 0, 64*sizeof(s->coeff_ctx[block][0]));
}
memset(s->coeff_ctx_last, 24, sizeof(s->coeff_ctx_last));
s->above_block_idx[0] = 1;
s->above_block_idx[1] = 2;
s->above_block_idx[2] = 1;
s->above_block_idx[3] = 2;
s->above_block_idx[4] = 2*s->mb_width + 2 + 1;
s->above_block_idx[5] = 3*s->mb_width + 4 + 1;
s->block_offset[s->frbi] = (mb_row_flip*16 + mb_offset) * stride_y;
s->block_offset[s->srbi] = s->block_offset[s->frbi] + 8*stride_y;
s->block_offset[1] = s->block_offset[0] + 8;
s->block_offset[3] = s->block_offset[2] + 8;
s->block_offset[4] = (mb_row_flip*8 + mb_offset) * stride_uv;
s->block_offset[5] = s->block_offset[4];
for (mb_col=0; mb_col<s->mb_width; mb_col++) {
vp56_decode_mb(s, mb_row, mb_col);
for (y=0; y<4; y++) {
s->above_block_idx[y] += 2;
s->block_offset[y] += 16;
}
for (uv=4; uv<6; uv++) {
s->above_block_idx[uv] += 1;
s->block_offset[uv] += 8;
}
}
}
if (s->framep[VP56_FRAME_PREVIOUS] == s->framep[VP56_FRAME_GOLDEN])
FFSWAP(AVFrame *, s->framep[VP56_FRAME_PREVIOUS],
s->framep[VP56_FRAME_UNUSED]);
else if (s->framep[VP56_FRAME_PREVIOUS]->data[0])
avctx->release_buffer(avctx, s->framep[VP56_FRAME_PREVIOUS]);
if (p->key_frame || golden_frame) {
if (s->framep[VP56_FRAME_GOLDEN]->data[0])
avctx->release_buffer(avctx, s->framep[VP56_FRAME_GOLDEN]);
s->framep[VP56_FRAME_GOLDEN] = p;
}
FFSWAP(AVFrame *, s->framep[VP56_FRAME_CURRENT],
s->framep[VP56_FRAME_PREVIOUS]);
*(AVFrame*)data = *p;
*data_size = sizeof(AVFrame);
return buf_size;
}
void vp56_init(vp56_context_t *s, AVCodecContext *avctx, int flip)
{
int i;
s->avctx = avctx;
avctx->pix_fmt = PIX_FMT_YUV420P;
if (s->avctx->idct_algo == FF_IDCT_AUTO)
s->avctx->idct_algo = FF_IDCT_VP3;
dsputil_init(&s->dsp, s->avctx);
ff_init_scantable(s->dsp.idct_permutation, &s->scantable,ff_zigzag_direct);
avcodec_set_dimensions(s->avctx, 0, 0);
for (i=0; i<3; i++)
s->framep[i] = &s->frames[i];
s->framep[VP56_FRAME_UNUSED] = s->framep[VP56_FRAME_GOLDEN];
s->edge_emu_buffer_alloc = NULL;
s->above_blocks = NULL;
s->macroblocks = NULL;
s->quantizer = -1;
s->deblock_filtering = 1;
s->filter = NULL;
if (flip) {
s->flip = -1;
s->frbi = 2;
s->srbi = 0;
} else {
s->flip = 1;
s->frbi = 0;
s->srbi = 2;
}
}
int vp56_free(AVCodecContext *avctx)
{
vp56_context_t *s = avctx->priv_data;
av_free(s->above_blocks);
av_free(s->macroblocks);
av_free(s->edge_emu_buffer_alloc);
if (s->framep[VP56_FRAME_GOLDEN]->data[0]
&& (s->framep[VP56_FRAME_PREVIOUS] != s->framep[VP56_FRAME_GOLDEN]))
avctx->release_buffer(avctx, s->framep[VP56_FRAME_GOLDEN]);
if (s->framep[VP56_FRAME_PREVIOUS]->data[0])
avctx->release_buffer(avctx, s->framep[VP56_FRAME_PREVIOUS]);
return 0;
}