1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/h264.c
Gabriel Dume f929ab0569 cosmetics: Write NULL pointer equality checks more compactly
Signed-off-by: Diego Biurrun <diego@biurrun.de>
2014-08-15 03:18:18 -07:00

1873 lines
63 KiB
C

/*
* H.26L/H.264/AVC/JVT/14496-10/... decoder
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* H.264 / AVC / MPEG4 part10 codec.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#include "libavutil/avassert.h"
#include "libavutil/display.h"
#include "libavutil/imgutils.h"
#include "libavutil/stereo3d.h"
#include "libavutil/timer.h"
#include "internal.h"
#include "cabac.h"
#include "cabac_functions.h"
#include "error_resilience.h"
#include "avcodec.h"
#include "h264.h"
#include "h264data.h"
#include "h264chroma.h"
#include "h264_mvpred.h"
#include "golomb.h"
#include "mathops.h"
#include "me_cmp.h"
#include "mpegutils.h"
#include "rectangle.h"
#include "svq3.h"
#include "thread.h"
#include <assert.h>
const uint16_t ff_h264_mb_sizes[4] = { 256, 384, 512, 768 };
static void h264_er_decode_mb(void *opaque, int ref, int mv_dir, int mv_type,
int (*mv)[2][4][2],
int mb_x, int mb_y, int mb_intra, int mb_skipped)
{
H264Context *h = opaque;
h->mb_x = mb_x;
h->mb_y = mb_y;
h->mb_xy = mb_x + mb_y * h->mb_stride;
memset(h->non_zero_count_cache, 0, sizeof(h->non_zero_count_cache));
assert(ref >= 0);
/* FIXME: It is possible albeit uncommon that slice references
* differ between slices. We take the easy approach and ignore
* it for now. If this turns out to have any relevance in
* practice then correct remapping should be added. */
if (ref >= h->ref_count[0])
ref = 0;
fill_rectangle(&h->cur_pic.ref_index[0][4 * h->mb_xy],
2, 2, 2, ref, 1);
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
fill_rectangle(h->mv_cache[0][scan8[0]], 4, 4, 8,
pack16to32((*mv)[0][0][0], (*mv)[0][0][1]), 4);
assert(!FRAME_MBAFF(h));
ff_h264_hl_decode_mb(h);
}
void ff_h264_draw_horiz_band(H264Context *h, int y, int height)
{
AVCodecContext *avctx = h->avctx;
AVFrame *cur = &h->cur_pic.f;
AVFrame *last = h->ref_list[0][0].f.data[0] ? &h->ref_list[0][0].f : NULL;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt);
int vshift = desc->log2_chroma_h;
const int field_pic = h->picture_structure != PICT_FRAME;
if (field_pic) {
height <<= 1;
y <<= 1;
}
height = FFMIN(height, avctx->height - y);
if (field_pic && h->first_field && !(avctx->slice_flags & SLICE_FLAG_ALLOW_FIELD))
return;
if (avctx->draw_horiz_band) {
AVFrame *src;
int offset[AV_NUM_DATA_POINTERS];
int i;
if (cur->pict_type == AV_PICTURE_TYPE_B || h->low_delay ||
(avctx->slice_flags & SLICE_FLAG_CODED_ORDER))
src = cur;
else if (last)
src = last;
else
return;
offset[0] = y * src->linesize[0];
offset[1] =
offset[2] = (y >> vshift) * src->linesize[1];
for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
offset[i] = 0;
emms_c();
avctx->draw_horiz_band(avctx, src, offset,
y, h->picture_structure, height);
}
}
/**
* Check if the top & left blocks are available if needed and
* change the dc mode so it only uses the available blocks.
*/
int ff_h264_check_intra4x4_pred_mode(H264Context *h)
{
static const int8_t top[12] = {
-1, 0, LEFT_DC_PRED, -1, -1, -1, -1, -1, 0
};
static const int8_t left[12] = {
0, -1, TOP_DC_PRED, 0, -1, -1, -1, 0, -1, DC_128_PRED
};
int i;
if (!(h->top_samples_available & 0x8000)) {
for (i = 0; i < 4; i++) {
int status = top[h->intra4x4_pred_mode_cache[scan8[0] + i]];
if (status < 0) {
av_log(h->avctx, AV_LOG_ERROR,
"top block unavailable for requested intra4x4 mode %d at %d %d\n",
status, h->mb_x, h->mb_y);
return AVERROR_INVALIDDATA;
} else if (status) {
h->intra4x4_pred_mode_cache[scan8[0] + i] = status;
}
}
}
if ((h->left_samples_available & 0x8888) != 0x8888) {
static const int mask[4] = { 0x8000, 0x2000, 0x80, 0x20 };
for (i = 0; i < 4; i++)
if (!(h->left_samples_available & mask[i])) {
int status = left[h->intra4x4_pred_mode_cache[scan8[0] + 8 * i]];
if (status < 0) {
av_log(h->avctx, AV_LOG_ERROR,
"left block unavailable for requested intra4x4 mode %d at %d %d\n",
status, h->mb_x, h->mb_y);
return AVERROR_INVALIDDATA;
} else if (status) {
h->intra4x4_pred_mode_cache[scan8[0] + 8 * i] = status;
}
}
}
return 0;
} // FIXME cleanup like ff_h264_check_intra_pred_mode
/**
* Check if the top & left blocks are available if needed and
* change the dc mode so it only uses the available blocks.
*/
int ff_h264_check_intra_pred_mode(H264Context *h, int mode, int is_chroma)
{
static const int8_t top[4] = { LEFT_DC_PRED8x8, 1, -1, -1 };
static const int8_t left[5] = { TOP_DC_PRED8x8, -1, 2, -1, DC_128_PRED8x8 };
if (mode > 3U) {
av_log(h->avctx, AV_LOG_ERROR,
"out of range intra chroma pred mode at %d %d\n",
h->mb_x, h->mb_y);
return AVERROR_INVALIDDATA;
}
if (!(h->top_samples_available & 0x8000)) {
mode = top[mode];
if (mode < 0) {
av_log(h->avctx, AV_LOG_ERROR,
"top block unavailable for requested intra mode at %d %d\n",
h->mb_x, h->mb_y);
return AVERROR_INVALIDDATA;
}
}
if ((h->left_samples_available & 0x8080) != 0x8080) {
mode = left[mode];
if (is_chroma && (h->left_samples_available & 0x8080)) {
// mad cow disease mode, aka MBAFF + constrained_intra_pred
mode = ALZHEIMER_DC_L0T_PRED8x8 +
(!(h->left_samples_available & 0x8000)) +
2 * (mode == DC_128_PRED8x8);
}
if (mode < 0) {
av_log(h->avctx, AV_LOG_ERROR,
"left block unavailable for requested intra mode at %d %d\n",
h->mb_x, h->mb_y);
return AVERROR_INVALIDDATA;
}
}
return mode;
}
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src,
int *dst_length, int *consumed, int length)
{
int i, si, di;
uint8_t *dst;
int bufidx;
// src[0]&0x80; // forbidden bit
h->nal_ref_idc = src[0] >> 5;
h->nal_unit_type = src[0] & 0x1F;
src++;
length--;
#define STARTCODE_TEST \
if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) { \
if (src[i + 2] != 3) { \
/* startcode, so we must be past the end */ \
length = i; \
} \
break; \
}
#if HAVE_FAST_UNALIGNED
#define FIND_FIRST_ZERO \
if (i > 0 && !src[i]) \
i--; \
while (src[i]) \
i++
#if HAVE_FAST_64BIT
for (i = 0; i + 1 < length; i += 9) {
if (!((~AV_RN64A(src + i) &
(AV_RN64A(src + i) - 0x0100010001000101ULL)) &
0x8000800080008080ULL))
continue;
FIND_FIRST_ZERO;
STARTCODE_TEST;
i -= 7;
}
#else
for (i = 0; i + 1 < length; i += 5) {
if (!((~AV_RN32A(src + i) &
(AV_RN32A(src + i) - 0x01000101U)) &
0x80008080U))
continue;
FIND_FIRST_ZERO;
STARTCODE_TEST;
i -= 3;
}
#endif
#else
for (i = 0; i + 1 < length; i += 2) {
if (src[i])
continue;
if (i > 0 && src[i - 1] == 0)
i--;
STARTCODE_TEST;
}
#endif
if (i >= length - 1) { // no escaped 0
*dst_length = length;
*consumed = length + 1; // +1 for the header
return src;
}
// use second escape buffer for inter data
bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0;
av_fast_malloc(&h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx],
length + FF_INPUT_BUFFER_PADDING_SIZE);
dst = h->rbsp_buffer[bufidx];
if (!dst)
return NULL;
memcpy(dst, src, i);
si = di = i;
while (si + 2 < length) {
// remove escapes (very rare 1:2^22)
if (src[si + 2] > 3) {
dst[di++] = src[si++];
dst[di++] = src[si++];
} else if (src[si] == 0 && src[si + 1] == 0) {
if (src[si + 2] == 3) { // escape
dst[di++] = 0;
dst[di++] = 0;
si += 3;
continue;
} else // next start code
goto nsc;
}
dst[di++] = src[si++];
}
while (si < length)
dst[di++] = src[si++];
nsc:
memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
*dst_length = di;
*consumed = si + 1; // +1 for the header
/* FIXME store exact number of bits in the getbitcontext
* (it is needed for decoding) */
return dst;
}
/**
* Identify the exact end of the bitstream
* @return the length of the trailing, or 0 if damaged
*/
static int decode_rbsp_trailing(H264Context *h, const uint8_t *src)
{
int v = *src;
int r;
tprintf(h->avctx, "rbsp trailing %X\n", v);
for (r = 1; r < 9; r++) {
if (v & 1)
return r;
v >>= 1;
}
return 0;
}
void ff_h264_free_tables(H264Context *h, int free_rbsp)
{
int i;
H264Context *hx;
av_freep(&h->intra4x4_pred_mode);
av_freep(&h->chroma_pred_mode_table);
av_freep(&h->cbp_table);
av_freep(&h->mvd_table[0]);
av_freep(&h->mvd_table[1]);
av_freep(&h->direct_table);
av_freep(&h->non_zero_count);
av_freep(&h->slice_table_base);
h->slice_table = NULL;
av_freep(&h->list_counts);
av_freep(&h->mb2b_xy);
av_freep(&h->mb2br_xy);
av_buffer_pool_uninit(&h->qscale_table_pool);
av_buffer_pool_uninit(&h->mb_type_pool);
av_buffer_pool_uninit(&h->motion_val_pool);
av_buffer_pool_uninit(&h->ref_index_pool);
if (free_rbsp && h->DPB) {
for (i = 0; i < H264_MAX_PICTURE_COUNT; i++)
ff_h264_unref_picture(h, &h->DPB[i]);
av_freep(&h->DPB);
} else if (h->DPB) {
for (i = 0; i < H264_MAX_PICTURE_COUNT; i++)
h->DPB[i].needs_realloc = 1;
}
h->cur_pic_ptr = NULL;
for (i = 0; i < H264_MAX_THREADS; i++) {
hx = h->thread_context[i];
if (!hx)
continue;
av_freep(&hx->top_borders[1]);
av_freep(&hx->top_borders[0]);
av_freep(&hx->bipred_scratchpad);
av_freep(&hx->edge_emu_buffer);
av_freep(&hx->dc_val_base);
av_freep(&hx->er.mb_index2xy);
av_freep(&hx->er.error_status_table);
av_freep(&hx->er.er_temp_buffer);
av_freep(&hx->er.mbintra_table);
av_freep(&hx->er.mbskip_table);
if (free_rbsp) {
av_freep(&hx->rbsp_buffer[1]);
av_freep(&hx->rbsp_buffer[0]);
hx->rbsp_buffer_size[0] = 0;
hx->rbsp_buffer_size[1] = 0;
}
if (i)
av_freep(&h->thread_context[i]);
}
}
int ff_h264_alloc_tables(H264Context *h)
{
const int big_mb_num = h->mb_stride * (h->mb_height + 1);
const int row_mb_num = h->mb_stride * 2 * h->avctx->thread_count;
int x, y, i;
FF_ALLOCZ_OR_GOTO(h->avctx, h->intra4x4_pred_mode,
row_mb_num * 8 * sizeof(uint8_t), fail)
FF_ALLOCZ_OR_GOTO(h->avctx, h->non_zero_count,
big_mb_num * 48 * sizeof(uint8_t), fail)
FF_ALLOCZ_OR_GOTO(h->avctx, h->slice_table_base,
(big_mb_num + h->mb_stride) * sizeof(*h->slice_table_base), fail)
FF_ALLOCZ_OR_GOTO(h->avctx, h->cbp_table,
big_mb_num * sizeof(uint16_t), fail)
FF_ALLOCZ_OR_GOTO(h->avctx, h->chroma_pred_mode_table,
big_mb_num * sizeof(uint8_t), fail)
FF_ALLOCZ_OR_GOTO(h->avctx, h->mvd_table[0],
16 * row_mb_num * sizeof(uint8_t), fail);
FF_ALLOCZ_OR_GOTO(h->avctx, h->mvd_table[1],
16 * row_mb_num * sizeof(uint8_t), fail);
FF_ALLOCZ_OR_GOTO(h->avctx, h->direct_table,
4 * big_mb_num * sizeof(uint8_t), fail);
FF_ALLOCZ_OR_GOTO(h->avctx, h->list_counts,
big_mb_num * sizeof(uint8_t), fail)
memset(h->slice_table_base, -1,
(big_mb_num + h->mb_stride) * sizeof(*h->slice_table_base));
h->slice_table = h->slice_table_base + h->mb_stride * 2 + 1;
FF_ALLOCZ_OR_GOTO(h->avctx, h->mb2b_xy,
big_mb_num * sizeof(uint32_t), fail);
FF_ALLOCZ_OR_GOTO(h->avctx, h->mb2br_xy,
big_mb_num * sizeof(uint32_t), fail);
for (y = 0; y < h->mb_height; y++)
for (x = 0; x < h->mb_width; x++) {
const int mb_xy = x + y * h->mb_stride;
const int b_xy = 4 * x + 4 * y * h->b_stride;
h->mb2b_xy[mb_xy] = b_xy;
h->mb2br_xy[mb_xy] = 8 * (FMO ? mb_xy : (mb_xy % (2 * h->mb_stride)));
}
if (!h->dequant4_coeff[0])
h264_init_dequant_tables(h);
if (!h->DPB) {
h->DPB = av_mallocz_array(H264_MAX_PICTURE_COUNT, sizeof(*h->DPB));
if (!h->DPB)
return AVERROR(ENOMEM);
for (i = 0; i < H264_MAX_PICTURE_COUNT; i++)
av_frame_unref(&h->DPB[i].f);
av_frame_unref(&h->cur_pic.f);
}
return 0;
fail:
ff_h264_free_tables(h, 1);
return AVERROR(ENOMEM);
}
/**
* Init context
* Allocate buffers which are not shared amongst multiple threads.
*/
int ff_h264_context_init(H264Context *h)
{
ERContext *er = &h->er;
int mb_array_size = h->mb_height * h->mb_stride;
int y_size = (2 * h->mb_width + 1) * (2 * h->mb_height + 1);
int c_size = h->mb_stride * (h->mb_height + 1);
int yc_size = y_size + 2 * c_size;
int x, y, i;
FF_ALLOCZ_OR_GOTO(h->avctx, h->top_borders[0],
h->mb_width * 16 * 3 * sizeof(uint8_t) * 2, fail)
FF_ALLOCZ_OR_GOTO(h->avctx, h->top_borders[1],
h->mb_width * 16 * 3 * sizeof(uint8_t) * 2, fail)
h->ref_cache[0][scan8[5] + 1] =
h->ref_cache[0][scan8[7] + 1] =
h->ref_cache[0][scan8[13] + 1] =
h->ref_cache[1][scan8[5] + 1] =
h->ref_cache[1][scan8[7] + 1] =
h->ref_cache[1][scan8[13] + 1] = PART_NOT_AVAILABLE;
if (CONFIG_ERROR_RESILIENCE) {
/* init ER */
er->avctx = h->avctx;
er->mecc = &h->mecc;
er->decode_mb = h264_er_decode_mb;
er->opaque = h;
er->quarter_sample = 1;
er->mb_num = h->mb_num;
er->mb_width = h->mb_width;
er->mb_height = h->mb_height;
er->mb_stride = h->mb_stride;
er->b8_stride = h->mb_width * 2 + 1;
// error resilience code looks cleaner with this
FF_ALLOCZ_OR_GOTO(h->avctx, er->mb_index2xy,
(h->mb_num + 1) * sizeof(int), fail);
for (y = 0; y < h->mb_height; y++)
for (x = 0; x < h->mb_width; x++)
er->mb_index2xy[x + y * h->mb_width] = x + y * h->mb_stride;
er->mb_index2xy[h->mb_height * h->mb_width] = (h->mb_height - 1) *
h->mb_stride + h->mb_width;
FF_ALLOCZ_OR_GOTO(h->avctx, er->error_status_table,
mb_array_size * sizeof(uint8_t), fail);
FF_ALLOC_OR_GOTO(h->avctx, er->mbintra_table, mb_array_size, fail);
memset(er->mbintra_table, 1, mb_array_size);
FF_ALLOCZ_OR_GOTO(h->avctx, er->mbskip_table, mb_array_size + 2, fail);
FF_ALLOC_OR_GOTO(h->avctx, er->er_temp_buffer,
h->mb_height * h->mb_stride, fail);
FF_ALLOCZ_OR_GOTO(h->avctx, h->dc_val_base,
yc_size * sizeof(int16_t), fail);
er->dc_val[0] = h->dc_val_base + h->mb_width * 2 + 2;
er->dc_val[1] = h->dc_val_base + y_size + h->mb_stride + 1;
er->dc_val[2] = er->dc_val[1] + c_size;
for (i = 0; i < yc_size; i++)
h->dc_val_base[i] = 1024;
}
return 0;
fail:
return AVERROR(ENOMEM); // ff_h264_free_tables will clean up for us
}
static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size,
int parse_extradata);
int ff_h264_decode_extradata(H264Context *h)
{
AVCodecContext *avctx = h->avctx;
int ret;
if (avctx->extradata[0] == 1) {
int i, cnt, nalsize;
unsigned char *p = avctx->extradata;
h->is_avc = 1;
if (avctx->extradata_size < 7) {
av_log(avctx, AV_LOG_ERROR,
"avcC %d too short\n", avctx->extradata_size);
return AVERROR_INVALIDDATA;
}
/* sps and pps in the avcC always have length coded with 2 bytes,
* so put a fake nal_length_size = 2 while parsing them */
h->nal_length_size = 2;
// Decode sps from avcC
cnt = *(p + 5) & 0x1f; // Number of sps
p += 6;
for (i = 0; i < cnt; i++) {
nalsize = AV_RB16(p) + 2;
if (p - avctx->extradata + nalsize > avctx->extradata_size)
return AVERROR_INVALIDDATA;
ret = decode_nal_units(h, p, nalsize, 1);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR,
"Decoding sps %d from avcC failed\n", i);
return ret;
}
p += nalsize;
}
// Decode pps from avcC
cnt = *(p++); // Number of pps
for (i = 0; i < cnt; i++) {
nalsize = AV_RB16(p) + 2;
if (p - avctx->extradata + nalsize > avctx->extradata_size)
return AVERROR_INVALIDDATA;
ret = decode_nal_units(h, p, nalsize, 1);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR,
"Decoding pps %d from avcC failed\n", i);
return ret;
}
p += nalsize;
}
// Store right nal length size that will be used to parse all other nals
h->nal_length_size = (avctx->extradata[4] & 0x03) + 1;
} else {
h->is_avc = 0;
ret = decode_nal_units(h, avctx->extradata, avctx->extradata_size, 1);
if (ret < 0)
return ret;
}
return 0;
}
av_cold int ff_h264_decode_init(AVCodecContext *avctx)
{
H264Context *h = avctx->priv_data;
int i;
int ret;
h->avctx = avctx;
h->bit_depth_luma = 8;
h->chroma_format_idc = 1;
ff_h264dsp_init(&h->h264dsp, 8, 1);
ff_h264chroma_init(&h->h264chroma, h->sps.bit_depth_chroma);
ff_h264qpel_init(&h->h264qpel, 8);
ff_h264_pred_init(&h->hpc, h->avctx->codec_id, 8, 1);
h->dequant_coeff_pps = -1;
/* needed so that IDCT permutation is known early */
if (CONFIG_ERROR_RESILIENCE)
ff_me_cmp_init(&h->mecc, h->avctx);
ff_videodsp_init(&h->vdsp, 8);
memset(h->pps.scaling_matrix4, 16, 6 * 16 * sizeof(uint8_t));
memset(h->pps.scaling_matrix8, 16, 2 * 64 * sizeof(uint8_t));
h->picture_structure = PICT_FRAME;
h->slice_context_count = 1;
h->workaround_bugs = avctx->workaround_bugs;
h->flags = avctx->flags;
/* set defaults */
// s->decode_mb = ff_h263_decode_mb;
if (!avctx->has_b_frames)
h->low_delay = 1;
avctx->chroma_sample_location = AVCHROMA_LOC_LEFT;
ff_h264_decode_init_vlc();
ff_init_cabac_states();
h->pixel_shift = 0;
h->sps.bit_depth_luma = avctx->bits_per_raw_sample = 8;
h->thread_context[0] = h;
h->outputed_poc = h->next_outputed_poc = INT_MIN;
for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++)
h->last_pocs[i] = INT_MIN;
h->prev_poc_msb = 1 << 16;
h->x264_build = -1;
ff_h264_reset_sei(h);
h->recovery_frame = -1;
h->frame_recovered = 0;
if (avctx->codec_id == AV_CODEC_ID_H264) {
if (avctx->ticks_per_frame == 1)
h->avctx->time_base.den *= 2;
avctx->ticks_per_frame = 2;
}
if (avctx->extradata_size > 0 && avctx->extradata) {
ret = ff_h264_decode_extradata(h);
if (ret < 0)
return ret;
}
if (h->sps.bitstream_restriction_flag &&
h->avctx->has_b_frames < h->sps.num_reorder_frames) {
h->avctx->has_b_frames = h->sps.num_reorder_frames;
h->low_delay = 0;
}
avctx->internal->allocate_progress = 1;
return 0;
}
static int decode_init_thread_copy(AVCodecContext *avctx)
{
H264Context *h = avctx->priv_data;
if (!avctx->internal->is_copy)
return 0;
memset(h->sps_buffers, 0, sizeof(h->sps_buffers));
memset(h->pps_buffers, 0, sizeof(h->pps_buffers));
h->context_initialized = 0;
return 0;
}
/**
* Run setup operations that must be run after slice header decoding.
* This includes finding the next displayed frame.
*
* @param h h264 master context
* @param setup_finished enough NALs have been read that we can call
* ff_thread_finish_setup()
*/
static void decode_postinit(H264Context *h, int setup_finished)
{
H264Picture *out = h->cur_pic_ptr;
H264Picture *cur = h->cur_pic_ptr;
int i, pics, out_of_order, out_idx;
int invalid = 0, cnt = 0;
h->cur_pic_ptr->f.pict_type = h->pict_type;
if (h->next_output_pic)
return;
if (cur->field_poc[0] == INT_MAX || cur->field_poc[1] == INT_MAX) {
/* FIXME: if we have two PAFF fields in one packet, we can't start
* the next thread here. If we have one field per packet, we can.
* The check in decode_nal_units() is not good enough to find this
* yet, so we assume the worst for now. */
// if (setup_finished)
// ff_thread_finish_setup(h->avctx);
return;
}
cur->f.interlaced_frame = 0;
cur->f.repeat_pict = 0;
/* Signal interlacing information externally. */
/* Prioritize picture timing SEI information over used
* decoding process if it exists. */
if (h->sps.pic_struct_present_flag) {
switch (h->sei_pic_struct) {
case SEI_PIC_STRUCT_FRAME:
break;
case SEI_PIC_STRUCT_TOP_FIELD:
case SEI_PIC_STRUCT_BOTTOM_FIELD:
cur->f.interlaced_frame = 1;
break;
case SEI_PIC_STRUCT_TOP_BOTTOM:
case SEI_PIC_STRUCT_BOTTOM_TOP:
if (FIELD_OR_MBAFF_PICTURE(h))
cur->f.interlaced_frame = 1;
else
// try to flag soft telecine progressive
cur->f.interlaced_frame = h->prev_interlaced_frame;
break;
case SEI_PIC_STRUCT_TOP_BOTTOM_TOP:
case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM:
/* Signal the possibility of telecined film externally
* (pic_struct 5,6). From these hints, let the applications
* decide if they apply deinterlacing. */
cur->f.repeat_pict = 1;
break;
case SEI_PIC_STRUCT_FRAME_DOUBLING:
cur->f.repeat_pict = 2;
break;
case SEI_PIC_STRUCT_FRAME_TRIPLING:
cur->f.repeat_pict = 4;
break;
}
if ((h->sei_ct_type & 3) &&
h->sei_pic_struct <= SEI_PIC_STRUCT_BOTTOM_TOP)
cur->f.interlaced_frame = (h->sei_ct_type & (1 << 1)) != 0;
} else {
/* Derive interlacing flag from used decoding process. */
cur->f.interlaced_frame = FIELD_OR_MBAFF_PICTURE(h);
}
h->prev_interlaced_frame = cur->f.interlaced_frame;
if (cur->field_poc[0] != cur->field_poc[1]) {
/* Derive top_field_first from field pocs. */
cur->f.top_field_first = cur->field_poc[0] < cur->field_poc[1];
} else {
if (cur->f.interlaced_frame || h->sps.pic_struct_present_flag) {
/* Use picture timing SEI information. Even if it is a
* information of a past frame, better than nothing. */
if (h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM ||
h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP)
cur->f.top_field_first = 1;
else
cur->f.top_field_first = 0;
} else {
/* Most likely progressive */
cur->f.top_field_first = 0;
}
}
if (h->sei_frame_packing_present &&
h->frame_packing_arrangement_type >= 0 &&
h->frame_packing_arrangement_type <= 6 &&
h->content_interpretation_type > 0 &&
h->content_interpretation_type < 3) {
AVStereo3D *stereo = av_stereo3d_create_side_data(&cur->f);
if (!stereo)
return;
switch (h->frame_packing_arrangement_type) {
case 0:
stereo->type = AV_STEREO3D_CHECKERBOARD;
break;
case 1:
stereo->type = AV_STEREO3D_COLUMNS;
break;
case 2:
stereo->type = AV_STEREO3D_LINES;
break;
case 3:
if (h->quincunx_subsampling)
stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
else
stereo->type = AV_STEREO3D_SIDEBYSIDE;
break;
case 4:
stereo->type = AV_STEREO3D_TOPBOTTOM;
break;
case 5:
stereo->type = AV_STEREO3D_FRAMESEQUENCE;
break;
case 6:
stereo->type = AV_STEREO3D_2D;
break;
}
if (h->content_interpretation_type == 2)
stereo->flags = AV_STEREO3D_FLAG_INVERT;
}
if (h->sei_display_orientation_present &&
(h->sei_anticlockwise_rotation || h->sei_hflip || h->sei_vflip)) {
double angle = h->sei_anticlockwise_rotation * 360 / (double) (1 << 16);
AVFrameSideData *rotation = av_frame_new_side_data(&cur->f,
AV_FRAME_DATA_DISPLAYMATRIX,
sizeof(int32_t) * 9);
if (!rotation)
return;
av_display_rotation_set((int32_t *)rotation->data, angle);
av_display_matrix_flip((int32_t *)rotation->data,
h->sei_vflip, h->sei_hflip);
}
// FIXME do something with unavailable reference frames
/* Sort B-frames into display order */
if (h->sps.bitstream_restriction_flag &&
h->avctx->has_b_frames < h->sps.num_reorder_frames) {
h->avctx->has_b_frames = h->sps.num_reorder_frames;
h->low_delay = 0;
}
if (h->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT &&
!h->sps.bitstream_restriction_flag) {
h->avctx->has_b_frames = MAX_DELAYED_PIC_COUNT - 1;
h->low_delay = 0;
}
pics = 0;
while (h->delayed_pic[pics])
pics++;
assert(pics <= MAX_DELAYED_PIC_COUNT);
h->delayed_pic[pics++] = cur;
if (cur->reference == 0)
cur->reference = DELAYED_PIC_REF;
/* Frame reordering. This code takes pictures from coding order and sorts
* them by their incremental POC value into display order. It supports POC
* gaps, MMCO reset codes and random resets.
* A "display group" can start either with a IDR frame (f.key_frame = 1),
* and/or can be closed down with a MMCO reset code. In sequences where
* there is no delay, we can't detect that (since the frame was already
* output to the user), so we also set h->mmco_reset to detect the MMCO
* reset code.
* FIXME: if we detect insufficient delays (as per h->avctx->has_b_frames),
* we increase the delay between input and output. All frames affected by
* the lag (e.g. those that should have been output before another frame
* that we already returned to the user) will be dropped. This is a bug
* that we will fix later. */
for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) {
cnt += out->poc < h->last_pocs[i];
invalid += out->poc == INT_MIN;
}
if (!h->mmco_reset && !cur->f.key_frame &&
cnt + invalid == MAX_DELAYED_PIC_COUNT && cnt > 0) {
h->mmco_reset = 2;
if (pics > 1)
h->delayed_pic[pics - 2]->mmco_reset = 2;
}
if (h->mmco_reset || cur->f.key_frame) {
for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++)
h->last_pocs[i] = INT_MIN;
cnt = 0;
invalid = MAX_DELAYED_PIC_COUNT;
}
out = h->delayed_pic[0];
out_idx = 0;
for (i = 1; i < MAX_DELAYED_PIC_COUNT &&
h->delayed_pic[i] &&
!h->delayed_pic[i - 1]->mmco_reset &&
!h->delayed_pic[i]->f.key_frame;
i++)
if (h->delayed_pic[i]->poc < out->poc) {
out = h->delayed_pic[i];
out_idx = i;
}
if (h->avctx->has_b_frames == 0 &&
(h->delayed_pic[0]->f.key_frame || h->mmco_reset))
h->next_outputed_poc = INT_MIN;
out_of_order = !out->f.key_frame && !h->mmco_reset &&
(out->poc < h->next_outputed_poc);
if (h->sps.bitstream_restriction_flag &&
h->avctx->has_b_frames >= h->sps.num_reorder_frames) {
} else if (out_of_order && pics - 1 == h->avctx->has_b_frames &&
h->avctx->has_b_frames < MAX_DELAYED_PIC_COUNT) {
if (invalid + cnt < MAX_DELAYED_PIC_COUNT) {
h->avctx->has_b_frames = FFMAX(h->avctx->has_b_frames, cnt);
}
h->low_delay = 0;
} else if (h->low_delay &&
((h->next_outputed_poc != INT_MIN &&
out->poc > h->next_outputed_poc + 2) ||
cur->f.pict_type == AV_PICTURE_TYPE_B)) {
h->low_delay = 0;
h->avctx->has_b_frames++;
}
if (pics > h->avctx->has_b_frames) {
out->reference &= ~DELAYED_PIC_REF;
// for frame threading, the owner must be the second field's thread or
// else the first thread can release the picture and reuse it unsafely
for (i = out_idx; h->delayed_pic[i]; i++)
h->delayed_pic[i] = h->delayed_pic[i + 1];
}
memmove(h->last_pocs, &h->last_pocs[1],
sizeof(*h->last_pocs) * (MAX_DELAYED_PIC_COUNT - 1));
h->last_pocs[MAX_DELAYED_PIC_COUNT - 1] = cur->poc;
if (!out_of_order && pics > h->avctx->has_b_frames) {
h->next_output_pic = out;
if (out->mmco_reset) {
if (out_idx > 0) {
h->next_outputed_poc = out->poc;
h->delayed_pic[out_idx - 1]->mmco_reset = out->mmco_reset;
} else {
h->next_outputed_poc = INT_MIN;
}
} else {
if (out_idx == 0 && pics > 1 && h->delayed_pic[0]->f.key_frame) {
h->next_outputed_poc = INT_MIN;
} else {
h->next_outputed_poc = out->poc;
}
}
h->mmco_reset = 0;
} else {
av_log(h->avctx, AV_LOG_DEBUG, "no picture\n");
}
if (h->next_output_pic) {
if (h->next_output_pic->recovered) {
// We have reached an recovery point and all frames after it in
// display order are "recovered".
h->frame_recovered |= FRAME_RECOVERED_SEI;
}
h->next_output_pic->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_SEI);
}
if (setup_finished && !h->avctx->hwaccel)
ff_thread_finish_setup(h->avctx);
}
int ff_pred_weight_table(H264Context *h)
{
int list, i;
int luma_def, chroma_def;
h->use_weight = 0;
h->use_weight_chroma = 0;
h->luma_log2_weight_denom = get_ue_golomb(&h->gb);
if (h->sps.chroma_format_idc)
h->chroma_log2_weight_denom = get_ue_golomb(&h->gb);
luma_def = 1 << h->luma_log2_weight_denom;
chroma_def = 1 << h->chroma_log2_weight_denom;
for (list = 0; list < 2; list++) {
h->luma_weight_flag[list] = 0;
h->chroma_weight_flag[list] = 0;
for (i = 0; i < h->ref_count[list]; i++) {
int luma_weight_flag, chroma_weight_flag;
luma_weight_flag = get_bits1(&h->gb);
if (luma_weight_flag) {
h->luma_weight[i][list][0] = get_se_golomb(&h->gb);
h->luma_weight[i][list][1] = get_se_golomb(&h->gb);
if (h->luma_weight[i][list][0] != luma_def ||
h->luma_weight[i][list][1] != 0) {
h->use_weight = 1;
h->luma_weight_flag[list] = 1;
}
} else {
h->luma_weight[i][list][0] = luma_def;
h->luma_weight[i][list][1] = 0;
}
if (h->sps.chroma_format_idc) {
chroma_weight_flag = get_bits1(&h->gb);
if (chroma_weight_flag) {
int j;
for (j = 0; j < 2; j++) {
h->chroma_weight[i][list][j][0] = get_se_golomb(&h->gb);
h->chroma_weight[i][list][j][1] = get_se_golomb(&h->gb);
if (h->chroma_weight[i][list][j][0] != chroma_def ||
h->chroma_weight[i][list][j][1] != 0) {
h->use_weight_chroma = 1;
h->chroma_weight_flag[list] = 1;
}
}
} else {
int j;
for (j = 0; j < 2; j++) {
h->chroma_weight[i][list][j][0] = chroma_def;
h->chroma_weight[i][list][j][1] = 0;
}
}
}
}
if (h->slice_type_nos != AV_PICTURE_TYPE_B)
break;
}
h->use_weight = h->use_weight || h->use_weight_chroma;
return 0;
}
/**
* instantaneous decoder refresh.
*/
static void idr(H264Context *h)
{
ff_h264_remove_all_refs(h);
h->prev_frame_num =
h->prev_frame_num_offset =
h->prev_poc_msb =
h->prev_poc_lsb = 0;
}
/* forget old pics after a seek */
void ff_h264_flush_change(H264Context *h)
{
int i;
for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++)
h->last_pocs[i] = INT_MIN;
h->outputed_poc = h->next_outputed_poc = INT_MIN;
h->prev_interlaced_frame = 1;
idr(h);
if (h->cur_pic_ptr)
h->cur_pic_ptr->reference = 0;
h->first_field = 0;
memset(h->ref_list[0], 0, sizeof(h->ref_list[0]));
memset(h->ref_list[1], 0, sizeof(h->ref_list[1]));
memset(h->default_ref_list[0], 0, sizeof(h->default_ref_list[0]));
memset(h->default_ref_list[1], 0, sizeof(h->default_ref_list[1]));
ff_h264_reset_sei(h);
h->recovery_frame = -1;
h->frame_recovered = 0;
}
/* forget old pics after a seek */
static void flush_dpb(AVCodecContext *avctx)
{
H264Context *h = avctx->priv_data;
int i;
for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) {
if (h->delayed_pic[i])
h->delayed_pic[i]->reference = 0;
h->delayed_pic[i] = NULL;
}
ff_h264_flush_change(h);
if (h->DPB)
for (i = 0; i < H264_MAX_PICTURE_COUNT; i++)
ff_h264_unref_picture(h, &h->DPB[i]);
h->cur_pic_ptr = NULL;
ff_h264_unref_picture(h, &h->cur_pic);
h->mb_x = h->mb_y = 0;
h->parse_context.state = -1;
h->parse_context.frame_start_found = 0;
h->parse_context.overread = 0;
h->parse_context.overread_index = 0;
h->parse_context.index = 0;
h->parse_context.last_index = 0;
ff_h264_free_tables(h, 1);
h->context_initialized = 0;
}
int ff_init_poc(H264Context *h, int pic_field_poc[2], int *pic_poc)
{
const int max_frame_num = 1 << h->sps.log2_max_frame_num;
int field_poc[2];
h->frame_num_offset = h->prev_frame_num_offset;
if (h->frame_num < h->prev_frame_num)
h->frame_num_offset += max_frame_num;
if (h->sps.poc_type == 0) {
const int max_poc_lsb = 1 << h->sps.log2_max_poc_lsb;
if (h->poc_lsb < h->prev_poc_lsb &&
h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb / 2)
h->poc_msb = h->prev_poc_msb + max_poc_lsb;
else if (h->poc_lsb > h->prev_poc_lsb &&
h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb / 2)
h->poc_msb = h->prev_poc_msb - max_poc_lsb;
else
h->poc_msb = h->prev_poc_msb;
field_poc[0] =
field_poc[1] = h->poc_msb + h->poc_lsb;
if (h->picture_structure == PICT_FRAME)
field_poc[1] += h->delta_poc_bottom;
} else if (h->sps.poc_type == 1) {
int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
int i;
if (h->sps.poc_cycle_length != 0)
abs_frame_num = h->frame_num_offset + h->frame_num;
else
abs_frame_num = 0;
if (h->nal_ref_idc == 0 && abs_frame_num > 0)
abs_frame_num--;
expected_delta_per_poc_cycle = 0;
for (i = 0; i < h->sps.poc_cycle_length; i++)
// FIXME integrate during sps parse
expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[i];
if (abs_frame_num > 0) {
int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
for (i = 0; i <= frame_num_in_poc_cycle; i++)
expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[i];
} else
expectedpoc = 0;
if (h->nal_ref_idc == 0)
expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
field_poc[0] = expectedpoc + h->delta_poc[0];
field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
if (h->picture_structure == PICT_FRAME)
field_poc[1] += h->delta_poc[1];
} else {
int poc = 2 * (h->frame_num_offset + h->frame_num);
if (!h->nal_ref_idc)
poc--;
field_poc[0] = poc;
field_poc[1] = poc;
}
if (h->picture_structure != PICT_BOTTOM_FIELD)
pic_field_poc[0] = field_poc[0];
if (h->picture_structure != PICT_TOP_FIELD)
pic_field_poc[1] = field_poc[1];
*pic_poc = FFMIN(pic_field_poc[0], pic_field_poc[1]);
return 0;
}
/**
* Compute profile from profile_idc and constraint_set?_flags.
*
* @param sps SPS
*
* @return profile as defined by FF_PROFILE_H264_*
*/
int ff_h264_get_profile(SPS *sps)
{
int profile = sps->profile_idc;
switch (sps->profile_idc) {
case FF_PROFILE_H264_BASELINE:
// constraint_set1_flag set to 1
profile |= (sps->constraint_set_flags & 1 << 1) ? FF_PROFILE_H264_CONSTRAINED : 0;
break;
case FF_PROFILE_H264_HIGH_10:
case FF_PROFILE_H264_HIGH_422:
case FF_PROFILE_H264_HIGH_444_PREDICTIVE:
// constraint_set3_flag set to 1
profile |= (sps->constraint_set_flags & 1 << 3) ? FF_PROFILE_H264_INTRA : 0;
break;
}
return profile;
}
int ff_h264_set_parameter_from_sps(H264Context *h)
{
if (h->flags & CODEC_FLAG_LOW_DELAY ||
(h->sps.bitstream_restriction_flag &&
!h->sps.num_reorder_frames)) {
if (h->avctx->has_b_frames > 1 || h->delayed_pic[0])
av_log(h->avctx, AV_LOG_WARNING, "Delayed frames seen. "
"Reenabling low delay requires a codec flush.\n");
else
h->low_delay = 1;
}
if (h->avctx->has_b_frames < 2)
h->avctx->has_b_frames = !h->low_delay;
if (h->avctx->bits_per_raw_sample != h->sps.bit_depth_luma ||
h->cur_chroma_format_idc != h->sps.chroma_format_idc) {
if (h->sps.bit_depth_luma >= 8 && h->sps.bit_depth_luma <= 10) {
h->avctx->bits_per_raw_sample = h->sps.bit_depth_luma;
h->cur_chroma_format_idc = h->sps.chroma_format_idc;
h->pixel_shift = h->sps.bit_depth_luma > 8;
ff_h264dsp_init(&h->h264dsp, h->sps.bit_depth_luma,
h->sps.chroma_format_idc);
ff_h264chroma_init(&h->h264chroma, h->sps.bit_depth_chroma);
ff_h264qpel_init(&h->h264qpel, h->sps.bit_depth_luma);
ff_h264_pred_init(&h->hpc, h->avctx->codec_id, h->sps.bit_depth_luma,
h->sps.chroma_format_idc);
if (CONFIG_ERROR_RESILIENCE)
ff_me_cmp_init(&h->mecc, h->avctx);
ff_videodsp_init(&h->vdsp, h->sps.bit_depth_luma);
} else {
av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth %d\n",
h->sps.bit_depth_luma);
return AVERROR_INVALIDDATA;
}
}
return 0;
}
int ff_set_ref_count(H264Context *h)
{
int ref_count[2], list_count;
int num_ref_idx_active_override_flag, max_refs;
// set defaults, might be overridden a few lines later
ref_count[0] = h->pps.ref_count[0];
ref_count[1] = h->pps.ref_count[1];
if (h->slice_type_nos != AV_PICTURE_TYPE_I) {
if (h->slice_type_nos == AV_PICTURE_TYPE_B)
h->direct_spatial_mv_pred = get_bits1(&h->gb);
num_ref_idx_active_override_flag = get_bits1(&h->gb);
if (num_ref_idx_active_override_flag) {
ref_count[0] = get_ue_golomb(&h->gb) + 1;
if (ref_count[0] < 1)
return AVERROR_INVALIDDATA;
if (h->slice_type_nos == AV_PICTURE_TYPE_B) {
ref_count[1] = get_ue_golomb(&h->gb) + 1;
if (ref_count[1] < 1)
return AVERROR_INVALIDDATA;
}
}
if (h->slice_type_nos == AV_PICTURE_TYPE_B)
list_count = 2;
else
list_count = 1;
} else {
list_count = 0;
ref_count[0] = ref_count[1] = 0;
}
max_refs = h->picture_structure == PICT_FRAME ? 16 : 32;
if (ref_count[0] > max_refs || ref_count[1] > max_refs) {
av_log(h->avctx, AV_LOG_ERROR, "reference overflow\n");
h->ref_count[0] = h->ref_count[1] = 0;
return AVERROR_INVALIDDATA;
}
if (list_count != h->list_count ||
ref_count[0] != h->ref_count[0] ||
ref_count[1] != h->ref_count[1]) {
h->ref_count[0] = ref_count[0];
h->ref_count[1] = ref_count[1];
h->list_count = list_count;
return 1;
}
return 0;
}
static int find_start_code(const uint8_t *buf, int buf_size,
int buf_index, int next_avc)
{
// start code prefix search
for (; buf_index + 3 < next_avc; buf_index++)
// This should always succeed in the first iteration.
if (buf[buf_index] == 0 &&
buf[buf_index + 1] == 0 &&
buf[buf_index + 2] == 1)
break;
if (buf_index + 3 >= buf_size)
return buf_size;
return buf_index + 3;
}
static int get_avc_nalsize(H264Context *h, const uint8_t *buf,
int buf_size, int *buf_index)
{
int i, nalsize = 0;
if (*buf_index >= buf_size - h->nal_length_size)
return -1;
for (i = 0; i < h->nal_length_size; i++)
nalsize = (nalsize << 8) | buf[(*buf_index)++];
if (nalsize <= 0 || nalsize > buf_size - *buf_index) {
av_log(h->avctx, AV_LOG_ERROR,
"AVC: nal size %d\n", nalsize);
return -1;
}
return nalsize;
}
static int get_bit_length(H264Context *h, const uint8_t *buf,
const uint8_t *ptr, int dst_length,
int i, int next_avc)
{
if ((h->workaround_bugs & FF_BUG_AUTODETECT) && i + 3 < next_avc &&
buf[i] == 0x00 && buf[i + 1] == 0x00 &&
buf[i + 2] == 0x01 && buf[i + 3] == 0xE0)
h->workaround_bugs |= FF_BUG_TRUNCATED;
if (!(h->workaround_bugs & FF_BUG_TRUNCATED))
while (dst_length > 0 && ptr[dst_length - 1] == 0)
dst_length--;
if (!dst_length)
return 0;
return 8 * dst_length - decode_rbsp_trailing(h, ptr + dst_length - 1);
}
static int get_last_needed_nal(H264Context *h, const uint8_t *buf, int buf_size)
{
int next_avc = h->is_avc ? 0 : buf_size;
int nal_index = 0;
int buf_index = 0;
int nals_needed = 0;
while(1) {
int nalsize = 0;
int dst_length, bit_length, consumed;
const uint8_t *ptr;
if (buf_index >= next_avc) {
nalsize = get_avc_nalsize(h, buf, buf_size, &buf_index);
if (nalsize < 0)
break;
next_avc = buf_index + nalsize;
} else {
buf_index = find_start_code(buf, buf_size, buf_index, next_avc);
if (buf_index >= buf_size)
break;
}
ptr = ff_h264_decode_nal(h, buf + buf_index, &dst_length, &consumed,
next_avc - buf_index);
if (!ptr || dst_length < 0)
return AVERROR_INVALIDDATA;
buf_index += consumed;
bit_length = get_bit_length(h, buf, ptr, dst_length,
buf_index, next_avc);
nal_index++;
/* packets can sometimes contain multiple PPS/SPS,
* e.g. two PAFF field pictures in one packet, or a demuxer
* which splits NALs strangely if so, when frame threading we
* can't start the next thread until we've read all of them */
switch (h->nal_unit_type) {
case NAL_SPS:
case NAL_PPS:
nals_needed = nal_index;
break;
case NAL_DPA:
case NAL_IDR_SLICE:
case NAL_SLICE:
init_get_bits(&h->gb, ptr, bit_length);
if (!get_ue_golomb(&h->gb))
nals_needed = nal_index;
}
}
return nals_needed;
}
static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size,
int parse_extradata)
{
AVCodecContext *const avctx = h->avctx;
H264Context *hx; ///< thread context
int buf_index;
unsigned context_count;
int next_avc;
int nals_needed = 0; ///< number of NALs that need decoding before the next frame thread starts
int nal_index;
int ret = 0;
h->max_contexts = h->slice_context_count;
if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS)) {
h->current_slice = 0;
if (!h->first_field)
h->cur_pic_ptr = NULL;
ff_h264_reset_sei(h);
}
if (avctx->active_thread_type & FF_THREAD_FRAME)
nals_needed = get_last_needed_nal(h, buf, buf_size);
{
buf_index = 0;
context_count = 0;
next_avc = h->is_avc ? 0 : buf_size;
nal_index = 0;
for (;;) {
int consumed;
int dst_length;
int bit_length;
const uint8_t *ptr;
int nalsize = 0;
int err;
if (buf_index >= next_avc) {
nalsize = get_avc_nalsize(h, buf, buf_size, &buf_index);
if (nalsize < 0)
break;
next_avc = buf_index + nalsize;
} else {
buf_index = find_start_code(buf, buf_size, buf_index, next_avc);
if (buf_index >= buf_size)
break;
}
hx = h->thread_context[context_count];
ptr = ff_h264_decode_nal(hx, buf + buf_index, &dst_length,
&consumed, next_avc - buf_index);
if (!ptr || dst_length < 0) {
ret = -1;
goto end;
}
bit_length = get_bit_length(h, buf, ptr, dst_length,
buf_index + consumed, next_avc);
if (h->avctx->debug & FF_DEBUG_STARTCODE)
av_log(h->avctx, AV_LOG_DEBUG,
"NAL %d at %d/%d length %d\n",
hx->nal_unit_type, buf_index, buf_size, dst_length);
if (h->is_avc && (nalsize != consumed) && nalsize)
av_log(h->avctx, AV_LOG_DEBUG,
"AVC: Consumed only %d bytes instead of %d\n",
consumed, nalsize);
buf_index += consumed;
nal_index++;
if (avctx->skip_frame >= AVDISCARD_NONREF &&
h->nal_ref_idc == 0 &&
h->nal_unit_type != NAL_SEI)
continue;
again:
/* Ignore every NAL unit type except PPS and SPS during extradata
* parsing. Decoding slices is not possible in codec init
* with frame-mt */
if (parse_extradata && HAVE_THREADS &&
(h->avctx->active_thread_type & FF_THREAD_FRAME) &&
(hx->nal_unit_type != NAL_PPS &&
hx->nal_unit_type != NAL_SPS)) {
if (hx->nal_unit_type < NAL_AUD ||
hx->nal_unit_type > NAL_AUXILIARY_SLICE)
av_log(avctx, AV_LOG_INFO,
"Ignoring NAL unit %d during extradata parsing\n",
hx->nal_unit_type);
hx->nal_unit_type = NAL_FF_IGNORE;
}
err = 0;
switch (hx->nal_unit_type) {
case NAL_IDR_SLICE:
if (h->nal_unit_type != NAL_IDR_SLICE) {
av_log(h->avctx, AV_LOG_ERROR,
"Invalid mix of idr and non-idr slices\n");
ret = -1;
goto end;
}
idr(h); // FIXME ensure we don't lose some frames if there is reordering
case NAL_SLICE:
init_get_bits(&hx->gb, ptr, bit_length);
hx->intra_gb_ptr =
hx->inter_gb_ptr = &hx->gb;
hx->data_partitioning = 0;
if ((err = ff_h264_decode_slice_header(hx, h)))
break;
if (h->sei_recovery_frame_cnt >= 0 && h->recovery_frame < 0) {
h->recovery_frame = (h->frame_num + h->sei_recovery_frame_cnt) &
((1 << h->sps.log2_max_frame_num) - 1);
}
h->cur_pic_ptr->f.key_frame |=
(hx->nal_unit_type == NAL_IDR_SLICE) ||
(h->sei_recovery_frame_cnt >= 0);
if (hx->nal_unit_type == NAL_IDR_SLICE ||
h->recovery_frame == h->frame_num) {
h->recovery_frame = -1;
h->cur_pic_ptr->recovered = 1;
}
// If we have an IDR, all frames after it in decoded order are
// "recovered".
if (hx->nal_unit_type == NAL_IDR_SLICE)
h->frame_recovered |= FRAME_RECOVERED_IDR;
h->cur_pic_ptr->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_IDR);
if (h->current_slice == 1) {
if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS))
decode_postinit(h, nal_index >= nals_needed);
if (h->avctx->hwaccel &&
(ret = h->avctx->hwaccel->start_frame(h->avctx, NULL, 0)) < 0)
return ret;
}
if (hx->redundant_pic_count == 0 &&
(avctx->skip_frame < AVDISCARD_NONREF ||
hx->nal_ref_idc) &&
(avctx->skip_frame < AVDISCARD_BIDIR ||
hx->slice_type_nos != AV_PICTURE_TYPE_B) &&
(avctx->skip_frame < AVDISCARD_NONKEY ||
hx->slice_type_nos == AV_PICTURE_TYPE_I) &&
avctx->skip_frame < AVDISCARD_ALL) {
if (avctx->hwaccel) {
ret = avctx->hwaccel->decode_slice(avctx,
&buf[buf_index - consumed],
consumed);
if (ret < 0)
return ret;
} else
context_count++;
}
break;
case NAL_DPA:
if (h->avctx->flags & CODEC_FLAG2_CHUNKS) {
av_log(h->avctx, AV_LOG_ERROR,
"Decoding in chunks is not supported for "
"partitioned slices.\n");
return AVERROR(ENOSYS);
}
init_get_bits(&hx->gb, ptr, bit_length);
hx->intra_gb_ptr =
hx->inter_gb_ptr = NULL;
if ((err = ff_h264_decode_slice_header(hx, h)) < 0) {
/* make sure data_partitioning is cleared if it was set
* before, so we don't try decoding a slice without a valid
* slice header later */
h->data_partitioning = 0;
break;
}
hx->data_partitioning = 1;
break;
case NAL_DPB:
init_get_bits(&hx->intra_gb, ptr, bit_length);
hx->intra_gb_ptr = &hx->intra_gb;
break;
case NAL_DPC:
init_get_bits(&hx->inter_gb, ptr, bit_length);
hx->inter_gb_ptr = &hx->inter_gb;
if (hx->redundant_pic_count == 0 &&
hx->intra_gb_ptr &&
hx->data_partitioning &&
h->cur_pic_ptr && h->context_initialized &&
(avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc) &&
(avctx->skip_frame < AVDISCARD_BIDIR ||
hx->slice_type_nos != AV_PICTURE_TYPE_B) &&
(avctx->skip_frame < AVDISCARD_NONKEY ||
hx->slice_type_nos == AV_PICTURE_TYPE_I) &&
avctx->skip_frame < AVDISCARD_ALL)
context_count++;
break;
case NAL_SEI:
init_get_bits(&h->gb, ptr, bit_length);
ret = ff_h264_decode_sei(h);
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
goto end;
break;
case NAL_SPS:
init_get_bits(&h->gb, ptr, bit_length);
ret = ff_h264_decode_seq_parameter_set(h);
if (ret < 0 && h->is_avc && (nalsize != consumed) && nalsize) {
av_log(h->avctx, AV_LOG_DEBUG,
"SPS decoding failure, trying again with the complete NAL\n");
init_get_bits(&h->gb, buf + buf_index + 1 - consumed,
8 * (nalsize - 1));
ff_h264_decode_seq_parameter_set(h);
}
ret = ff_h264_set_parameter_from_sps(h);
if (ret < 0)
goto end;
break;
case NAL_PPS:
init_get_bits(&h->gb, ptr, bit_length);
ret = ff_h264_decode_picture_parameter_set(h, bit_length);
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
goto end;
break;
case NAL_AUD:
case NAL_END_SEQUENCE:
case NAL_END_STREAM:
case NAL_FILLER_DATA:
case NAL_SPS_EXT:
case NAL_AUXILIARY_SLICE:
break;
case NAL_FF_IGNORE:
break;
default:
av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n",
hx->nal_unit_type, bit_length);
}
if (context_count == h->max_contexts) {
ret = ff_h264_execute_decode_slices(h, context_count);
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
goto end;
context_count = 0;
}
if (err < 0) {
av_log(h->avctx, AV_LOG_ERROR, "decode_slice_header error\n");
h->ref_count[0] = h->ref_count[1] = h->list_count = 0;
} else if (err == 1) {
/* Slice could not be decoded in parallel mode, copy down
* NAL unit stuff to context 0 and restart. Note that
* rbsp_buffer is not transferred, but since we no longer
* run in parallel mode this should not be an issue. */
h->nal_unit_type = hx->nal_unit_type;
h->nal_ref_idc = hx->nal_ref_idc;
hx = h;
goto again;
}
}
}
if (context_count) {
ret = ff_h264_execute_decode_slices(h, context_count);
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
goto end;
}
end:
/* clean up */
if (h->cur_pic_ptr && !h->droppable) {
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
h->picture_structure == PICT_BOTTOM_FIELD);
}
return (ret < 0) ? ret : buf_index;
}
/**
* Return the number of bytes consumed for building the current frame.
*/
static int get_consumed_bytes(int pos, int buf_size)
{
if (pos == 0)
pos = 1; // avoid infinite loops (I doubt that is needed but...)
if (pos + 10 > buf_size)
pos = buf_size; // oops ;)
return pos;
}
static int output_frame(H264Context *h, AVFrame *dst, AVFrame *src)
{
int i;
int ret = av_frame_ref(dst, src);
if (ret < 0)
return ret;
if (!h->sps.crop)
return 0;
for (i = 0; i < 3; i++) {
int hshift = (i > 0) ? h->chroma_x_shift : 0;
int vshift = (i > 0) ? h->chroma_y_shift : 0;
int off = ((h->sps.crop_left >> hshift) << h->pixel_shift) +
(h->sps.crop_top >> vshift) * dst->linesize[i];
dst->data[i] += off;
}
return 0;
}
static int h264_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
H264Context *h = avctx->priv_data;
AVFrame *pict = data;
int buf_index = 0;
int ret;
h->flags = avctx->flags;
/* reset data partitioning here, to ensure GetBitContexts from previous
* packets do not get used. */
h->data_partitioning = 0;
/* end of stream, output what is still in the buffers */
out:
if (buf_size == 0) {
H264Picture *out;
int i, out_idx;
h->cur_pic_ptr = NULL;
// FIXME factorize this with the output code below
out = h->delayed_pic[0];
out_idx = 0;
for (i = 1;
h->delayed_pic[i] &&
!h->delayed_pic[i]->f.key_frame &&
!h->delayed_pic[i]->mmco_reset;
i++)
if (h->delayed_pic[i]->poc < out->poc) {
out = h->delayed_pic[i];
out_idx = i;
}
for (i = out_idx; h->delayed_pic[i]; i++)
h->delayed_pic[i] = h->delayed_pic[i + 1];
if (out) {
ret = output_frame(h, pict, &out->f);
if (ret < 0)
return ret;
*got_frame = 1;
}
return buf_index;
}
buf_index = decode_nal_units(h, buf, buf_size, 0);
if (buf_index < 0)
return AVERROR_INVALIDDATA;
if (!h->cur_pic_ptr && h->nal_unit_type == NAL_END_SEQUENCE) {
buf_size = 0;
goto out;
}
if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS) && !h->cur_pic_ptr) {
if (avctx->skip_frame >= AVDISCARD_NONREF)
return 0;
av_log(avctx, AV_LOG_ERROR, "no frame!\n");
return AVERROR_INVALIDDATA;
}
if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS) ||
(h->mb_y >= h->mb_height && h->mb_height)) {
if (avctx->flags2 & CODEC_FLAG2_CHUNKS)
decode_postinit(h, 1);
ff_h264_field_end(h, 0);
*got_frame = 0;
if (h->next_output_pic && ((avctx->flags & CODEC_FLAG_OUTPUT_CORRUPT) ||
h->next_output_pic->recovered)) {
if (!h->next_output_pic->recovered)
h->next_output_pic->f.flags |= AV_FRAME_FLAG_CORRUPT;
ret = output_frame(h, pict, &h->next_output_pic->f);
if (ret < 0)
return ret;
*got_frame = 1;
}
}
assert(pict->buf[0] || !*got_frame);
return get_consumed_bytes(buf_index, buf_size);
}
av_cold void ff_h264_free_context(H264Context *h)
{
int i;
ff_h264_free_tables(h, 1); // FIXME cleanup init stuff perhaps
for (i = 0; i < MAX_SPS_COUNT; i++)
av_freep(h->sps_buffers + i);
for (i = 0; i < MAX_PPS_COUNT; i++)
av_freep(h->pps_buffers + i);
}
static av_cold int h264_decode_end(AVCodecContext *avctx)
{
H264Context *h = avctx->priv_data;
ff_h264_free_context(h);
ff_h264_unref_picture(h, &h->cur_pic);
return 0;
}
static const AVProfile profiles[] = {
{ FF_PROFILE_H264_BASELINE, "Baseline" },
{ FF_PROFILE_H264_CONSTRAINED_BASELINE, "Constrained Baseline" },
{ FF_PROFILE_H264_MAIN, "Main" },
{ FF_PROFILE_H264_EXTENDED, "Extended" },
{ FF_PROFILE_H264_HIGH, "High" },
{ FF_PROFILE_H264_HIGH_10, "High 10" },
{ FF_PROFILE_H264_HIGH_10_INTRA, "High 10 Intra" },
{ FF_PROFILE_H264_HIGH_422, "High 4:2:2" },
{ FF_PROFILE_H264_HIGH_422_INTRA, "High 4:2:2 Intra" },
{ FF_PROFILE_H264_HIGH_444, "High 4:4:4" },
{ FF_PROFILE_H264_HIGH_444_PREDICTIVE, "High 4:4:4 Predictive" },
{ FF_PROFILE_H264_HIGH_444_INTRA, "High 4:4:4 Intra" },
{ FF_PROFILE_H264_CAVLC_444, "CAVLC 4:4:4" },
{ FF_PROFILE_UNKNOWN },
};
AVCodec ff_h264_decoder = {
.name = "h264",
.long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_H264,
.priv_data_size = sizeof(H264Context),
.init = ff_h264_decode_init,
.close = h264_decode_end,
.decode = h264_decode_frame,
.capabilities = /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 |
CODEC_CAP_DELAY | CODEC_CAP_SLICE_THREADS |
CODEC_CAP_FRAME_THREADS,
.flush = flush_dpb,
.init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
.update_thread_context = ONLY_IF_THREADS_ENABLED(ff_h264_update_thread_context),
.profiles = NULL_IF_CONFIG_SMALL(profiles),
};