1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00
FFmpeg/libavcodec/aacps.c
Alex Converse fd6eb4a06c Move Parametric Stereo related ps* files to aacps*.
Originally committed as revision 23720 to svn://svn.ffmpeg.org/ffmpeg/trunk
2010-06-22 19:29:03 +00:00

1038 lines
38 KiB
C

/*
* MPEG-4 Parametric Stereo decoding functions
* Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdint.h>
#include "libavutil/common.h"
#include "libavutil/mathematics.h"
#include "avcodec.h"
#include "get_bits.h"
#include "aacps.h"
#include "aacps_tablegen.h"
#include "aacpsdata.c"
#define PS_BASELINE 0 //< Operate in Baseline PS mode
//< Baseline implies 10 or 20 stereo bands,
//< mixing mode A, and no ipd/opd
#define numQMFSlots 32 //numTimeSlots * RATE
static const int8_t num_env_tab[2][4] = {
{ 0, 1, 2, 4, },
{ 1, 2, 3, 4, },
};
static const int8_t nr_iidicc_par_tab[] = {
10, 20, 34, 10, 20, 34,
};
static const int8_t nr_iidopd_par_tab[] = {
5, 11, 17, 5, 11, 17,
};
enum {
huff_iid_df1,
huff_iid_dt1,
huff_iid_df0,
huff_iid_dt0,
huff_icc_df,
huff_icc_dt,
huff_ipd_df,
huff_ipd_dt,
huff_opd_df,
huff_opd_dt,
};
static const int huff_iid[] = {
huff_iid_df0,
huff_iid_df1,
huff_iid_dt0,
huff_iid_dt1,
};
static VLC vlc_ps[10];
/**
* Read Inter-channel Intensity Difference/Inter-Channel Coherence/
* Inter-channel Phase Difference/Overall Phase Difference parameters from the
* bitstream.
*
* @param avctx contains the current codec context
* @param gb pointer to the input bitstream
* @param ps pointer to the Parametric Stereo context
* @param par pointer to the parameter to be read
* @param e envelope to decode
* @param dt 1: time delta-coded, 0: frequency delta-coded
*/
#define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \
static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \
int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \
{ \
int b, num = ps->nr_ ## PAR ## _par; \
VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \
if (dt) { \
int e_prev = e ? e - 1 : ps->num_env_old - 1; \
e_prev = FFMAX(e_prev, 0); \
for (b = 0; b < num; b++) { \
int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
if (MASK) val &= MASK; \
PAR[e][b] = val; \
if (ERR_CONDITION) \
goto err; \
} \
} else { \
int val = 0; \
for (b = 0; b < num; b++) { \
val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
if (MASK) val &= MASK; \
PAR[e][b] = val; \
if (ERR_CONDITION) \
goto err; \
} \
} \
return 0; \
err: \
av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \
return -1; \
}
READ_PAR_DATA(iid, huff_offset[table_idx], 0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
READ_PAR_DATA(icc, huff_offset[table_idx], 0, ps->icc_par[e][b] > 7U)
READ_PAR_DATA(ipdopd, 0, 0x07, 0)
static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id)
{
int e;
int count = get_bits_count(gb);
if (ps_extension_id)
return 0;
ps->enable_ipdopd = get_bits1(gb);
if (ps->enable_ipdopd) {
for (e = 0; e < ps->num_env; e++) {
int dt = get_bits1(gb);
read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt);
dt = get_bits1(gb);
read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt);
}
}
skip_bits1(gb); //reserved_ps
return get_bits_count(gb) - count;
}
static void ipdopd_reset(int8_t *opd_hist, int8_t *ipd_hist)
{
int i;
for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
opd_hist[i] = 0;
ipd_hist[i] = 0;
}
}
int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
{
int e;
int bit_count_start = get_bits_count(gb_host);
int header;
int bits_consumed;
GetBitContext gbc = *gb_host, *gb = &gbc;
header = get_bits1(gb);
if (header) { //enable_ps_header
ps->enable_iid = get_bits1(gb);
if (ps->enable_iid) {
int iid_mode = get_bits(gb, 3);
if (iid_mode > 5) {
av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n",
iid_mode);
goto err;
}
ps->nr_iid_par = nr_iidicc_par_tab[iid_mode];
ps->iid_quant = iid_mode > 2;
ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode];
}
ps->enable_icc = get_bits1(gb);
if (ps->enable_icc) {
ps->icc_mode = get_bits(gb, 3);
if (ps->icc_mode > 5) {
av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n",
ps->icc_mode);
goto err;
}
ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode];
}
ps->enable_ext = get_bits1(gb);
}
ps->frame_class = get_bits1(gb);
ps->num_env_old = ps->num_env;
ps->num_env = num_env_tab[ps->frame_class][get_bits(gb, 2)];
ps->border_position[0] = -1;
if (ps->frame_class) {
for (e = 1; e <= ps->num_env; e++)
ps->border_position[e] = get_bits(gb, 5);
} else
for (e = 1; e <= ps->num_env; e++)
ps->border_position[e] = (e * numQMFSlots >> ff_log2_tab[ps->num_env]) - 1;
if (ps->enable_iid) {
for (e = 0; e < ps->num_env; e++) {
int dt = get_bits1(gb);
if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt))
goto err;
}
} else
memset(ps->iid_par, 0, sizeof(ps->iid_par));
if (ps->enable_icc)
for (e = 0; e < ps->num_env; e++) {
int dt = get_bits1(gb);
if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt))
goto err;
}
else
memset(ps->icc_par, 0, sizeof(ps->icc_par));
if (ps->enable_ext) {
int cnt = get_bits(gb, 4);
if (cnt == 15) {
cnt += get_bits(gb, 8);
}
cnt *= 8;
while (cnt > 7) {
int ps_extension_id = get_bits(gb, 2);
cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id);
}
if (cnt < 0) {
av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d", cnt);
goto err;
}
skip_bits(gb, cnt);
}
ps->enable_ipdopd &= !PS_BASELINE;
//Fix up envelopes
if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) {
//Create a fake envelope
int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1;
if (source >= 0 && source != ps->num_env) {
if (ps->enable_iid) {
memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0]));
}
if (ps->enable_icc) {
memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0]));
}
if (ps->enable_ipdopd) {
memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0]));
memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0]));
}
}
ps->num_env++;
ps->border_position[ps->num_env] = numQMFSlots - 1;
}
ps->is34bands_old = ps->is34bands;
if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc))
ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) ||
(ps->enable_icc && ps->nr_icc_par == 34);
//Baseline
if (!ps->enable_ipdopd) {
memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
memset(ps->opd_par, 0, sizeof(ps->opd_par));
}
if (header)
ps->start = 1;
bits_consumed = get_bits_count(gb) - bit_count_start;
if (bits_consumed <= bits_left) {
skip_bits_long(gb_host, bits_consumed);
return bits_consumed;
}
av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed);
err:
ps->start = 0;
skip_bits_long(gb_host, bits_left);
return bits_left;
}
/** Split one subband into 2 subsubbands with a symmetric real filter.
* The filter must have its non-center even coefficients equal to zero. */
static void hybrid2_re(float (*in)[2], float (*out)[32][2], const float filter[7], int len, int reverse)
{
int i, j;
for (i = 0; i < len; i++, in++) {
float re_in = filter[6] * in[6][0]; //real inphase
float re_op = 0.0f; //real out of phase
float im_in = filter[6] * in[6][1]; //imag inphase
float im_op = 0.0f; //imag out of phase
for (j = 0; j < 6; j += 2) {
re_op += filter[j+1] * (in[j+1][0] + in[12-j-1][0]);
im_op += filter[j+1] * (in[j+1][1] + in[12-j-1][1]);
}
out[ reverse][i][0] = re_in + re_op;
out[ reverse][i][1] = im_in + im_op;
out[!reverse][i][0] = re_in - re_op;
out[!reverse][i][1] = im_in - im_op;
}
}
/** Split one subband into 6 subsubbands with a complex filter */
static void hybrid6_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int len)
{
int i, j, ssb;
int N = 8;
float temp[8][2];
for (i = 0; i < len; i++, in++) {
for (ssb = 0; ssb < N; ssb++) {
float sum_re = filter[ssb][6][0] * in[6][0], sum_im = filter[ssb][6][0] * in[6][1];
for (j = 0; j < 6; j++) {
float in0_re = in[j][0];
float in0_im = in[j][1];
float in1_re = in[12-j][0];
float in1_im = in[12-j][1];
sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im);
sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re);
}
temp[ssb][0] = sum_re;
temp[ssb][1] = sum_im;
}
out[0][i][0] = temp[6][0];
out[0][i][1] = temp[6][1];
out[1][i][0] = temp[7][0];
out[1][i][1] = temp[7][1];
out[2][i][0] = temp[0][0];
out[2][i][1] = temp[0][1];
out[3][i][0] = temp[1][0];
out[3][i][1] = temp[1][1];
out[4][i][0] = temp[2][0] + temp[5][0];
out[4][i][1] = temp[2][1] + temp[5][1];
out[5][i][0] = temp[3][0] + temp[4][0];
out[5][i][1] = temp[3][1] + temp[4][1];
}
}
static void hybrid4_8_12_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int N, int len)
{
int i, j, ssb;
for (i = 0; i < len; i++, in++) {
for (ssb = 0; ssb < N; ssb++) {
float sum_re = filter[ssb][6][0] * in[6][0], sum_im = filter[ssb][6][0] * in[6][1];
for (j = 0; j < 6; j++) {
float in0_re = in[j][0];
float in0_im = in[j][1];
float in1_re = in[12-j][0];
float in1_im = in[12-j][1];
sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im);
sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re);
}
out[ssb][i][0] = sum_re;
out[ssb][i][1] = sum_im;
}
}
}
static void hybrid_analysis(float out[91][32][2], float in[5][44][2], float L[2][38][64], int is34, int len)
{
int i, j;
for (i = 0; i < 5; i++) {
for (j = 0; j < 38; j++) {
in[i][j+6][0] = L[0][j][i];
in[i][j+6][1] = L[1][j][i];
}
}
if (is34) {
hybrid4_8_12_cx(in[0], out, f34_0_12, 12, len);
hybrid4_8_12_cx(in[1], out+12, f34_1_8, 8, len);
hybrid4_8_12_cx(in[2], out+20, f34_2_4, 4, len);
hybrid4_8_12_cx(in[3], out+24, f34_2_4, 4, len);
hybrid4_8_12_cx(in[4], out+28, f34_2_4, 4, len);
for (i = 0; i < 59; i++) {
for (j = 0; j < len; j++) {
out[i+32][j][0] = L[0][j][i+5];
out[i+32][j][1] = L[1][j][i+5];
}
}
} else {
hybrid6_cx(in[0], out, f20_0_8, len);
hybrid2_re(in[1], out+6, g1_Q2, len, 1);
hybrid2_re(in[2], out+8, g1_Q2, len, 0);
for (i = 0; i < 61; i++) {
for (j = 0; j < len; j++) {
out[i+10][j][0] = L[0][j][i+3];
out[i+10][j][1] = L[1][j][i+3];
}
}
}
//update in_buf
for (i = 0; i < 5; i++) {
memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
}
}
static void hybrid_synthesis(float out[2][38][64], float in[91][32][2], int is34, int len)
{
int i, n;
if (is34) {
for (n = 0; n < len; n++) {
memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
for (i = 0; i < 12; i++) {
out[0][n][0] += in[ i][n][0];
out[1][n][0] += in[ i][n][1];
}
for (i = 0; i < 8; i++) {
out[0][n][1] += in[12+i][n][0];
out[1][n][1] += in[12+i][n][1];
}
for (i = 0; i < 4; i++) {
out[0][n][2] += in[20+i][n][0];
out[1][n][2] += in[20+i][n][1];
out[0][n][3] += in[24+i][n][0];
out[1][n][3] += in[24+i][n][1];
out[0][n][4] += in[28+i][n][0];
out[1][n][4] += in[28+i][n][1];
}
}
for (i = 0; i < 59; i++) {
for (n = 0; n < len; n++) {
out[0][n][i+5] = in[i+32][n][0];
out[1][n][i+5] = in[i+32][n][1];
}
}
} else {
for (n = 0; n < len; n++) {
out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] +
in[3][n][0] + in[4][n][0] + in[5][n][0];
out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] +
in[3][n][1] + in[4][n][1] + in[5][n][1];
out[0][n][1] = in[6][n][0] + in[7][n][0];
out[1][n][1] = in[6][n][1] + in[7][n][1];
out[0][n][2] = in[8][n][0] + in[9][n][0];
out[1][n][2] = in[8][n][1] + in[9][n][1];
}
for (i = 0; i < 61; i++) {
for (n = 0; n < len; n++) {
out[0][n][i+3] = in[i+10][n][0];
out[1][n][i+3] = in[i+10][n][1];
}
}
}
}
/// All-pass filter decay slope
#define DECAY_SLOPE 0.05f
/// Number of frequency bands that can be addressed by the parameter index, b(k)
static const int NR_PAR_BANDS[] = { 20, 34 };
/// Number of frequency bands that can be addressed by the sub subband index, k
static const int NR_BANDS[] = { 71, 91 };
/// Start frequency band for the all-pass filter decay slope
static const int DECAY_CUTOFF[] = { 10, 32 };
/// Number of all-pass filer bands
static const int NR_ALLPASS_BANDS[] = { 30, 50 };
/// First stereo band using the short one sample delay
static const int SHORT_DELAY_BAND[] = { 42, 62 };
/** Table 8.46 */
static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
{
int b;
if (full)
b = 9;
else {
b = 4;
par_mapped[10] = 0;
}
for (; b >= 0; b--) {
par_mapped[2*b+1] = par_mapped[2*b] = par[b];
}
}
static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
{
par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3;
par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3;
par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3;
par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3;
par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2;
par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2;
par_mapped[ 6] = par[10];
par_mapped[ 7] = par[11];
par_mapped[ 8] = ( par[12] + par[13]) / 2;
par_mapped[ 9] = ( par[14] + par[15]) / 2;
par_mapped[10] = par[16];
if (full) {
par_mapped[11] = par[17];
par_mapped[12] = par[18];
par_mapped[13] = par[19];
par_mapped[14] = ( par[20] + par[21]) / 2;
par_mapped[15] = ( par[22] + par[23]) / 2;
par_mapped[16] = ( par[24] + par[25]) / 2;
par_mapped[17] = ( par[26] + par[27]) / 2;
par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4;
par_mapped[19] = ( par[32] + par[33]) / 2;
}
}
static void map_val_34_to_20(float par[PS_MAX_NR_IIDICC])
{
par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f;
par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f;
par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f;
par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f;
par[ 4] = ( par[ 6] + par[ 7]) * 0.5f;
par[ 5] = ( par[ 8] + par[ 9]) * 0.5f;
par[ 6] = par[10];
par[ 7] = par[11];
par[ 8] = ( par[12] + par[13]) * 0.5f;
par[ 9] = ( par[14] + par[15]) * 0.5f;
par[10] = par[16];
par[11] = par[17];
par[12] = par[18];
par[13] = par[19];
par[14] = ( par[20] + par[21]) * 0.5f;
par[15] = ( par[22] + par[23]) * 0.5f;
par[16] = ( par[24] + par[25]) * 0.5f;
par[17] = ( par[26] + par[27]) * 0.5f;
par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f;
par[19] = ( par[32] + par[33]) * 0.5f;
}
static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
{
if (full) {
par_mapped[33] = par[9];
par_mapped[32] = par[9];
par_mapped[31] = par[9];
par_mapped[30] = par[9];
par_mapped[29] = par[9];
par_mapped[28] = par[9];
par_mapped[27] = par[8];
par_mapped[26] = par[8];
par_mapped[25] = par[8];
par_mapped[24] = par[8];
par_mapped[23] = par[7];
par_mapped[22] = par[7];
par_mapped[21] = par[7];
par_mapped[20] = par[7];
par_mapped[19] = par[6];
par_mapped[18] = par[6];
par_mapped[17] = par[5];
par_mapped[16] = par[5];
} else {
par_mapped[16] = 0;
}
par_mapped[15] = par[4];
par_mapped[14] = par[4];
par_mapped[13] = par[4];
par_mapped[12] = par[4];
par_mapped[11] = par[3];
par_mapped[10] = par[3];
par_mapped[ 9] = par[2];
par_mapped[ 8] = par[2];
par_mapped[ 7] = par[2];
par_mapped[ 6] = par[2];
par_mapped[ 5] = par[1];
par_mapped[ 4] = par[1];
par_mapped[ 3] = par[1];
par_mapped[ 2] = par[0];
par_mapped[ 1] = par[0];
par_mapped[ 0] = par[0];
}
static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
{
if (full) {
par_mapped[33] = par[19];
par_mapped[32] = par[19];
par_mapped[31] = par[18];
par_mapped[30] = par[18];
par_mapped[29] = par[18];
par_mapped[28] = par[18];
par_mapped[27] = par[17];
par_mapped[26] = par[17];
par_mapped[25] = par[16];
par_mapped[24] = par[16];
par_mapped[23] = par[15];
par_mapped[22] = par[15];
par_mapped[21] = par[14];
par_mapped[20] = par[14];
par_mapped[19] = par[13];
par_mapped[18] = par[12];
par_mapped[17] = par[11];
}
par_mapped[16] = par[10];
par_mapped[15] = par[ 9];
par_mapped[14] = par[ 9];
par_mapped[13] = par[ 8];
par_mapped[12] = par[ 8];
par_mapped[11] = par[ 7];
par_mapped[10] = par[ 6];
par_mapped[ 9] = par[ 5];
par_mapped[ 8] = par[ 5];
par_mapped[ 7] = par[ 4];
par_mapped[ 6] = par[ 4];
par_mapped[ 5] = par[ 3];
par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
par_mapped[ 3] = par[ 2];
par_mapped[ 2] = par[ 1];
par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
par_mapped[ 0] = par[ 0];
}
static void map_val_20_to_34(float par[PS_MAX_NR_IIDICC])
{
par[33] = par[19];
par[32] = par[19];
par[31] = par[18];
par[30] = par[18];
par[29] = par[18];
par[28] = par[18];
par[27] = par[17];
par[26] = par[17];
par[25] = par[16];
par[24] = par[16];
par[23] = par[15];
par[22] = par[15];
par[21] = par[14];
par[20] = par[14];
par[19] = par[13];
par[18] = par[12];
par[17] = par[11];
par[16] = par[10];
par[15] = par[ 9];
par[14] = par[ 9];
par[13] = par[ 8];
par[12] = par[ 8];
par[11] = par[ 7];
par[10] = par[ 6];
par[ 9] = par[ 5];
par[ 8] = par[ 5];
par[ 7] = par[ 4];
par[ 6] = par[ 4];
par[ 5] = par[ 3];
par[ 4] = (par[ 2] + par[ 3]) * 0.5f;
par[ 3] = par[ 2];
par[ 2] = par[ 1];
par[ 1] = (par[ 0] + par[ 1]) * 0.5f;
par[ 0] = par[ 0];
}
static void decorrelation(PSContext *ps, float (*out)[32][2], const float (*s)[32][2], int is34)
{
float power[34][PS_QMF_TIME_SLOTS] = {{0}};
float transient_gain[34][PS_QMF_TIME_SLOTS];
float *peak_decay_nrg = ps->peak_decay_nrg;
float *power_smooth = ps->power_smooth;
float *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
float (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
float (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
const float peak_decay_factor = 0.76592833836465f;
const float transient_impact = 1.5f;
const float a_smooth = 0.25f; //< Smoothing coefficient
int i, k, m, n;
int n0 = 0, nL = 32;
static const int link_delay[] = { 3, 4, 5 };
static const float a[] = { 0.65143905753106f,
0.56471812200776f,
0.48954165955695f };
if (is34 != ps->is34bands_old) {
memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg));
memset(ps->power_smooth, 0, sizeof(ps->power_smooth));
memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
memset(ps->delay, 0, sizeof(ps->delay));
memset(ps->ap_delay, 0, sizeof(ps->ap_delay));
}
for (n = n0; n < nL; n++) {
for (k = 0; k < NR_BANDS[is34]; k++) {
int i = k_to_i[k];
power[i][n] += s[k][n][0] * s[k][n][0] + s[k][n][1] * s[k][n][1];
}
}
//Transient detection
for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
for (n = n0; n < nL; n++) {
float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
float denom;
peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
denom = transient_impact * peak_decay_diff_smooth[i];
transient_gain[i][n] = (denom > power_smooth[i]) ?
power_smooth[i] / denom : 1.0f;
}
}
//Decorrelation and transient reduction
// PS_AP_LINKS - 1
// -----
// | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
//H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
// | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
// m = 0
//d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
int b = k_to_i[k];
float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
float ag[PS_AP_LINKS];
g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
for (m = 0; m < PS_AP_LINKS; m++) {
memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0]));
ag[m] = a[m] * g_decay_slope;
}
for (n = n0; n < nL; n++) {
float in_re = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][0] -
delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][1];
float in_im = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][1] +
delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][0];
for (m = 0; m < PS_AP_LINKS; m++) {
float a_re = ag[m] * in_re;
float a_im = ag[m] * in_im;
float link_delay_re = ap_delay[k][m][n+5-link_delay[m]][0];
float link_delay_im = ap_delay[k][m][n+5-link_delay[m]][1];
float fractional_delay_re = Q_fract_allpass[is34][k][m][0];
float fractional_delay_im = Q_fract_allpass[is34][k][m][1];
ap_delay[k][m][n+5][0] = in_re;
ap_delay[k][m][n+5][1] = in_im;
in_re = link_delay_re * fractional_delay_re - link_delay_im * fractional_delay_im - a_re;
in_im = link_delay_re * fractional_delay_im + link_delay_im * fractional_delay_re - a_im;
ap_delay[k][m][n+5][0] += ag[m] * in_re;
ap_delay[k][m][n+5][1] += ag[m] * in_im;
}
out[k][n][0] = transient_gain[b][n] * in_re;
out[k][n][1] = transient_gain[b][n] * in_im;
}
}
for (; k < SHORT_DELAY_BAND[is34]; k++) {
memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
for (n = n0; n < nL; n++) {
//H = delay 14
out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][0];
out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][1];
}
}
for (; k < NR_BANDS[is34]; k++) {
memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
for (n = n0; n < nL; n++) {
//H = delay 1
out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][0];
out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][1];
}
}
}
static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
int8_t (*par)[PS_MAX_NR_IIDICC],
int num_par, int num_env, int full)
{
int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
int e;
if (num_par == 20 || num_par == 11) {
for (e = 0; e < num_env; e++) {
map_idx_20_to_34(par_mapped[e], par[e], full);
}
} else if (num_par == 10 || num_par == 5) {
for (e = 0; e < num_env; e++) {
map_idx_10_to_34(par_mapped[e], par[e], full);
}
} else {
*p_par_mapped = par;
}
}
static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
int8_t (*par)[PS_MAX_NR_IIDICC],
int num_par, int num_env, int full)
{
int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
int e;
if (num_par == 34 || num_par == 17) {
for (e = 0; e < num_env; e++) {
map_idx_34_to_20(par_mapped[e], par[e], full);
}
} else if (num_par == 10 || num_par == 5) {
for (e = 0; e < num_env; e++) {
map_idx_10_to_20(par_mapped[e], par[e], full);
}
} else {
*p_par_mapped = par;
}
}
static void stereo_processing(PSContext *ps, float (*l)[32][2], float (*r)[32][2], int is34)
{
int e, b, k, n;
float (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
float (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
float (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
float (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
int8_t *opd_hist = ps->opd_hist;
int8_t *ipd_hist = ps->ipd_hist;
int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
const float (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB;
//Remapping
memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0]));
memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0]));
memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0]));
memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0]));
memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0]));
memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0]));
memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0]));
memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0]));
if (is34) {
remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
if (ps->enable_ipdopd) {
remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
}
if (!ps->is34bands_old) {
map_val_20_to_34(H11[0][0]);
map_val_20_to_34(H11[1][0]);
map_val_20_to_34(H12[0][0]);
map_val_20_to_34(H12[1][0]);
map_val_20_to_34(H21[0][0]);
map_val_20_to_34(H21[1][0]);
map_val_20_to_34(H22[0][0]);
map_val_20_to_34(H22[1][0]);
ipdopd_reset(ipd_hist, opd_hist);
}
} else {
remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
if (ps->enable_ipdopd) {
remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
}
if (ps->is34bands_old) {
map_val_34_to_20(H11[0][0]);
map_val_34_to_20(H11[1][0]);
map_val_34_to_20(H12[0][0]);
map_val_34_to_20(H12[1][0]);
map_val_34_to_20(H21[0][0]);
map_val_34_to_20(H21[1][0]);
map_val_34_to_20(H22[0][0]);
map_val_34_to_20(H22[1][0]);
ipdopd_reset(ipd_hist, opd_hist);
}
}
//Mixing
for (e = 0; e < ps->num_env; e++) {
for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
float h11, h12, h21, h22;
h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0];
h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1];
h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2];
h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3];
if (!PS_BASELINE && ps->enable_ipdopd && b < ps->nr_ipdopd_par) {
//The spec say says to only run this smoother when enable_ipdopd
//is set but the reference decoder appears to run it constantly
float h11i, h12i, h21i, h22i;
float ipd_adj_re, ipd_adj_im;
int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
float opd_re = pd_re_smooth[opd_idx];
float opd_im = pd_im_smooth[opd_idx];
float ipd_re = pd_re_smooth[ipd_idx];
float ipd_im = pd_im_smooth[ipd_idx];
opd_hist[b] = opd_idx & 0x3F;
ipd_hist[b] = ipd_idx & 0x3F;
ipd_adj_re = opd_re*ipd_re + opd_im*ipd_im;
ipd_adj_im = opd_im*ipd_re - opd_re*ipd_im;
h11i = h11 * opd_im;
h11 = h11 * opd_re;
h12i = h12 * ipd_adj_im;
h12 = h12 * ipd_adj_re;
h21i = h21 * opd_im;
h21 = h21 * opd_re;
h22i = h22 * ipd_adj_im;
h22 = h22 * ipd_adj_re;
H11[1][e+1][b] = h11i;
H12[1][e+1][b] = h12i;
H21[1][e+1][b] = h21i;
H22[1][e+1][b] = h22i;
}
H11[0][e+1][b] = h11;
H12[0][e+1][b] = h12;
H21[0][e+1][b] = h21;
H22[0][e+1][b] = h22;
}
for (k = 0; k < NR_BANDS[is34]; k++) {
float h11r, h12r, h21r, h22r;
float h11i, h12i, h21i, h22i;
float h11r_step, h12r_step, h21r_step, h22r_step;
float h11i_step, h12i_step, h21i_step, h22i_step;
int start = ps->border_position[e];
int stop = ps->border_position[e+1];
float width = 1.f / (stop - start);
b = k_to_i[k];
h11r = H11[0][e][b];
h12r = H12[0][e][b];
h21r = H21[0][e][b];
h22r = H22[0][e][b];
if (!PS_BASELINE && ps->enable_ipdopd) {
//Is this necessary? ps_04_new seems unchanged
if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
h11i = -H11[1][e][b];
h12i = -H12[1][e][b];
h21i = -H21[1][e][b];
h22i = -H22[1][e][b];
} else {
h11i = H11[1][e][b];
h12i = H12[1][e][b];
h21i = H21[1][e][b];
h22i = H22[1][e][b];
}
}
//Interpolation
h11r_step = (H11[0][e+1][b] - h11r) * width;
h12r_step = (H12[0][e+1][b] - h12r) * width;
h21r_step = (H21[0][e+1][b] - h21r) * width;
h22r_step = (H22[0][e+1][b] - h22r) * width;
if (!PS_BASELINE && ps->enable_ipdopd) {
h11i_step = (H11[1][e+1][b] - h11i) * width;
h12i_step = (H12[1][e+1][b] - h12i) * width;
h21i_step = (H21[1][e+1][b] - h21i) * width;
h22i_step = (H22[1][e+1][b] - h22i) * width;
}
for (n = start + 1; n <= stop; n++) {
//l is s, r is d
float l_re = l[k][n][0];
float l_im = l[k][n][1];
float r_re = r[k][n][0];
float r_im = r[k][n][1];
h11r += h11r_step;
h12r += h12r_step;
h21r += h21r_step;
h22r += h22r_step;
if (!PS_BASELINE && ps->enable_ipdopd) {
h11i += h11i_step;
h12i += h12i_step;
h21i += h21i_step;
h22i += h22i_step;
l[k][n][0] = h11r*l_re + h21r*r_re - h11i*l_im - h21i*r_im;
l[k][n][1] = h11r*l_im + h21r*r_im + h11i*l_re + h21i*r_re;
r[k][n][0] = h12r*l_re + h22r*r_re - h12i*l_im - h22i*r_im;
r[k][n][1] = h12r*l_im + h22r*r_im + h12i*l_re + h22i*r_re;
} else {
l[k][n][0] = h11r*l_re + h21r*r_re;
l[k][n][1] = h11r*l_im + h21r*r_im;
r[k][n][0] = h12r*l_re + h22r*r_re;
r[k][n][1] = h12r*l_im + h22r*r_im;
}
}
}
}
}
int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top)
{
float Lbuf[91][32][2];
float Rbuf[91][32][2];
const int len = 32;
int is34 = ps->is34bands;
top += NR_BANDS[is34] - 64;
memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
if (top < NR_ALLPASS_BANDS[is34])
memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
hybrid_analysis(Lbuf, ps->in_buf, L, is34, len);
decorrelation(ps, Rbuf, Lbuf, is34);
stereo_processing(ps, Lbuf, Rbuf, is34);
hybrid_synthesis(L, Lbuf, is34, len);
hybrid_synthesis(R, Rbuf, is34, len);
return 0;
}
#define PS_INIT_VLC_STATIC(num, size) \
INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size, \
ps_tmp[num].ps_bits, 1, 1, \
ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \
size);
#define PS_VLC_ROW(name) \
{ name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
av_cold void ff_ps_init(void) {
// Syntax initialization
static const struct {
const void *ps_codes, *ps_bits;
const unsigned int table_size, elem_size;
} ps_tmp[] = {
PS_VLC_ROW(huff_iid_df1),
PS_VLC_ROW(huff_iid_dt1),
PS_VLC_ROW(huff_iid_df0),
PS_VLC_ROW(huff_iid_dt0),
PS_VLC_ROW(huff_icc_df),
PS_VLC_ROW(huff_icc_dt),
PS_VLC_ROW(huff_ipd_df),
PS_VLC_ROW(huff_ipd_dt),
PS_VLC_ROW(huff_opd_df),
PS_VLC_ROW(huff_opd_dt),
};
PS_INIT_VLC_STATIC(0, 1544);
PS_INIT_VLC_STATIC(1, 832);
PS_INIT_VLC_STATIC(2, 1024);
PS_INIT_VLC_STATIC(3, 1036);
PS_INIT_VLC_STATIC(4, 544);
PS_INIT_VLC_STATIC(5, 544);
PS_INIT_VLC_STATIC(6, 512);
PS_INIT_VLC_STATIC(7, 512);
PS_INIT_VLC_STATIC(8, 512);
PS_INIT_VLC_STATIC(9, 512);
ps_tableinit();
}
av_cold void ff_ps_ctx_init(PSContext *ps)
{
}