1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
Anton Khirnov e4e9e1da15 lavc/hevcdec: drop redundant HEVCContext.threads_{type,number}
They are useless duplicates of corresponding AVCodecContext fields.
2024-06-11 17:39:35 +02:00

919 lines
40 KiB
C

/*
* HEVC video decoder
*
* Copyright (C) 2012 - 2013 Guillaume Martres
* Copyright (C) 2013 Seppo Tomperi
* Copyright (C) 2013 Wassim Hamidouche
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/common.h"
#include "libavutil/internal.h"
#include "hevcdec.h"
#include "progressframe.h"
#define LUMA 0
#define CB 1
#define CR 2
static const uint8_t tctable[54] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, // QP 0...18
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, // QP 19...37
5, 5, 6, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 24 // QP 38...53
};
static const uint8_t betatable[52] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 8, // QP 0...18
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, // QP 19...37
38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64 // QP 38...51
};
static int chroma_tc(const HEVCPPS *pps, const HEVCSPS *sps,
int qp_y, int c_idx, int tc_offset)
{
static const int qp_c[] = {
29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
};
int qp, qp_i, offset, idxt;
// slice qp offset is not used for deblocking
if (c_idx == 1)
offset = pps->cb_qp_offset;
else
offset = pps->cr_qp_offset;
qp_i = av_clip(qp_y + offset, 0, 57);
if (sps->chroma_format_idc == 1) {
if (qp_i < 30)
qp = qp_i;
else if (qp_i > 43)
qp = qp_i - 6;
else
qp = qp_c[qp_i - 30];
} else {
qp = av_clip(qp_i, 0, 51);
}
idxt = av_clip(qp + DEFAULT_INTRA_TC_OFFSET + tc_offset, 0, 53);
return tctable[idxt];
}
static int get_qPy_pred(HEVCLocalContext *lc, const HEVCContext *s,
const HEVCPPS *pps, const HEVCSPS *sps,
int xBase, int yBase, int log2_cb_size)
{
int ctb_size_mask = (1 << sps->log2_ctb_size) - 1;
int MinCuQpDeltaSizeMask = (1 << (sps->log2_ctb_size -
pps->diff_cu_qp_delta_depth)) - 1;
int xQgBase = xBase - (xBase & MinCuQpDeltaSizeMask);
int yQgBase = yBase - (yBase & MinCuQpDeltaSizeMask);
int min_cb_width = sps->min_cb_width;
int x_cb = xQgBase >> sps->log2_min_cb_size;
int y_cb = yQgBase >> sps->log2_min_cb_size;
int availableA = (xBase & ctb_size_mask) &&
(xQgBase & ctb_size_mask);
int availableB = (yBase & ctb_size_mask) &&
(yQgBase & ctb_size_mask);
int qPy_pred, qPy_a, qPy_b;
// qPy_pred
if (lc->first_qp_group || (!xQgBase && !yQgBase)) {
lc->first_qp_group = !lc->tu.is_cu_qp_delta_coded;
qPy_pred = s->sh.slice_qp;
} else {
qPy_pred = lc->qPy_pred;
}
// qPy_a
if (availableA == 0)
qPy_a = qPy_pred;
else
qPy_a = s->qp_y_tab[(x_cb - 1) + y_cb * min_cb_width];
// qPy_b
if (availableB == 0)
qPy_b = qPy_pred;
else
qPy_b = s->qp_y_tab[x_cb + (y_cb - 1) * min_cb_width];
av_assert2(qPy_a >= -sps->qp_bd_offset && qPy_a < 52);
av_assert2(qPy_b >= -sps->qp_bd_offset && qPy_b < 52);
return (qPy_a + qPy_b + 1) >> 1;
}
void ff_hevc_set_qPy(HEVCLocalContext *lc, const HEVCPPS *pps,
int xBase, int yBase, int log2_cb_size)
{
const HEVCSPS *const sps = pps->sps;
const HEVCContext *const s = lc->parent;
int qp_y = get_qPy_pred(lc, s, pps, sps, xBase, yBase, log2_cb_size);
if (lc->tu.cu_qp_delta != 0) {
int off = sps->qp_bd_offset;
lc->qp_y = FFUMOD(qp_y + lc->tu.cu_qp_delta + 52 + 2 * off,
52 + off) - off;
} else
lc->qp_y = qp_y;
}
static int get_qPy(const HEVCSPS *sps, const int8_t *qp_y_tab, int xC, int yC)
{
int log2_min_cb_size = sps->log2_min_cb_size;
int x = xC >> log2_min_cb_size;
int y = yC >> log2_min_cb_size;
return qp_y_tab[x + y * sps->min_cb_width];
}
static void copy_CTB(uint8_t *dst, const uint8_t *src, int width, int height,
ptrdiff_t stride_dst, ptrdiff_t stride_src)
{
int i, j;
if (((intptr_t)dst | (intptr_t)src | stride_dst | stride_src) & 15) {
for (i = 0; i < height; i++) {
for (j = 0; j < width - 7; j+=8)
AV_COPY64U(dst+j, src+j);
dst += stride_dst;
src += stride_src;
}
if (width&7) {
dst += ((width>>3)<<3) - stride_dst * height;
src += ((width>>3)<<3) - stride_src * height;
width &= 7;
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++)
dst[j] = src[j];
dst += stride_dst;
src += stride_src;
}
}
} else {
for (i = 0; i < height; i++) {
for (j = 0; j < width; j+=16)
AV_COPY128(dst+j, src+j);
dst += stride_dst;
src += stride_src;
}
}
}
static void copy_pixel(uint8_t *dst, const uint8_t *src, int pixel_shift)
{
if (pixel_shift)
*(uint16_t *)dst = *(uint16_t *)src;
else
*dst = *src;
}
static void copy_vert(uint8_t *dst, const uint8_t *src,
int pixel_shift, int height,
ptrdiff_t stride_dst, ptrdiff_t stride_src)
{
int i;
if (pixel_shift == 0) {
for (i = 0; i < height; i++) {
*dst = *src;
dst += stride_dst;
src += stride_src;
}
} else {
for (i = 0; i < height; i++) {
*(uint16_t *)dst = *(uint16_t *)src;
dst += stride_dst;
src += stride_src;
}
}
}
static void copy_CTB_to_hv(const HEVCContext *s, const HEVCSPS *sps,
const uint8_t *src,
ptrdiff_t stride_src, int x, int y, int width, int height,
int c_idx, int x_ctb, int y_ctb)
{
int sh = sps->pixel_shift;
int w = sps->width >> sps->hshift[c_idx];
int h = sps->height >> sps->vshift[c_idx];
/* copy horizontal edges */
memcpy(s->sao_pixel_buffer_h[c_idx] + (((2 * y_ctb) * w + x) << sh),
src, width << sh);
memcpy(s->sao_pixel_buffer_h[c_idx] + (((2 * y_ctb + 1) * w + x) << sh),
src + stride_src * (height - 1), width << sh);
/* copy vertical edges */
copy_vert(s->sao_pixel_buffer_v[c_idx] + (((2 * x_ctb) * h + y) << sh), src, sh, height, 1 << sh, stride_src);
copy_vert(s->sao_pixel_buffer_v[c_idx] + (((2 * x_ctb + 1) * h + y) << sh), src + ((width - 1) << sh), sh, height, 1 << sh, stride_src);
}
static void restore_tqb_pixels(const HEVCContext *s,
const HEVCPPS *pps, const HEVCSPS *sps,
uint8_t *src1, const uint8_t *dst1,
ptrdiff_t stride_src, ptrdiff_t stride_dst,
int x0, int y0, int width, int height, int c_idx)
{
if (pps->transquant_bypass_enable_flag ||
(sps->pcm_loop_filter_disabled && sps->pcm_enabled)) {
int x, y;
int min_pu_size = 1 << sps->log2_min_pu_size;
int hshift = sps->hshift[c_idx];
int vshift = sps->vshift[c_idx];
int x_min = ((x0 ) >> sps->log2_min_pu_size);
int y_min = ((y0 ) >> sps->log2_min_pu_size);
int x_max = ((x0 + width ) >> sps->log2_min_pu_size);
int y_max = ((y0 + height) >> sps->log2_min_pu_size);
int len = (min_pu_size >> hshift) << sps->pixel_shift;
for (y = y_min; y < y_max; y++) {
for (x = x_min; x < x_max; x++) {
if (s->is_pcm[y * sps->min_pu_width + x]) {
int n;
uint8_t *src = src1 +
(((y << sps->log2_min_pu_size) - y0) >> vshift) * stride_src +
((((x << sps->log2_min_pu_size) - x0) >> hshift) << sps->pixel_shift);
const uint8_t *dst = dst1 +
(((y << sps->log2_min_pu_size) - y0) >> vshift) * stride_dst +
((((x << sps->log2_min_pu_size) - x0) >> hshift) << sps->pixel_shift);
for (n = 0; n < (min_pu_size >> vshift); n++) {
memcpy(src, dst, len);
src += stride_src;
dst += stride_dst;
}
}
}
}
}
}
#define CTB(tab, x, y) ((tab)[(y) * sps->ctb_width + (x)])
static void sao_filter_CTB(HEVCLocalContext *lc, const HEVCContext *s,
const HEVCPPS *pps, const HEVCSPS *sps,
int x, int y)
{
static const uint8_t sao_tab[8] = { 0, 1, 2, 2, 3, 3, 4, 4 };
int c_idx;
int edges[4]; // 0 left 1 top 2 right 3 bottom
int x_ctb = x >> sps->log2_ctb_size;
int y_ctb = y >> sps->log2_ctb_size;
int ctb_addr_rs = y_ctb * sps->ctb_width + x_ctb;
int ctb_addr_ts = pps->ctb_addr_rs_to_ts[ctb_addr_rs];
SAOParams *sao = &CTB(s->sao, x_ctb, y_ctb);
// flags indicating unfilterable edges
uint8_t vert_edge[] = { 0, 0 };
uint8_t horiz_edge[] = { 0, 0 };
uint8_t diag_edge[] = { 0, 0, 0, 0 };
uint8_t lfase = CTB(s->filter_slice_edges, x_ctb, y_ctb);
uint8_t no_tile_filter = pps->tiles_enabled_flag &&
!pps->loop_filter_across_tiles_enabled_flag;
uint8_t restore = no_tile_filter || !lfase;
uint8_t left_tile_edge = 0;
uint8_t right_tile_edge = 0;
uint8_t up_tile_edge = 0;
uint8_t bottom_tile_edge = 0;
edges[0] = x_ctb == 0;
edges[1] = y_ctb == 0;
edges[2] = x_ctb == sps->ctb_width - 1;
edges[3] = y_ctb == sps->ctb_height - 1;
if (restore) {
if (!edges[0]) {
left_tile_edge = no_tile_filter && pps->tile_id[ctb_addr_ts] != pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs-1]];
vert_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb)) || left_tile_edge;
}
if (!edges[2]) {
right_tile_edge = no_tile_filter && pps->tile_id[ctb_addr_ts] != pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs+1]];
vert_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb)) || right_tile_edge;
}
if (!edges[1]) {
up_tile_edge = no_tile_filter && pps->tile_id[ctb_addr_ts] != pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs - sps->ctb_width]];
horiz_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) || up_tile_edge;
}
if (!edges[3]) {
bottom_tile_edge = no_tile_filter && pps->tile_id[ctb_addr_ts] != pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs + sps->ctb_width]];
horiz_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb + 1)) || bottom_tile_edge;
}
if (!edges[0] && !edges[1]) {
diag_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || left_tile_edge || up_tile_edge;
}
if (!edges[1] && !edges[2]) {
diag_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb - 1)) || right_tile_edge || up_tile_edge;
}
if (!edges[2] && !edges[3]) {
diag_edge[2] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb + 1)) || right_tile_edge || bottom_tile_edge;
}
if (!edges[0] && !edges[3]) {
diag_edge[3] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb + 1)) || left_tile_edge || bottom_tile_edge;
}
}
for (c_idx = 0; c_idx < (sps->chroma_format_idc ? 3 : 1); c_idx++) {
int x0 = x >> sps->hshift[c_idx];
int y0 = y >> sps->vshift[c_idx];
ptrdiff_t stride_src = s->cur_frame->f->linesize[c_idx];
int ctb_size_h = (1 << (sps->log2_ctb_size)) >> sps->hshift[c_idx];
int ctb_size_v = (1 << (sps->log2_ctb_size)) >> sps->vshift[c_idx];
int width = FFMIN(ctb_size_h, (sps->width >> sps->hshift[c_idx]) - x0);
int height = FFMIN(ctb_size_v, (sps->height >> sps->vshift[c_idx]) - y0);
int tab = sao_tab[(FFALIGN(width, 8) >> 3) - 1];
uint8_t *src = &s->cur_frame->f->data[c_idx][y0 * stride_src + (x0 << sps->pixel_shift)];
ptrdiff_t stride_dst;
uint8_t *dst;
switch (sao->type_idx[c_idx]) {
case SAO_BAND:
copy_CTB_to_hv(s, sps, src, stride_src, x0, y0, width, height, c_idx,
x_ctb, y_ctb);
if (pps->transquant_bypass_enable_flag ||
(sps->pcm_loop_filter_disabled && sps->pcm_enabled)) {
dst = lc->edge_emu_buffer;
stride_dst = 2*MAX_PB_SIZE;
copy_CTB(dst, src, width << sps->pixel_shift, height, stride_dst, stride_src);
s->hevcdsp.sao_band_filter[tab](src, dst, stride_src, stride_dst,
sao->offset_val[c_idx], sao->band_position[c_idx],
width, height);
restore_tqb_pixels(s, pps, sps, src, dst, stride_src, stride_dst,
x, y, width, height, c_idx);
} else {
s->hevcdsp.sao_band_filter[tab](src, src, stride_src, stride_src,
sao->offset_val[c_idx], sao->band_position[c_idx],
width, height);
}
sao->type_idx[c_idx] = SAO_APPLIED;
break;
case SAO_EDGE:
{
int w = sps->width >> sps->hshift[c_idx];
int h = sps->height >> sps->vshift[c_idx];
int left_edge = edges[0];
int top_edge = edges[1];
int right_edge = edges[2];
int bottom_edge = edges[3];
int sh = sps->pixel_shift;
int left_pixels, right_pixels;
stride_dst = 2*MAX_PB_SIZE + AV_INPUT_BUFFER_PADDING_SIZE;
dst = lc->edge_emu_buffer + stride_dst + AV_INPUT_BUFFER_PADDING_SIZE;
if (!top_edge) {
int left = 1 - left_edge;
int right = 1 - right_edge;
const uint8_t *src1[2];
uint8_t *dst1;
int src_idx, pos;
dst1 = dst - stride_dst - (left << sh);
src1[0] = src - stride_src - (left << sh);
src1[1] = s->sao_pixel_buffer_h[c_idx] + (((2 * y_ctb - 1) * w + x0 - left) << sh);
pos = 0;
if (left) {
src_idx = (CTB(s->sao, x_ctb-1, y_ctb-1).type_idx[c_idx] ==
SAO_APPLIED);
copy_pixel(dst1, src1[src_idx], sh);
pos += (1 << sh);
}
src_idx = (CTB(s->sao, x_ctb, y_ctb-1).type_idx[c_idx] ==
SAO_APPLIED);
memcpy(dst1 + pos, src1[src_idx] + pos, width << sh);
if (right) {
pos += width << sh;
src_idx = (CTB(s->sao, x_ctb+1, y_ctb-1).type_idx[c_idx] ==
SAO_APPLIED);
copy_pixel(dst1 + pos, src1[src_idx] + pos, sh);
}
}
if (!bottom_edge) {
int left = 1 - left_edge;
int right = 1 - right_edge;
const uint8_t *src1[2];
uint8_t *dst1;
int src_idx, pos;
dst1 = dst + height * stride_dst - (left << sh);
src1[0] = src + height * stride_src - (left << sh);
src1[1] = s->sao_pixel_buffer_h[c_idx] + (((2 * y_ctb + 2) * w + x0 - left) << sh);
pos = 0;
if (left) {
src_idx = (CTB(s->sao, x_ctb-1, y_ctb+1).type_idx[c_idx] ==
SAO_APPLIED);
copy_pixel(dst1, src1[src_idx], sh);
pos += (1 << sh);
}
src_idx = (CTB(s->sao, x_ctb, y_ctb+1).type_idx[c_idx] ==
SAO_APPLIED);
memcpy(dst1 + pos, src1[src_idx] + pos, width << sh);
if (right) {
pos += width << sh;
src_idx = (CTB(s->sao, x_ctb+1, y_ctb+1).type_idx[c_idx] ==
SAO_APPLIED);
copy_pixel(dst1 + pos, src1[src_idx] + pos, sh);
}
}
left_pixels = 0;
if (!left_edge) {
if (CTB(s->sao, x_ctb-1, y_ctb).type_idx[c_idx] == SAO_APPLIED) {
copy_vert(dst - (1 << sh),
s->sao_pixel_buffer_v[c_idx] + (((2 * x_ctb - 1) * h + y0) << sh),
sh, height, stride_dst, 1 << sh);
} else {
left_pixels = 1;
}
}
right_pixels = 0;
if (!right_edge) {
if (CTB(s->sao, x_ctb+1, y_ctb).type_idx[c_idx] == SAO_APPLIED) {
copy_vert(dst + (width << sh),
s->sao_pixel_buffer_v[c_idx] + (((2 * x_ctb + 2) * h + y0) << sh),
sh, height, stride_dst, 1 << sh);
} else {
right_pixels = 1;
}
}
copy_CTB(dst - (left_pixels << sh),
src - (left_pixels << sh),
(width + left_pixels + right_pixels) << sh,
height, stride_dst, stride_src);
copy_CTB_to_hv(s, sps, src, stride_src, x0, y0, width, height, c_idx,
x_ctb, y_ctb);
s->hevcdsp.sao_edge_filter[tab](src, dst, stride_src, sao->offset_val[c_idx],
sao->eo_class[c_idx], width, height);
s->hevcdsp.sao_edge_restore[restore](src, dst,
stride_src, stride_dst,
sao,
edges, width,
height, c_idx,
vert_edge,
horiz_edge,
diag_edge);
restore_tqb_pixels(s, pps, sps, src, dst, stride_src, stride_dst,
x, y, width, height, c_idx);
sao->type_idx[c_idx] = SAO_APPLIED;
break;
}
}
}
}
static int get_pcm(const HEVCSPS *sps, const uint8_t *is_pcm, int x, int y)
{
int log2_min_pu_size = sps->log2_min_pu_size;
int x_pu, y_pu;
if (x < 0 || y < 0)
return 2;
x_pu = x >> log2_min_pu_size;
y_pu = y >> log2_min_pu_size;
if (x_pu >= sps->min_pu_width || y_pu >= sps->min_pu_height)
return 2;
return is_pcm[y_pu * sps->min_pu_width + x_pu];
}
#define TC_CALC(qp, bs) \
tctable[av_clip((qp) + DEFAULT_INTRA_TC_OFFSET * ((bs) - 1) + \
(tc_offset & -2), \
0, MAX_QP + DEFAULT_INTRA_TC_OFFSET)]
static void deblocking_filter_CTB(const HEVCContext *s,
const HEVCPPS *pps, const HEVCSPS *sps,
int x0, int y0)
{
uint8_t **data = s->cur_frame->f->data;
int *linesize = s->cur_frame->f->linesize;
uint8_t *src;
int x, y;
int chroma, beta;
int32_t c_tc[2], tc[2];
uint8_t no_p[2] = { 0 };
uint8_t no_q[2] = { 0 };
int log2_ctb_size = sps->log2_ctb_size;
int x_end, x_end2, y_end;
int ctb_size = 1 << log2_ctb_size;
int ctb = (x0 >> log2_ctb_size) +
(y0 >> log2_ctb_size) * sps->ctb_width;
int cur_tc_offset = s->deblock[ctb].tc_offset;
int cur_beta_offset = s->deblock[ctb].beta_offset;
int left_tc_offset, left_beta_offset;
int tc_offset, beta_offset;
int pcmf = (sps->pcm_enabled &&
sps->pcm_loop_filter_disabled) ||
pps->transquant_bypass_enable_flag;
if (x0) {
left_tc_offset = s->deblock[ctb - 1].tc_offset;
left_beta_offset = s->deblock[ctb - 1].beta_offset;
} else {
left_tc_offset = 0;
left_beta_offset = 0;
}
x_end = x0 + ctb_size;
if (x_end > sps->width)
x_end = sps->width;
y_end = y0 + ctb_size;
if (y_end > sps->height)
y_end = sps->height;
tc_offset = cur_tc_offset;
beta_offset = cur_beta_offset;
x_end2 = x_end;
if (x_end2 != sps->width)
x_end2 -= 8;
for (y = y0; y < y_end; y += 8) {
// vertical filtering luma
for (x = x0 ? x0 : 8; x < x_end; x += 8) {
const int bs0 = s->vertical_bs[(x + y * s->bs_width) >> 2];
const int bs1 = s->vertical_bs[(x + (y + 4) * s->bs_width) >> 2];
if (bs0 || bs1) {
const int qp = (get_qPy(sps, s->qp_y_tab, x - 1, y) +
get_qPy(sps, s->qp_y_tab, x, y) + 1) >> 1;
beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];
tc[0] = bs0 ? TC_CALC(qp, bs0) : 0;
tc[1] = bs1 ? TC_CALC(qp, bs1) : 0;
src = &data[LUMA][y * linesize[LUMA] + (x << sps->pixel_shift)];
if (pcmf) {
no_p[0] = get_pcm(sps, s->is_pcm, x - 1, y);
no_p[1] = get_pcm(sps, s->is_pcm, x - 1, y + 4);
no_q[0] = get_pcm(sps, s->is_pcm, x, y);
no_q[1] = get_pcm(sps, s->is_pcm, x, y + 4);
s->hevcdsp.hevc_v_loop_filter_luma_c(src, linesize[LUMA],
beta, tc, no_p, no_q);
} else
s->hevcdsp.hevc_v_loop_filter_luma(src, linesize[LUMA],
beta, tc, no_p, no_q);
}
}
if(!y)
continue;
// horizontal filtering luma
for (x = x0 ? x0 - 8 : 0; x < x_end2; x += 8) {
const int bs0 = s->horizontal_bs[( x + y * s->bs_width) >> 2];
const int bs1 = s->horizontal_bs[((x + 4) + y * s->bs_width) >> 2];
if (bs0 || bs1) {
const int qp = (get_qPy(sps, s->qp_y_tab, x, y - 1) +
get_qPy(sps, s->qp_y_tab, x, y) + 1) >> 1;
tc_offset = x >= x0 ? cur_tc_offset : left_tc_offset;
beta_offset = x >= x0 ? cur_beta_offset : left_beta_offset;
beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];
tc[0] = bs0 ? TC_CALC(qp, bs0) : 0;
tc[1] = bs1 ? TC_CALC(qp, bs1) : 0;
src = &data[LUMA][y * linesize[LUMA] + (x << sps->pixel_shift)];
if (pcmf) {
no_p[0] = get_pcm(sps, s->is_pcm, x, y - 1);
no_p[1] = get_pcm(sps, s->is_pcm, x + 4, y - 1);
no_q[0] = get_pcm(sps, s->is_pcm, x, y);
no_q[1] = get_pcm(sps, s->is_pcm, x + 4, y);
s->hevcdsp.hevc_h_loop_filter_luma_c(src, linesize[LUMA],
beta, tc, no_p, no_q);
} else
s->hevcdsp.hevc_h_loop_filter_luma(src, linesize[LUMA],
beta, tc, no_p, no_q);
}
}
}
if (sps->chroma_format_idc) {
for (chroma = 1; chroma <= 2; chroma++) {
int h = 1 << sps->hshift[chroma];
int v = 1 << sps->vshift[chroma];
// vertical filtering chroma
for (y = y0; y < y_end; y += (8 * v)) {
for (x = x0 ? x0 : 8 * h; x < x_end; x += (8 * h)) {
const int bs0 = s->vertical_bs[(x + y * s->bs_width) >> 2];
const int bs1 = s->vertical_bs[(x + (y + (4 * v)) * s->bs_width) >> 2];
if ((bs0 == 2) || (bs1 == 2)) {
const int qp0 = (get_qPy(sps, s->qp_y_tab, x - 1, y) +
get_qPy(sps, s->qp_y_tab, x, y) + 1) >> 1;
const int qp1 = (get_qPy(sps, s->qp_y_tab, x - 1, y + (4 * v)) +
get_qPy(sps, s->qp_y_tab, x, y + (4 * v)) + 1) >> 1;
c_tc[0] = (bs0 == 2) ? chroma_tc(pps, sps, qp0, chroma, tc_offset) : 0;
c_tc[1] = (bs1 == 2) ? chroma_tc(pps, sps, qp1, chroma, tc_offset) : 0;
src = &data[chroma][(y >> sps->vshift[chroma]) * linesize[chroma] + ((x >> sps->hshift[chroma]) << sps->pixel_shift)];
if (pcmf) {
no_p[0] = get_pcm(sps, s->is_pcm, x - 1, y);
no_p[1] = get_pcm(sps, s->is_pcm, x - 1, y + (4 * v));
no_q[0] = get_pcm(sps, s->is_pcm, x, y);
no_q[1] = get_pcm(sps, s->is_pcm, x, y + (4 * v));
s->hevcdsp.hevc_v_loop_filter_chroma_c(src, linesize[chroma],
c_tc, no_p, no_q);
} else
s->hevcdsp.hevc_v_loop_filter_chroma(src, linesize[chroma],
c_tc, no_p, no_q);
}
}
if(!y)
continue;
// horizontal filtering chroma
tc_offset = x0 ? left_tc_offset : cur_tc_offset;
x_end2 = x_end;
if (x_end != sps->width)
x_end2 = x_end - 8 * h;
for (x = x0 ? x0 - 8 * h : 0; x < x_end2; x += (8 * h)) {
const int bs0 = s->horizontal_bs[( x + y * s->bs_width) >> 2];
const int bs1 = s->horizontal_bs[((x + 4 * h) + y * s->bs_width) >> 2];
if ((bs0 == 2) || (bs1 == 2)) {
const int qp0 = bs0 == 2 ? (get_qPy(sps, s->qp_y_tab, x, y - 1) +
get_qPy(sps, s->qp_y_tab, x, y) + 1) >> 1 : 0;
const int qp1 = bs1 == 2 ? (get_qPy(sps, s->qp_y_tab, x + (4 * h), y - 1) +
get_qPy(sps, s->qp_y_tab, x + (4 * h), y) + 1) >> 1 : 0;
c_tc[0] = bs0 == 2 ? chroma_tc(pps, sps, qp0, chroma, tc_offset) : 0;
c_tc[1] = bs1 == 2 ? chroma_tc(pps, sps, qp1, chroma, cur_tc_offset) : 0;
src = &data[chroma][(y >> sps->vshift[1]) * linesize[chroma] + ((x >> sps->hshift[1]) << sps->pixel_shift)];
if (pcmf) {
no_p[0] = get_pcm(sps, s->is_pcm, x, y - 1);
no_p[1] = get_pcm(sps, s->is_pcm, x + (4 * h), y - 1);
no_q[0] = get_pcm(sps, s->is_pcm, x, y);
no_q[1] = get_pcm(sps, s->is_pcm, x + (4 * h), y);
s->hevcdsp.hevc_h_loop_filter_chroma_c(src, linesize[chroma],
c_tc, no_p, no_q);
} else
s->hevcdsp.hevc_h_loop_filter_chroma(src, linesize[chroma],
c_tc, no_p, no_q);
}
}
}
}
}
}
static int boundary_strength(const HEVCContext *s, const MvField *curr, const MvField *neigh,
const RefPicList *neigh_refPicList)
{
if (curr->pred_flag == PF_BI && neigh->pred_flag == PF_BI) {
// same L0 and L1
if (s->cur_frame->refPicList[0].list[curr->ref_idx[0]] == neigh_refPicList[0].list[neigh->ref_idx[0]] &&
s->cur_frame->refPicList[0].list[curr->ref_idx[0]] == s->cur_frame->refPicList[1].list[curr->ref_idx[1]] &&
neigh_refPicList[0].list[neigh->ref_idx[0]] == neigh_refPicList[1].list[neigh->ref_idx[1]]) {
if ((FFABS(neigh->mv[0].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
FFABS(neigh->mv[1].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 4) &&
(FFABS(neigh->mv[1].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
FFABS(neigh->mv[0].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 4))
return 1;
else
return 0;
} else if (neigh_refPicList[0].list[neigh->ref_idx[0]] == s->cur_frame->refPicList[0].list[curr->ref_idx[0]] &&
neigh_refPicList[1].list[neigh->ref_idx[1]] == s->cur_frame->refPicList[1].list[curr->ref_idx[1]]) {
if (FFABS(neigh->mv[0].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
FFABS(neigh->mv[1].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 4)
return 1;
else
return 0;
} else if (neigh_refPicList[1].list[neigh->ref_idx[1]] == s->cur_frame->refPicList[0].list[curr->ref_idx[0]] &&
neigh_refPicList[0].list[neigh->ref_idx[0]] == s->cur_frame->refPicList[1].list[curr->ref_idx[1]]) {
if (FFABS(neigh->mv[1].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
FFABS(neigh->mv[0].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 4)
return 1;
else
return 0;
} else {
return 1;
}
} else if ((curr->pred_flag != PF_BI) && (neigh->pred_flag != PF_BI)){ // 1 MV
Mv A, B;
int ref_A, ref_B;
if (curr->pred_flag & 1) {
A = curr->mv[0];
ref_A = s->cur_frame->refPicList[0].list[curr->ref_idx[0]];
} else {
A = curr->mv[1];
ref_A = s->cur_frame->refPicList[1].list[curr->ref_idx[1]];
}
if (neigh->pred_flag & 1) {
B = neigh->mv[0];
ref_B = neigh_refPicList[0].list[neigh->ref_idx[0]];
} else {
B = neigh->mv[1];
ref_B = neigh_refPicList[1].list[neigh->ref_idx[1]];
}
if (ref_A == ref_B) {
if (FFABS(A.x - B.x) >= 4 || FFABS(A.y - B.y) >= 4)
return 1;
else
return 0;
} else
return 1;
}
return 1;
}
void ff_hevc_deblocking_boundary_strengths(HEVCLocalContext *lc, const HEVCPPS *pps,
int x0, int y0, int log2_trafo_size)
{
const HEVCSPS *const sps = pps->sps;
const HEVCContext *s = lc->parent;
const MvField *tab_mvf = s->cur_frame->tab_mvf;
int log2_min_pu_size = sps->log2_min_pu_size;
int log2_min_tu_size = sps->log2_min_tb_size;
int min_pu_width = sps->min_pu_width;
int min_tu_width = sps->min_tb_width;
int is_intra = tab_mvf[(y0 >> log2_min_pu_size) * min_pu_width +
(x0 >> log2_min_pu_size)].pred_flag == PF_INTRA;
int boundary_upper, boundary_left;
int i, j, bs;
boundary_upper = y0 > 0 && !(y0 & 7);
if (boundary_upper &&
((!s->sh.slice_loop_filter_across_slices_enabled_flag &&
lc->boundary_flags & BOUNDARY_UPPER_SLICE &&
(y0 % (1 << sps->log2_ctb_size)) == 0) ||
(!pps->loop_filter_across_tiles_enabled_flag &&
lc->boundary_flags & BOUNDARY_UPPER_TILE &&
(y0 % (1 << sps->log2_ctb_size)) == 0)))
boundary_upper = 0;
if (boundary_upper) {
const RefPicList *rpl_top = (lc->boundary_flags & BOUNDARY_UPPER_SLICE) ?
ff_hevc_get_ref_list(s, s->cur_frame, x0, y0 - 1) :
s->cur_frame->refPicList;
int yp_pu = (y0 - 1) >> log2_min_pu_size;
int yq_pu = y0 >> log2_min_pu_size;
int yp_tu = (y0 - 1) >> log2_min_tu_size;
int yq_tu = y0 >> log2_min_tu_size;
for (i = 0; i < (1 << log2_trafo_size); i += 4) {
int x_pu = (x0 + i) >> log2_min_pu_size;
int x_tu = (x0 + i) >> log2_min_tu_size;
const MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu];
const MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
uint8_t top_cbf_luma = s->cbf_luma[yp_tu * min_tu_width + x_tu];
uint8_t curr_cbf_luma = s->cbf_luma[yq_tu * min_tu_width + x_tu];
if (curr->pred_flag == PF_INTRA || top->pred_flag == PF_INTRA)
bs = 2;
else if (curr_cbf_luma || top_cbf_luma)
bs = 1;
else
bs = boundary_strength(s, curr, top, rpl_top);
s->horizontal_bs[((x0 + i) + y0 * s->bs_width) >> 2] = bs;
}
}
// bs for vertical TU boundaries
boundary_left = x0 > 0 && !(x0 & 7);
if (boundary_left &&
((!s->sh.slice_loop_filter_across_slices_enabled_flag &&
lc->boundary_flags & BOUNDARY_LEFT_SLICE &&
(x0 % (1 << sps->log2_ctb_size)) == 0) ||
(!pps->loop_filter_across_tiles_enabled_flag &&
lc->boundary_flags & BOUNDARY_LEFT_TILE &&
(x0 % (1 << sps->log2_ctb_size)) == 0)))
boundary_left = 0;
if (boundary_left) {
const RefPicList *rpl_left = (lc->boundary_flags & BOUNDARY_LEFT_SLICE) ?
ff_hevc_get_ref_list(s, s->cur_frame, x0 - 1, y0) :
s->cur_frame->refPicList;
int xp_pu = (x0 - 1) >> log2_min_pu_size;
int xq_pu = x0 >> log2_min_pu_size;
int xp_tu = (x0 - 1) >> log2_min_tu_size;
int xq_tu = x0 >> log2_min_tu_size;
for (i = 0; i < (1 << log2_trafo_size); i += 4) {
int y_pu = (y0 + i) >> log2_min_pu_size;
int y_tu = (y0 + i) >> log2_min_tu_size;
const MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
const MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
uint8_t left_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xp_tu];
uint8_t curr_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xq_tu];
if (curr->pred_flag == PF_INTRA || left->pred_flag == PF_INTRA)
bs = 2;
else if (curr_cbf_luma || left_cbf_luma)
bs = 1;
else
bs = boundary_strength(s, curr, left, rpl_left);
s->vertical_bs[(x0 + (y0 + i) * s->bs_width) >> 2] = bs;
}
}
if (log2_trafo_size > log2_min_pu_size && !is_intra) {
const RefPicList *rpl = s->cur_frame->refPicList;
// bs for TU internal horizontal PU boundaries
for (j = 8; j < (1 << log2_trafo_size); j += 8) {
int yp_pu = (y0 + j - 1) >> log2_min_pu_size;
int yq_pu = (y0 + j) >> log2_min_pu_size;
for (i = 0; i < (1 << log2_trafo_size); i += 4) {
int x_pu = (x0 + i) >> log2_min_pu_size;
const MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu];
const MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
bs = boundary_strength(s, curr, top, rpl);
s->horizontal_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs;
}
}
// bs for TU internal vertical PU boundaries
for (j = 0; j < (1 << log2_trafo_size); j += 4) {
int y_pu = (y0 + j) >> log2_min_pu_size;
for (i = 8; i < (1 << log2_trafo_size); i += 8) {
int xp_pu = (x0 + i - 1) >> log2_min_pu_size;
int xq_pu = (x0 + i) >> log2_min_pu_size;
const MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
const MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
bs = boundary_strength(s, curr, left, rpl);
s->vertical_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs;
}
}
}
}
#undef LUMA
#undef CB
#undef CR
void ff_hevc_hls_filter(HEVCLocalContext *lc, const HEVCPPS *pps,
int x, int y, int ctb_size)
{
const HEVCSPS *const sps = pps->sps;
const HEVCContext *const s = lc->parent;
int x_end = x >= sps->width - ctb_size;
int skip = 0;
if (s->avctx->skip_loop_filter >= AVDISCARD_ALL ||
(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && !IS_IDR(s)) ||
(s->avctx->skip_loop_filter >= AVDISCARD_NONINTRA &&
s->sh.slice_type != HEVC_SLICE_I) ||
(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR &&
s->sh.slice_type == HEVC_SLICE_B) ||
(s->avctx->skip_loop_filter >= AVDISCARD_NONREF &&
ff_hevc_nal_is_nonref(s->nal_unit_type)))
skip = 1;
if (!skip)
deblocking_filter_CTB(s, pps, sps, x, y);
if (sps->sao_enabled && !skip) {
int y_end = y >= sps->height - ctb_size;
if (y && x)
sao_filter_CTB(lc, s, pps, sps, x - ctb_size, y - ctb_size);
if (x && y_end)
sao_filter_CTB(lc, s, pps, sps, x - ctb_size, y);
if (y && x_end) {
sao_filter_CTB(lc, s, pps, sps, x, y - ctb_size);
if (s->avctx->active_thread_type & FF_THREAD_FRAME )
ff_progress_frame_report(&s->cur_frame->tf, y);
}
if (x_end && y_end) {
sao_filter_CTB(lc, s, pps, sps, x , y);
if (s->avctx->active_thread_type & FF_THREAD_FRAME )
ff_progress_frame_report(&s->cur_frame->tf, y + ctb_size);
}
} else if (s->avctx->active_thread_type & FF_THREAD_FRAME && x_end)
ff_progress_frame_report(&s->cur_frame->tf, y + ctb_size - 4);
}
void ff_hevc_hls_filters(HEVCLocalContext *lc, const HEVCPPS *pps,
int x_ctb, int y_ctb, int ctb_size)
{
int x_end = x_ctb >= pps->sps->width - ctb_size;
int y_end = y_ctb >= pps->sps->height - ctb_size;
if (y_ctb && x_ctb)
ff_hevc_hls_filter(lc, pps, x_ctb - ctb_size, y_ctb - ctb_size, ctb_size);
if (y_ctb && x_end)
ff_hevc_hls_filter(lc, pps, x_ctb, y_ctb - ctb_size, ctb_size);
if (x_ctb && y_end)
ff_hevc_hls_filter(lc, pps, x_ctb - ctb_size, y_ctb, ctb_size);
}