1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-07 11:13:41 +02:00
FFmpeg/libavcodec/fraps.c

382 lines
12 KiB
C

/*
* Fraps FPS1 decoder
* Copyright (c) 2005 Roine Gustafsson
* Copyright (c) 2006 Konstantin Shishkov
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Lossless Fraps 'FPS1' decoder
* @author Roine Gustafsson (roine at users sf net)
* @author Konstantin Shishkov
*
* Codec algorithm for version 0 is taken from Transcode <www.transcoding.org>
*
* Version 2 files support by Konstantin Shishkov
*/
#include "avcodec.h"
#include "get_bits.h"
#include "huffman.h"
#include "bytestream.h"
#include "dsputil.h"
#include "internal.h"
#define FPS_TAG MKTAG('F', 'P', 'S', 'x')
/**
* local variable storage
*/
typedef struct FrapsContext {
AVCodecContext *avctx;
AVFrame frame;
uint8_t *tmpbuf;
int tmpbuf_size;
DSPContext dsp;
} FrapsContext;
/**
* initializes decoder
* @param avctx codec context
* @return 0 on success or negative if fails
*/
static av_cold int decode_init(AVCodecContext *avctx)
{
FrapsContext * const s = avctx->priv_data;
avctx->pix_fmt = AV_PIX_FMT_NONE; /* set in decode_frame */
s->avctx = avctx;
s->tmpbuf = NULL;
avcodec_get_frame_defaults(&s->frame);
ff_dsputil_init(&s->dsp, avctx);
return 0;
}
/**
* Comparator - our nodes should ascend by count
* but with preserved symbol order
*/
static int huff_cmp(const void *va, const void *vb)
{
const Node *a = va, *b = vb;
return (a->count - b->count)*256 + a->sym - b->sym;
}
/**
* decode Fraps v2 packed plane
*/
static int fraps2_decode_plane(FrapsContext *s, uint8_t *dst, int stride, int w,
int h, const uint8_t *src, int size, int Uoff,
const int step)
{
int i, j, ret;
GetBitContext gb;
VLC vlc;
Node nodes[512];
for (i = 0; i < 256; i++)
nodes[i].count = bytestream_get_le32(&src);
size -= 1024;
if ((ret = ff_huff_build_tree(s->avctx, &vlc, 256, nodes, huff_cmp,
FF_HUFFMAN_FLAG_ZERO_COUNT)) < 0)
return ret;
/* we have built Huffman table and are ready to decode plane */
/* convert bits so they may be used by standard bitreader */
s->dsp.bswap_buf((uint32_t *)s->tmpbuf, (const uint32_t *)src, size >> 2);
init_get_bits(&gb, s->tmpbuf, size * 8);
for (j = 0; j < h; j++) {
for (i = 0; i < w*step; i += step) {
dst[i] = get_vlc2(&gb, vlc.table, 9, 3);
/* lines are stored as deltas between previous lines
* and we need to add 0x80 to the first lines of chroma planes
*/
if (j)
dst[i] += dst[i - stride];
else if (Uoff)
dst[i] += 0x80;
if (get_bits_left(&gb) < 0) {
ff_free_vlc(&vlc);
return AVERROR_INVALIDDATA;
}
}
dst += stride;
}
ff_free_vlc(&vlc);
return 0;
}
static int decode_frame(AVCodecContext *avctx,
void *data, int *got_frame,
AVPacket *avpkt)
{
FrapsContext * const s = avctx->priv_data;
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
AVFrame *frame = data;
AVFrame * const f = &s->frame;
uint32_t header;
unsigned int version,header_size;
unsigned int x, y;
const uint32_t *buf32;
uint32_t *luma1,*luma2,*cb,*cr;
uint32_t offs[4];
int i, j, ret, is_chroma, planes;
enum AVPixelFormat pix_fmt;
int prev_pic_bit, expected_size;
if (buf_size < 4) {
av_log(avctx, AV_LOG_ERROR, "Packet is too short\n");
return AVERROR_INVALIDDATA;
}
header = AV_RL32(buf);
version = header & 0xff;
header_size = (header & (1<<30))? 8 : 4; /* bit 30 means pad to 8 bytes */
prev_pic_bit = header & (1U << 31); /* bit 31 means same as previous pic */
if (version > 5) {
av_log(avctx, AV_LOG_ERROR,
"This file is encoded with Fraps version %d. " \
"This codec can only decode versions <= 5.\n", version);
return AVERROR_PATCHWELCOME;
}
buf += 4;
if (header_size == 8)
buf += 4;
pix_fmt = version & 1 ? AV_PIX_FMT_BGR24 : AV_PIX_FMT_YUVJ420P;
if (avctx->pix_fmt != pix_fmt && f->data[0]) {
av_frame_unref(f);
}
avctx->pix_fmt = pix_fmt;
expected_size = header_size;
switch (version) {
case 0:
default:
/* Fraps v0 is a reordered YUV420 */
if (!prev_pic_bit)
expected_size += avctx->width * avctx->height * 3 / 2;
if (buf_size != expected_size) {
av_log(avctx, AV_LOG_ERROR,
"Invalid frame length %d (should be %d)\n",
buf_size, expected_size);
return AVERROR_INVALIDDATA;
}
if (((avctx->width % 8) != 0) || ((avctx->height % 2) != 0)) {
av_log(avctx, AV_LOG_ERROR, "Invalid frame size %dx%d\n",
avctx->width, avctx->height);
return AVERROR_INVALIDDATA;
}
if ((ret = ff_reget_buffer(avctx, f)) < 0) {
av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
return ret;
}
f->pict_type = prev_pic_bit ? AV_PICTURE_TYPE_P : AV_PICTURE_TYPE_I;
f->key_frame = f->pict_type == AV_PICTURE_TYPE_I;
if (f->pict_type == AV_PICTURE_TYPE_I) {
buf32 = (const uint32_t*)buf;
for (y = 0; y < avctx->height / 2; y++) {
luma1 = (uint32_t*)&f->data[0][ y * 2 * f->linesize[0]];
luma2 = (uint32_t*)&f->data[0][(y * 2 + 1) * f->linesize[0]];
cr = (uint32_t*)&f->data[1][ y * f->linesize[1]];
cb = (uint32_t*)&f->data[2][ y * f->linesize[2]];
for (x = 0; x < avctx->width; x += 8) {
*(luma1++) = *(buf32++);
*(luma1++) = *(buf32++);
*(luma2++) = *(buf32++);
*(luma2++) = *(buf32++);
*(cr++) = *(buf32++);
*(cb++) = *(buf32++);
}
}
}
break;
case 1:
/* Fraps v1 is an upside-down BGR24 */
if (!prev_pic_bit)
expected_size += avctx->width * avctx->height * 3;
if (buf_size != expected_size) {
av_log(avctx, AV_LOG_ERROR,
"Invalid frame length %d (should be %d)\n",
buf_size, expected_size);
return AVERROR_INVALIDDATA;
}
if ((ret = ff_reget_buffer(avctx, f)) < 0) {
av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
return ret;
}
f->pict_type = prev_pic_bit ? AV_PICTURE_TYPE_P : AV_PICTURE_TYPE_I;
f->key_frame = f->pict_type == AV_PICTURE_TYPE_I;
if (f->pict_type == AV_PICTURE_TYPE_I) {
for (y = 0; y<avctx->height; y++)
memcpy(&f->data[0][(avctx->height - y - 1) * f->linesize[0]],
&buf[y * avctx->width * 3],
3 * avctx->width);
}
break;
case 2:
case 4:
/**
* Fraps v2 is Huffman-coded YUV420 planes
* Fraps v4 is virtually the same
*/
planes = 3;
if ((ret = ff_reget_buffer(avctx, f)) < 0) {
av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
return ret;
}
/* skip frame */
if (buf_size == 8) {
f->pict_type = AV_PICTURE_TYPE_P;
f->key_frame = 0;
break;
}
f->pict_type = AV_PICTURE_TYPE_I;
f->key_frame = 1;
if ((AV_RL32(buf) != FPS_TAG) || (buf_size < (planes * 1024 + 24))) {
av_log(avctx, AV_LOG_ERROR, "Fraps: error in data stream\n");
return AVERROR_INVALIDDATA;
}
for (i = 0; i < planes; i++) {
offs[i] = AV_RL32(buf + 4 + i * 4);
if (offs[i] >= buf_size || (i && offs[i] <= offs[i - 1] + 1024)) {
av_log(avctx, AV_LOG_ERROR, "Fraps: plane %i offset is out of bounds\n", i);
return AVERROR_INVALIDDATA;
}
}
offs[planes] = buf_size;
for (i = 0; i < planes; i++) {
is_chroma = !!i;
av_fast_padded_malloc(&s->tmpbuf, &s->tmpbuf_size,
offs[i + 1] - offs[i] - 1024);
if (!s->tmpbuf)
return AVERROR(ENOMEM);
if ((ret = fraps2_decode_plane(s, f->data[i], f->linesize[i],
avctx->width >> is_chroma,
avctx->height >> is_chroma,
buf + offs[i], offs[i + 1] - offs[i],
is_chroma, 1)) < 0) {
av_log(avctx, AV_LOG_ERROR, "Error decoding plane %i\n", i);
return ret;
}
}
break;
case 3:
case 5:
/* Virtually the same as version 4, but is for RGB24 */
planes = 3;
if ((ret = ff_reget_buffer(avctx, f)) < 0) {
av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
return ret;
}
/* skip frame */
if (buf_size == 8) {
f->pict_type = AV_PICTURE_TYPE_P;
f->key_frame = 0;
break;
}
f->pict_type = AV_PICTURE_TYPE_I;
f->key_frame = 1;
if ((AV_RL32(buf) != FPS_TAG)||(buf_size < (planes*1024 + 24))) {
av_log(avctx, AV_LOG_ERROR, "Fraps: error in data stream\n");
return AVERROR_INVALIDDATA;
}
for (i = 0; i < planes; i++) {
offs[i] = AV_RL32(buf + 4 + i * 4);
if (offs[i] >= buf_size || (i && offs[i] <= offs[i - 1] + 1024)) {
av_log(avctx, AV_LOG_ERROR, "Fraps: plane %i offset is out of bounds\n", i);
return AVERROR_INVALIDDATA;
}
}
offs[planes] = buf_size;
for (i = 0; i < planes; i++) {
av_fast_padded_malloc(&s->tmpbuf, &s->tmpbuf_size,
offs[i + 1] - offs[i] - 1024);
if (!s->tmpbuf)
return AVERROR(ENOMEM);
if ((ret = fraps2_decode_plane(s, f->data[0] + i + (f->linesize[0] * (avctx->height - 1)),
-f->linesize[0], avctx->width, avctx->height,
buf + offs[i], offs[i + 1] - offs[i], 0, 3)) < 0) {
av_log(avctx, AV_LOG_ERROR, "Error decoding plane %i\n", i);
return ret;
}
}
// convert pseudo-YUV into real RGB
for (j = 0; j < avctx->height; j++) {
for (i = 0; i < avctx->width; i++) {
f->data[0][0 + i*3 + j*f->linesize[0]] += f->data[0][1 + i*3 + j*f->linesize[0]];
f->data[0][2 + i*3 + j*f->linesize[0]] += f->data[0][1 + i*3 + j*f->linesize[0]];
}
}
break;
}
if ((ret = av_frame_ref(frame, f)) < 0)
return ret;
*got_frame = 1;
return buf_size;
}
/**
* closes decoder
* @param avctx codec context
* @return 0 on success or negative if fails
*/
static av_cold int decode_end(AVCodecContext *avctx)
{
FrapsContext *s = (FrapsContext*)avctx->priv_data;
av_frame_unref(&s->frame);
av_freep(&s->tmpbuf);
return 0;
}
AVCodec ff_fraps_decoder = {
.name = "fraps",
.long_name = NULL_IF_CONFIG_SMALL("Fraps"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_FRAPS,
.priv_data_size = sizeof(FrapsContext),
.init = decode_init,
.close = decode_end,
.decode = decode_frame,
.capabilities = CODEC_CAP_DR1,
};