1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
2018-07-02 13:45:38 -03:00

355 lines
13 KiB
C

/*
* Copyright (c) 2018 Sergey Lavrushkin
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Filter implementing image super-resolution using deep convolutional networks.
* https://arxiv.org/abs/1501.00092
* https://arxiv.org/abs/1609.05158
*/
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "libavutil/opt.h"
#include "libavformat/avio.h"
#include "libswscale/swscale.h"
#include "dnn_interface.h"
typedef enum {SRCNN, ESPCN} SRModel;
typedef struct SRContext {
const AVClass *class;
SRModel model_type;
char* model_filename;
DNNBackendType backend_type;
DNNModule* dnn_module;
DNNModel* model;
DNNData input, output;
int scale_factor;
struct SwsContext* sws_context;
int sws_slice_h;
} SRContext;
#define OFFSET(x) offsetof(SRContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
static const AVOption sr_options[] = {
{ "model", "specifies what DNN model to use", OFFSET(model_type), AV_OPT_TYPE_FLAGS, { .i64 = 0 }, 0, 1, FLAGS, "model_type" },
{ "srcnn", "Super-Resolution Convolutional Neural Network model (scale factor should be specified for custom SRCNN model)", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "model_type" },
{ "espcn", "Efficient Sub-Pixel Convolutional Neural Network model", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "model_type" },
{ "dnn_backend", "DNN backend used for model execution", OFFSET(backend_type), AV_OPT_TYPE_FLAGS, { .i64 = 0 }, 0, 1, FLAGS, "backend" },
{ "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" },
#if (CONFIG_LIBTENSORFLOW == 1)
{ "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" },
#endif
{"scale_factor", "scale factor for SRCNN model", OFFSET(scale_factor), AV_OPT_TYPE_INT, { .i64 = 2 }, 2, 4, FLAGS},
{ "model_filename", "path to model file specifying network architecture and its parameters", OFFSET(model_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(sr);
static av_cold int init(AVFilterContext* context)
{
SRContext* sr_context = context->priv;
sr_context->dnn_module = ff_get_dnn_module(sr_context->backend_type);
if (!sr_context->dnn_module){
av_log(context, AV_LOG_ERROR, "could not create DNN module for requested backend\n");
return AVERROR(ENOMEM);
}
if (!sr_context->model_filename){
av_log(context, AV_LOG_VERBOSE, "model file for network was not specified, using default network for x2 upsampling\n");
sr_context->scale_factor = 2;
switch (sr_context->model_type){
case SRCNN:
sr_context->model = (sr_context->dnn_module->load_default_model)(DNN_SRCNN);
break;
case ESPCN:
sr_context->model = (sr_context->dnn_module->load_default_model)(DNN_ESPCN);
}
}
else{
sr_context->model = (sr_context->dnn_module->load_model)(sr_context->model_filename);
}
if (!sr_context->model){
av_log(context, AV_LOG_ERROR, "could not load DNN model\n");
return AVERROR(EIO);
}
return 0;
}
static int query_formats(AVFilterContext* context)
{
const enum AVPixelFormat pixel_formats[] = {AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_GRAY8,
AV_PIX_FMT_NONE};
AVFilterFormats* formats_list;
formats_list = ff_make_format_list(pixel_formats);
if (!formats_list){
av_log(context, AV_LOG_ERROR, "could not create formats list\n");
return AVERROR(ENOMEM);
}
return ff_set_common_formats(context, formats_list);
}
static int config_props(AVFilterLink* inlink)
{
AVFilterContext* context = inlink->dst;
SRContext* sr_context = context->priv;
AVFilterLink* outlink = context->outputs[0];
DNNReturnType result;
int sws_src_h, sws_src_w, sws_dst_h, sws_dst_w;
switch (sr_context->model_type){
case SRCNN:
sr_context->input.width = inlink->w * sr_context->scale_factor;
sr_context->input.height = inlink->h * sr_context->scale_factor;
break;
case ESPCN:
sr_context->input.width = inlink->w;
sr_context->input.height = inlink->h;
}
sr_context->input.channels = 1;
result = (sr_context->model->set_input_output)(sr_context->model->model, &sr_context->input, &sr_context->output);
if (result != DNN_SUCCESS){
av_log(context, AV_LOG_ERROR, "could not set input and output for the model\n");
return AVERROR(EIO);
}
else{
outlink->h = sr_context->output.height;
outlink->w = sr_context->output.width;
switch (sr_context->model_type){
case SRCNN:
sr_context->sws_context = sws_getContext(inlink->w, inlink->h, inlink->format,
outlink->w, outlink->h, outlink->format, SWS_BICUBIC, NULL, NULL, NULL);
if (!sr_context->sws_context){
av_log(context, AV_LOG_ERROR, "could not create SwsContext\n");
return AVERROR(ENOMEM);
}
sr_context->sws_slice_h = inlink->h;
break;
case ESPCN:
if (inlink->format == AV_PIX_FMT_GRAY8){
sr_context->sws_context = NULL;
}
else{
sws_src_h = sr_context->input.height;
sws_src_w = sr_context->input.width;
sws_dst_h = sr_context->output.height;
sws_dst_w = sr_context->output.width;
switch (inlink->format){
case AV_PIX_FMT_YUV420P:
sws_src_h = (sws_src_h >> 1) + (sws_src_h % 2 != 0 ? 1 : 0);
sws_src_w = (sws_src_w >> 1) + (sws_src_w % 2 != 0 ? 1 : 0);
sws_dst_h = (sws_dst_h >> 1) + (sws_dst_h % 2 != 0 ? 1 : 0);
sws_dst_w = (sws_dst_w >> 1) + (sws_dst_w % 2 != 0 ? 1 : 0);
break;
case AV_PIX_FMT_YUV422P:
sws_src_w = (sws_src_w >> 1) + (sws_src_w % 2 != 0 ? 1 : 0);
sws_dst_w = (sws_dst_w >> 1) + (sws_dst_w % 2 != 0 ? 1 : 0);
break;
case AV_PIX_FMT_YUV444P:
break;
case AV_PIX_FMT_YUV410P:
sws_src_h = (sws_src_h >> 2) + (sws_src_h % 4 != 0 ? 1 : 0);
sws_src_w = (sws_src_w >> 2) + (sws_src_w % 4 != 0 ? 1 : 0);
sws_dst_h = (sws_dst_h >> 2) + (sws_dst_h % 4 != 0 ? 1 : 0);
sws_dst_w = (sws_dst_w >> 2) + (sws_dst_w % 4 != 0 ? 1 : 0);
break;
case AV_PIX_FMT_YUV411P:
sws_src_w = (sws_src_w >> 2) + (sws_src_w % 4 != 0 ? 1 : 0);
sws_dst_w = (sws_dst_w >> 2) + (sws_dst_w % 4 != 0 ? 1 : 0);
break;
default:
av_log(context, AV_LOG_ERROR, "could not create SwsContext for input pixel format");
return AVERROR(EIO);
}
sr_context->sws_context = sws_getContext(sws_src_w, sws_src_h, AV_PIX_FMT_GRAY8,
sws_dst_w, sws_dst_h, AV_PIX_FMT_GRAY8, SWS_BICUBIC, NULL, NULL, NULL);
if (!sr_context->sws_context){
av_log(context, AV_LOG_ERROR, "could not create SwsContext\n");
return AVERROR(ENOMEM);
}
sr_context->sws_slice_h = sws_src_h;
}
}
return 0;
}
}
typedef struct ThreadData{
uint8_t* data;
int data_linesize, height, width;
} ThreadData;
static int uint8_to_float(AVFilterContext* context, void* arg, int jobnr, int nb_jobs)
{
SRContext* sr_context = context->priv;
const ThreadData* td = arg;
const int slice_start = (td->height * jobnr ) / nb_jobs;
const int slice_end = (td->height * (jobnr + 1)) / nb_jobs;
const uint8_t* src = td->data + slice_start * td->data_linesize;
float* dst = sr_context->input.data + slice_start * td->width;
int y, x;
for (y = slice_start; y < slice_end; ++y){
for (x = 0; x < td->width; ++x){
dst[x] = (float)src[x] / 255.0f;
}
src += td->data_linesize;
dst += td->width;
}
return 0;
}
static int float_to_uint8(AVFilterContext* context, void* arg, int jobnr, int nb_jobs)
{
SRContext* sr_context = context->priv;
const ThreadData* td = arg;
const int slice_start = (td->height * jobnr ) / nb_jobs;
const int slice_end = (td->height * (jobnr + 1)) / nb_jobs;
const float* src = sr_context->output.data + slice_start * td->width;
uint8_t* dst = td->data + slice_start * td->data_linesize;
int y, x;
for (y = slice_start; y < slice_end; ++y){
for (x = 0; x < td->width; ++x){
dst[x] = (uint8_t)(255.0f * FFMIN(src[x], 1.0f));
}
src += td->width;
dst += td->data_linesize;
}
return 0;
}
static int filter_frame(AVFilterLink* inlink, AVFrame* in)
{
AVFilterContext* context = inlink->dst;
SRContext* sr_context = context->priv;
AVFilterLink* outlink = context->outputs[0];
AVFrame* out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
ThreadData td;
int nb_threads;
DNNReturnType dnn_result;
if (!out){
av_log(context, AV_LOG_ERROR, "could not allocate memory for output frame\n");
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
out->height = sr_context->output.height;
out->width = sr_context->output.width;
switch (sr_context->model_type){
case SRCNN:
sws_scale(sr_context->sws_context, (const uint8_t **)in->data, in->linesize,
0, sr_context->sws_slice_h, out->data, out->linesize);
td.data = out->data[0];
td.data_linesize = out->linesize[0];
td.height = out->height;
td.width = out->width;
break;
case ESPCN:
if (sr_context->sws_context){
sws_scale(sr_context->sws_context, (const uint8_t **)(in->data + 1), in->linesize + 1,
0, sr_context->sws_slice_h, out->data + 1, out->linesize + 1);
sws_scale(sr_context->sws_context, (const uint8_t **)(in->data + 2), in->linesize + 2,
0, sr_context->sws_slice_h, out->data + 2, out->linesize + 2);
}
td.data = in->data[0];
td.data_linesize = in->linesize[0];
td.height = in->height;
td.width = in->width;
}
nb_threads = ff_filter_get_nb_threads(context);
context->internal->execute(context, uint8_to_float, &td, NULL, FFMIN(td.height, nb_threads));
av_frame_free(&in);
dnn_result = (sr_context->dnn_module->execute_model)(sr_context->model);
if (dnn_result != DNN_SUCCESS){
av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n");
return AVERROR(EIO);
}
td.data = out->data[0];
td.data_linesize = out->linesize[0];
td.height = out->height;
td.width = out->width;
context->internal->execute(context, float_to_uint8, &td, NULL, FFMIN(td.height, nb_threads));
return ff_filter_frame(outlink, out);
}
static av_cold void uninit(AVFilterContext* context)
{
SRContext* sr_context = context->priv;
if (sr_context->dnn_module){
(sr_context->dnn_module->free_model)(&sr_context->model);
av_freep(&sr_context->dnn_module);
}
if (sr_context->sws_context){
sws_freeContext(sr_context->sws_context);
}
}
static const AVFilterPad sr_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_props,
.filter_frame = filter_frame,
},
{ NULL }
};
static const AVFilterPad sr_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
AVFilter ff_vf_sr = {
.name = "sr",
.description = NULL_IF_CONFIG_SMALL("Apply DNN-based image super resolution to the input."),
.priv_size = sizeof(SRContext),
.init = init,
.uninit = uninit,
.query_formats = query_formats,
.inputs = sr_inputs,
.outputs = sr_outputs,
.priv_class = &sr_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
};