1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
FFmpeg/libavcodec/wmaprodec.c
Sascha Sommer 31c57185c5 Add some more wmapro decoder hunks
Originally committed as revision 19678 to svn://svn.ffmpeg.org/ffmpeg/trunk
2009-08-21 16:54:42 +00:00

229 lines
8.9 KiB
C

/*
* Wmapro compatible decoder
* Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion
* Copyright (c) 2008 - 2009 Sascha Sommer, Benjamin Larsson
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file libavcodec/wmaprodec.c
* @brief wmapro decoder implementation
* Wmapro is an MDCT based codec comparable to wma standard or AAC.
* The decoding therefore consists of the following steps:
* - bitstream decoding
* - reconstruction of per-channel data
* - rescaling and inverse quantization
* - IMDCT
* - windowing and overlapp-add
*
* The compressed wmapro bitstream is split into individual packets.
* Every such packet contains one or more wma frames.
* The compressed frames may have a variable length and frames may
* cross packet boundaries.
* Common to all wmapro frames is the number of samples that are stored in
* a frame.
* The number of samples and a few other decode flags are stored
* as extradata that has to be passed to the decoder.
*
* The wmapro frames themselves are again split into a variable number of
* subframes. Every subframe contains the data for 2^N time domain samples
* where N varies between 7 and 12.
*
* Example wmapro bitstream (in samples):
*
* || packet 0 || packet 1 || packet 2 packets
* ---------------------------------------------------
* || frame 0 || frame 1 || frame 2 || frames
* ---------------------------------------------------
* || | | || | | | || || subframes of channel 0
* ---------------------------------------------------
* || | | || | | | || || subframes of channel 1
* ---------------------------------------------------
*
* The frame layouts for the individual channels of a wma frame does not need
* to be the same.
*
* However, if the offsets and lengths of several subframes of a frame are the
* same, the subframes of the channels can be grouped.
* Every group may then use special coding techniques like M/S stereo coding
* to improve the compression ratio. These channel transformations do not
* need to be applied to a whole subframe. Instead, they can also work on
* individual scale factor bands (see below).
* The coefficients that carry the audio signal in the frequency domain
* are transmitted as huffman-coded vectors with 4, 2 and 1 elements.
* In addition to that, the encoder can switch to a runlevel coding scheme
* by transmitting subframe_length / 128 zero coefficients.
*
* Before the audio signal can be converted to the time domain, the
* coefficients have to be rescaled and inverse quantized.
* A subframe is therefore split into several scale factor bands that get
* scaled individually.
* Scale factors are submitted for every frame but they might be shared
* between the subframes of a channel. Scale factors are initially DPCM-coded.
* Once scale factors are shared, the differences are transmitted as runlevel
* codes.
* Every subframe length and offset combination in the frame layout shares a
* common quantization factor that can be adjusted for every channel by a
* modifier.
* After the inverse quantization, the coefficients get processed by an IMDCT.
* The resulting values are then windowed with a sine window and the first half
* of the values are added to the second half of the output from the previous
* subframe in order to reconstruct the output samples.
*/
/**
*@brief Uninitialize the decoder and free all resources.
*@param avctx codec context
*@return 0 on success, < 0 otherwise
*/
static av_cold int decode_end(AVCodecContext *avctx)
{
WMA3DecodeContext *s = avctx->priv_data;
int i;
for (i = 0 ; i < WMAPRO_BLOCK_SIZES ; i++)
ff_mdct_end(&s->mdct_ctx[i]);
return 0;
}
/**
*@brief Calculate a decorrelation matrix from the bitstream parameters.
*@param s codec context
*@param chgroup channel group for which the matrix needs to be calculated
*/
static void decode_decorrelation_matrix(WMA3DecodeContext *s,
WMA3ChannelGroup *chgroup)
{
int i;
int offset = 0;
int8_t rotation_offset[WMAPRO_MAX_CHANNELS * WMAPRO_MAX_CHANNELS];
memset(chgroup->decorrelation_matrix,0,
sizeof(float) *s->num_channels * s->num_channels);
for (i = 0; i < chgroup->num_channels * (chgroup->num_channels - 1) >> 1; i++)
rotation_offset[i] = get_bits(&s->gb,6);
for (i = 0; i < chgroup->num_channels; i++)
chgroup->decorrelation_matrix[chgroup->num_channels * i + i] =
get_bits1(&s->gb) ? 1.0 : -1.0;
for (i = 1; i < chgroup->num_channels; i++) {
int x;
for (x = 0; x < i; x++) {
int y;
for (y = 0; y < i + 1 ; y++) {
float v1 = chgroup->decorrelation_matrix[x * chgroup->num_channels + y];
float v2 = chgroup->decorrelation_matrix[i * chgroup->num_channels + y];
int n = rotation_offset[offset + x];
float sinv;
float cosv;
if (n < 32) {
sinv = sin64[n];
cosv = sin64[32-n];
} else {
sinv = sin64[64-n];
cosv = -sin64[n-32];
}
chgroup->decorrelation_matrix[y + x * chgroup->num_channels] =
(v1 * sinv) - (v2 * cosv);
chgroup->decorrelation_matrix[y + i * chgroup->num_channels] =
(v1 * cosv) + (v2 * sinv);
}
}
offset += i;
}
}
/**
*@brief Reconstruct the individual channel data.
*@param s codec context
*/
static void inverse_channel_transform(WMA3DecodeContext *s)
{
int i;
for (i = 0; i < s->num_chgroups; i++) {
if (s->chgroup[i].transform == 1) {
/** M/S stereo decoding */
int16_t* sfb_offsets = s->cur_sfb_offsets;
float* ch0 = *sfb_offsets + s->channel[0].coeffs;
float* ch1 = *sfb_offsets++ + s->channel[1].coeffs;
const char* tb = s->chgroup[i].transform_band;
const char* tb_end = tb + s->num_bands;
while (tb < tb_end) {
const float* ch0_end = s->channel[0].coeffs +
FFMIN(*sfb_offsets,s->subframe_len);
if (*tb++ == 1) {
while (ch0 < ch0_end) {
const float v1 = *ch0;
const float v2 = *ch1;
*ch0++ = v1 - v2;
*ch1++ = v1 + v2;
}
} else {
while (ch0 < ch0_end) {
*ch0++ *= 181.0 / 128;
*ch1++ *= 181.0 / 128;
}
}
++sfb_offsets;
}
} else if (s->chgroup[i].transform) {
float data[WMAPRO_MAX_CHANNELS];
const int num_channels = s->chgroup[i].num_channels;
float** ch_data = s->chgroup[i].channel_data;
float** ch_end = ch_data + num_channels;
const int8_t* tb = s->chgroup[i].transform_band;
int16_t* sfb;
/** multichannel decorrelation */
for (sfb = s->cur_sfb_offsets ;
sfb < s->cur_sfb_offsets + s->num_bands;sfb++) {
if (*tb++ == 1) {
int y;
/** multiply values with the decorrelation_matrix */
for (y = sfb[0]; y < FFMIN(sfb[1], s->subframe_len); y++) {
const float* mat = s->chgroup[i].decorrelation_matrix;
const float* data_end = data + num_channels;
float* data_ptr = data;
float** ch;
for (ch = ch_data;ch < ch_end; ch++)
*data_ptr++ = (*ch)[y];
for (ch = ch_data; ch < ch_end; ch++) {
float sum = 0;
data_ptr = data;
while (data_ptr < data_end)
sum += *data_ptr++ * *mat++;
(*ch)[y] = sum;
}
}
}
}
}
}
}