1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
FFmpeg/libavfilter/vf_deshake.c
Ganesh Ajjanagadde 92e483f8ed all: use FFDIFFSIGN to resolve possible undefined behavior in comparators
FFDIFFSIGN was created explicitly for this purpose, since the common
return a - b idiom is unsafe regarding overflow on signed integers. It
optimizes to branchless code on common compilers.

FFDIFFSIGN also has the subjective benefit of being easier to read due
to lack of ternary operators.

Tested with FATE.

Things not covered by this are unsigned integers, for which overflows
are well defined, and also places where overflow is clearly impossible,
e.g an instance where the a - b was being done on 24 bit values.

Reviewed-by: Michael Niedermayer <michael@niedermayer.cc>
Reviewed-by: Clément Bœsch <u@pkh.me>
Signed-off-by: Ganesh Ajjanagadde <gajjanagadde@gmail.com>
2015-11-03 16:28:30 -05:00

577 lines
21 KiB
C

/*
* Copyright (C) 2010 Georg Martius <georg.martius@web.de>
* Copyright (C) 2010 Daniel G. Taylor <dan@programmer-art.org>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* fast deshake / depan video filter
*
* SAD block-matching motion compensation to fix small changes in
* horizontal and/or vertical shift. This filter helps remove camera shake
* from hand-holding a camera, bumping a tripod, moving on a vehicle, etc.
*
* Algorithm:
* - For each frame with one previous reference frame
* - For each block in the frame
* - If contrast > threshold then find likely motion vector
* - For all found motion vectors
* - Find most common, store as global motion vector
* - Find most likely rotation angle
* - Transform image along global motion
*
* TODO:
* - Fill frame edges based on previous/next reference frames
* - Fill frame edges by stretching image near the edges?
* - Can this be done quickly and look decent?
*
* Dark Shikari links to http://wiki.videolan.org/SoC_x264_2010#GPU_Motion_Estimation_2
* for an algorithm similar to what could be used here to get the gmv
* It requires only a couple diamond searches + fast downscaling
*
* Special thanks to Jason Kotenko for his help with the algorithm and my
* inability to see simple errors in C code.
*/
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#include "libavutil/common.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/qsort.h"
#include "deshake.h"
#include "deshake_opencl.h"
#define CHROMA_WIDTH(link) (-((-(link)->w) >> av_pix_fmt_desc_get((link)->format)->log2_chroma_w))
#define CHROMA_HEIGHT(link) (-((-(link)->h) >> av_pix_fmt_desc_get((link)->format)->log2_chroma_h))
#define OFFSET(x) offsetof(DeshakeContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
static const AVOption deshake_options[] = {
{ "x", "set x for the rectangular search area", OFFSET(cx), AV_OPT_TYPE_INT, {.i64=-1}, -1, INT_MAX, .flags = FLAGS },
{ "y", "set y for the rectangular search area", OFFSET(cy), AV_OPT_TYPE_INT, {.i64=-1}, -1, INT_MAX, .flags = FLAGS },
{ "w", "set width for the rectangular search area", OFFSET(cw), AV_OPT_TYPE_INT, {.i64=-1}, -1, INT_MAX, .flags = FLAGS },
{ "h", "set height for the rectangular search area", OFFSET(ch), AV_OPT_TYPE_INT, {.i64=-1}, -1, INT_MAX, .flags = FLAGS },
{ "rx", "set x for the rectangular search area", OFFSET(rx), AV_OPT_TYPE_INT, {.i64=16}, 0, MAX_R, .flags = FLAGS },
{ "ry", "set y for the rectangular search area", OFFSET(ry), AV_OPT_TYPE_INT, {.i64=16}, 0, MAX_R, .flags = FLAGS },
{ "edge", "set edge mode", OFFSET(edge), AV_OPT_TYPE_INT, {.i64=FILL_MIRROR}, FILL_BLANK, FILL_COUNT-1, FLAGS, "edge"},
{ "blank", "fill zeroes at blank locations", 0, AV_OPT_TYPE_CONST, {.i64=FILL_BLANK}, INT_MIN, INT_MAX, FLAGS, "edge" },
{ "original", "original image at blank locations", 0, AV_OPT_TYPE_CONST, {.i64=FILL_ORIGINAL}, INT_MIN, INT_MAX, FLAGS, "edge" },
{ "clamp", "extruded edge value at blank locations", 0, AV_OPT_TYPE_CONST, {.i64=FILL_CLAMP}, INT_MIN, INT_MAX, FLAGS, "edge" },
{ "mirror", "mirrored edge at blank locations", 0, AV_OPT_TYPE_CONST, {.i64=FILL_MIRROR}, INT_MIN, INT_MAX, FLAGS, "edge" },
{ "blocksize", "set motion search blocksize", OFFSET(blocksize), AV_OPT_TYPE_INT, {.i64=8}, 4, 128, .flags = FLAGS },
{ "contrast", "set contrast threshold for blocks", OFFSET(contrast), AV_OPT_TYPE_INT, {.i64=125}, 1, 255, .flags = FLAGS },
{ "search", "set search strategy", OFFSET(search), AV_OPT_TYPE_INT, {.i64=EXHAUSTIVE}, EXHAUSTIVE, SEARCH_COUNT-1, FLAGS, "smode" },
{ "exhaustive", "exhaustive search", 0, AV_OPT_TYPE_CONST, {.i64=EXHAUSTIVE}, INT_MIN, INT_MAX, FLAGS, "smode" },
{ "less", "less exhaustive search", 0, AV_OPT_TYPE_CONST, {.i64=SMART_EXHAUSTIVE}, INT_MIN, INT_MAX, FLAGS, "smode" },
{ "filename", "set motion search detailed log file name", OFFSET(filename), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "opencl", "use OpenCL filtering capabilities", OFFSET(opencl), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, .flags = FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(deshake);
static int cmp(const void *a, const void *b)
{
return FFDIFFSIGN(*(const double *)a, *(const double *)b);
}
/**
* Cleaned mean (cuts off 20% of values to remove outliers and then averages)
*/
static double clean_mean(double *values, int count)
{
double mean = 0;
int cut = count / 5;
int x;
AV_QSORT(values, count, double, cmp);
for (x = cut; x < count - cut; x++) {
mean += values[x];
}
return mean / (count - cut * 2);
}
/**
* Find the most likely shift in motion between two frames for a given
* macroblock. Test each block against several shifts given by the rx
* and ry attributes. Searches using a simple matrix of those shifts and
* chooses the most likely shift by the smallest difference in blocks.
*/
static void find_block_motion(DeshakeContext *deshake, uint8_t *src1,
uint8_t *src2, int cx, int cy, int stride,
IntMotionVector *mv)
{
int x, y;
int diff;
int smallest = INT_MAX;
int tmp, tmp2;
#define CMP(i, j) deshake->sad(src1 + cy * stride + cx, stride,\
src2 + (j) * stride + (i), stride)
if (deshake->search == EXHAUSTIVE) {
// Compare every possible position - this is sloooow!
for (y = -deshake->ry; y <= deshake->ry; y++) {
for (x = -deshake->rx; x <= deshake->rx; x++) {
diff = CMP(cx - x, cy - y);
if (diff < smallest) {
smallest = diff;
mv->x = x;
mv->y = y;
}
}
}
} else if (deshake->search == SMART_EXHAUSTIVE) {
// Compare every other possible position and find the best match
for (y = -deshake->ry + 1; y < deshake->ry; y += 2) {
for (x = -deshake->rx + 1; x < deshake->rx; x += 2) {
diff = CMP(cx - x, cy - y);
if (diff < smallest) {
smallest = diff;
mv->x = x;
mv->y = y;
}
}
}
// Hone in on the specific best match around the match we found above
tmp = mv->x;
tmp2 = mv->y;
for (y = tmp2 - 1; y <= tmp2 + 1; y++) {
for (x = tmp - 1; x <= tmp + 1; x++) {
if (x == tmp && y == tmp2)
continue;
diff = CMP(cx - x, cy - y);
if (diff < smallest) {
smallest = diff;
mv->x = x;
mv->y = y;
}
}
}
}
if (smallest > 512) {
mv->x = -1;
mv->y = -1;
}
emms_c();
//av_log(NULL, AV_LOG_ERROR, "%d\n", smallest);
//av_log(NULL, AV_LOG_ERROR, "Final: (%d, %d) = %d x %d\n", cx, cy, mv->x, mv->y);
}
/**
* Find the contrast of a given block. When searching for global motion we
* really only care about the high contrast blocks, so using this method we
* can actually skip blocks we don't care much about.
*/
static int block_contrast(uint8_t *src, int x, int y, int stride, int blocksize)
{
int highest = 0;
int lowest = 255;
int i, j, pos;
for (i = 0; i <= blocksize * 2; i++) {
// We use a width of 16 here to match the sad function
for (j = 0; j <= 15; j++) {
pos = (y - i) * stride + (x - j);
if (src[pos] < lowest)
lowest = src[pos];
else if (src[pos] > highest) {
highest = src[pos];
}
}
}
return highest - lowest;
}
/**
* Find the rotation for a given block.
*/
static double block_angle(int x, int y, int cx, int cy, IntMotionVector *shift)
{
double a1, a2, diff;
a1 = atan2(y - cy, x - cx);
a2 = atan2(y - cy + shift->y, x - cx + shift->x);
diff = a2 - a1;
return (diff > M_PI) ? diff - 2 * M_PI :
(diff < -M_PI) ? diff + 2 * M_PI :
diff;
}
/**
* Find the estimated global motion for a scene given the most likely shift
* for each block in the frame. The global motion is estimated to be the
* same as the motion from most blocks in the frame, so if most blocks
* move one pixel to the right and two pixels down, this would yield a
* motion vector (1, -2).
*/
static void find_motion(DeshakeContext *deshake, uint8_t *src1, uint8_t *src2,
int width, int height, int stride, Transform *t)
{
int x, y;
IntMotionVector mv = {0, 0};
int count_max_value = 0;
int contrast;
int pos;
int center_x = 0, center_y = 0;
double p_x, p_y;
av_fast_malloc(&deshake->angles, &deshake->angles_size, width * height / (16 * deshake->blocksize) * sizeof(*deshake->angles));
// Reset counts to zero
for (x = 0; x < deshake->rx * 2 + 1; x++) {
for (y = 0; y < deshake->ry * 2 + 1; y++) {
deshake->counts[x][y] = 0;
}
}
pos = 0;
// Find motion for every block and store the motion vector in the counts
for (y = deshake->ry; y < height - deshake->ry - (deshake->blocksize * 2); y += deshake->blocksize * 2) {
// We use a width of 16 here to match the sad function
for (x = deshake->rx; x < width - deshake->rx - 16; x += 16) {
// If the contrast is too low, just skip this block as it probably
// won't be very useful to us.
contrast = block_contrast(src2, x, y, stride, deshake->blocksize);
if (contrast > deshake->contrast) {
//av_log(NULL, AV_LOG_ERROR, "%d\n", contrast);
find_block_motion(deshake, src1, src2, x, y, stride, &mv);
if (mv.x != -1 && mv.y != -1) {
deshake->counts[mv.x + deshake->rx][mv.y + deshake->ry] += 1;
if (x > deshake->rx && y > deshake->ry)
deshake->angles[pos++] = block_angle(x, y, 0, 0, &mv);
center_x += mv.x;
center_y += mv.y;
}
}
}
}
if (pos) {
center_x /= pos;
center_y /= pos;
t->angle = clean_mean(deshake->angles, pos);
if (t->angle < 0.001)
t->angle = 0;
} else {
t->angle = 0;
}
// Find the most common motion vector in the frame and use it as the gmv
for (y = deshake->ry * 2; y >= 0; y--) {
for (x = 0; x < deshake->rx * 2 + 1; x++) {
//av_log(NULL, AV_LOG_ERROR, "%5d ", deshake->counts[x][y]);
if (deshake->counts[x][y] > count_max_value) {
t->vec.x = x - deshake->rx;
t->vec.y = y - deshake->ry;
count_max_value = deshake->counts[x][y];
}
}
//av_log(NULL, AV_LOG_ERROR, "\n");
}
p_x = (center_x - width / 2.0);
p_y = (center_y - height / 2.0);
t->vec.x += (cos(t->angle)-1)*p_x - sin(t->angle)*p_y;
t->vec.y += sin(t->angle)*p_x + (cos(t->angle)-1)*p_y;
// Clamp max shift & rotation?
t->vec.x = av_clipf(t->vec.x, -deshake->rx * 2, deshake->rx * 2);
t->vec.y = av_clipf(t->vec.y, -deshake->ry * 2, deshake->ry * 2);
t->angle = av_clipf(t->angle, -0.1, 0.1);
//av_log(NULL, AV_LOG_ERROR, "%d x %d\n", avg->x, avg->y);
}
static int deshake_transform_c(AVFilterContext *ctx,
int width, int height, int cw, int ch,
const float *matrix_y, const float *matrix_uv,
enum InterpolateMethod interpolate,
enum FillMethod fill, AVFrame *in, AVFrame *out)
{
int i = 0, ret = 0;
const float *matrixs[3];
int plane_w[3], plane_h[3];
matrixs[0] = matrix_y;
matrixs[1] = matrixs[2] = matrix_uv;
plane_w[0] = width;
plane_w[1] = plane_w[2] = cw;
plane_h[0] = height;
plane_h[1] = plane_h[2] = ch;
for (i = 0; i < 3; i++) {
// Transform the luma and chroma planes
ret = avfilter_transform(in->data[i], out->data[i], in->linesize[i], out->linesize[i],
plane_w[i], plane_h[i], matrixs[i], interpolate, fill);
if (ret < 0)
return ret;
}
return ret;
}
static av_cold int init(AVFilterContext *ctx)
{
int ret;
DeshakeContext *deshake = ctx->priv;
deshake->sad = av_pixelutils_get_sad_fn(4, 4, 1, deshake); // 16x16, 2nd source unaligned
if (!deshake->sad)
return AVERROR(EINVAL);
deshake->refcount = 20; // XXX: add to options?
deshake->blocksize /= 2;
deshake->blocksize = av_clip(deshake->blocksize, 4, 128);
if (deshake->rx % 16) {
av_log(ctx, AV_LOG_ERROR, "rx must be a multiple of 16\n");
return AVERROR_PATCHWELCOME;
}
if (deshake->filename)
deshake->fp = fopen(deshake->filename, "w");
if (deshake->fp)
fwrite("Ori x, Avg x, Fin x, Ori y, Avg y, Fin y, Ori angle, Avg angle, Fin angle, Ori zoom, Avg zoom, Fin zoom\n", sizeof(char), 104, deshake->fp);
// Quadword align left edge of box for MMX code, adjust width if necessary
// to keep right margin
if (deshake->cx > 0) {
deshake->cw += deshake->cx - (deshake->cx & ~15);
deshake->cx &= ~15;
}
deshake->transform = deshake_transform_c;
if (!CONFIG_OPENCL && deshake->opencl) {
av_log(ctx, AV_LOG_ERROR, "OpenCL support was not enabled in this build, cannot be selected\n");
return AVERROR(EINVAL);
}
if (CONFIG_OPENCL && deshake->opencl) {
deshake->transform = ff_opencl_transform;
ret = ff_opencl_deshake_init(ctx);
if (ret < 0)
return ret;
}
av_log(ctx, AV_LOG_VERBOSE, "cx: %d, cy: %d, cw: %d, ch: %d, rx: %d, ry: %d, edge: %d blocksize: %d contrast: %d search: %d\n",
deshake->cx, deshake->cy, deshake->cw, deshake->ch,
deshake->rx, deshake->ry, deshake->edge, deshake->blocksize * 2, deshake->contrast, deshake->search);
return 0;
}
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV410P,
AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_NONE
};
AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
if (!fmts_list)
return AVERROR(ENOMEM);
return ff_set_common_formats(ctx, fmts_list);
}
static int config_props(AVFilterLink *link)
{
DeshakeContext *deshake = link->dst->priv;
deshake->ref = NULL;
deshake->last.vec.x = 0;
deshake->last.vec.y = 0;
deshake->last.angle = 0;
deshake->last.zoom = 0;
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
DeshakeContext *deshake = ctx->priv;
if (CONFIG_OPENCL && deshake->opencl) {
ff_opencl_deshake_uninit(ctx);
}
av_frame_free(&deshake->ref);
av_freep(&deshake->angles);
deshake->angles_size = 0;
if (deshake->fp)
fclose(deshake->fp);
}
static int filter_frame(AVFilterLink *link, AVFrame *in)
{
DeshakeContext *deshake = link->dst->priv;
AVFilterLink *outlink = link->dst->outputs[0];
AVFrame *out;
Transform t = {{0},0}, orig = {{0},0};
float matrix_y[9], matrix_uv[9];
float alpha = 2.0 / deshake->refcount;
char tmp[256];
int ret = 0;
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
if (CONFIG_OPENCL && deshake->opencl) {
ret = ff_opencl_deshake_process_inout_buf(link->dst,in, out);
if (ret < 0)
return ret;
}
if (deshake->cx < 0 || deshake->cy < 0 || deshake->cw < 0 || deshake->ch < 0) {
// Find the most likely global motion for the current frame
find_motion(deshake, (deshake->ref == NULL) ? in->data[0] : deshake->ref->data[0], in->data[0], link->w, link->h, in->linesize[0], &t);
} else {
uint8_t *src1 = (deshake->ref == NULL) ? in->data[0] : deshake->ref->data[0];
uint8_t *src2 = in->data[0];
deshake->cx = FFMIN(deshake->cx, link->w);
deshake->cy = FFMIN(deshake->cy, link->h);
if ((unsigned)deshake->cx + (unsigned)deshake->cw > link->w) deshake->cw = link->w - deshake->cx;
if ((unsigned)deshake->cy + (unsigned)deshake->ch > link->h) deshake->ch = link->h - deshake->cy;
// Quadword align right margin
deshake->cw &= ~15;
src1 += deshake->cy * in->linesize[0] + deshake->cx;
src2 += deshake->cy * in->linesize[0] + deshake->cx;
find_motion(deshake, src1, src2, deshake->cw, deshake->ch, in->linesize[0], &t);
}
// Copy transform so we can output it later to compare to the smoothed value
orig.vec.x = t.vec.x;
orig.vec.y = t.vec.y;
orig.angle = t.angle;
orig.zoom = t.zoom;
// Generate a one-sided moving exponential average
deshake->avg.vec.x = alpha * t.vec.x + (1.0 - alpha) * deshake->avg.vec.x;
deshake->avg.vec.y = alpha * t.vec.y + (1.0 - alpha) * deshake->avg.vec.y;
deshake->avg.angle = alpha * t.angle + (1.0 - alpha) * deshake->avg.angle;
deshake->avg.zoom = alpha * t.zoom + (1.0 - alpha) * deshake->avg.zoom;
// Remove the average from the current motion to detect the motion that
// is not on purpose, just as jitter from bumping the camera
t.vec.x -= deshake->avg.vec.x;
t.vec.y -= deshake->avg.vec.y;
t.angle -= deshake->avg.angle;
t.zoom -= deshake->avg.zoom;
// Invert the motion to undo it
t.vec.x *= -1;
t.vec.y *= -1;
t.angle *= -1;
// Write statistics to file
if (deshake->fp) {
snprintf(tmp, 256, "%f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f\n", orig.vec.x, deshake->avg.vec.x, t.vec.x, orig.vec.y, deshake->avg.vec.y, t.vec.y, orig.angle, deshake->avg.angle, t.angle, orig.zoom, deshake->avg.zoom, t.zoom);
fwrite(tmp, sizeof(char), strlen(tmp), deshake->fp);
}
// Turn relative current frame motion into absolute by adding it to the
// last absolute motion
t.vec.x += deshake->last.vec.x;
t.vec.y += deshake->last.vec.y;
t.angle += deshake->last.angle;
t.zoom += deshake->last.zoom;
// Shrink motion by 10% to keep things centered in the camera frame
t.vec.x *= 0.9;
t.vec.y *= 0.9;
t.angle *= 0.9;
// Store the last absolute motion information
deshake->last.vec.x = t.vec.x;
deshake->last.vec.y = t.vec.y;
deshake->last.angle = t.angle;
deshake->last.zoom = t.zoom;
// Generate a luma transformation matrix
avfilter_get_matrix(t.vec.x, t.vec.y, t.angle, 1.0 + t.zoom / 100.0, matrix_y);
// Generate a chroma transformation matrix
avfilter_get_matrix(t.vec.x / (link->w / CHROMA_WIDTH(link)), t.vec.y / (link->h / CHROMA_HEIGHT(link)), t.angle, 1.0 + t.zoom / 100.0, matrix_uv);
// Transform the luma and chroma planes
ret = deshake->transform(link->dst, link->w, link->h, CHROMA_WIDTH(link), CHROMA_HEIGHT(link),
matrix_y, matrix_uv, INTERPOLATE_BILINEAR, deshake->edge, in, out);
// Cleanup the old reference frame
av_frame_free(&deshake->ref);
if (ret < 0)
return ret;
// Store the current frame as the reference frame for calculating the
// motion of the next frame
deshake->ref = in;
return ff_filter_frame(outlink, out);
}
static const AVFilterPad deshake_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_props,
},
{ NULL }
};
static const AVFilterPad deshake_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
AVFilter ff_vf_deshake = {
.name = "deshake",
.description = NULL_IF_CONFIG_SMALL("Stabilize shaky video."),
.priv_size = sizeof(DeshakeContext),
.init = init,
.uninit = uninit,
.query_formats = query_formats,
.inputs = deshake_inputs,
.outputs = deshake_outputs,
.priv_class = &deshake_class,
};