1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-12 19:18:44 +02:00
FFmpeg/libavcodec/amfenc.c
Michael Wootton 34c113335b Add support for H.264 and HEVC hardware encoding for AMD GPUs based on AMF SDK
Requires AMF headers for at least version 1.4.4.1.

Signed-off-by: Mikhail Mironov <mikhail.mironov@amd.com>
Signed-off-by: Luca Barbato <lu_zero@gentoo.org>
2018-01-04 18:15:56 +01:00

609 lines
23 KiB
C

/*
* AMD AMF support
* Copyright (C) 2017 Luca Barbato
* Copyright (C) 2017 Mikhail Mironov <mikhail.mironov@amd.com>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/avassert.h"
#include "libavutil/imgutils.h"
#include "libavutil/hwcontext.h"
#include "internal.h"
#if CONFIG_D3D11VA
#include "libavutil/hwcontext_d3d11va.h"
#endif
#include "libavutil/mem.h"
#include "libavutil/pixdesc.h"
#include "libavutil/time.h"
#include "amfenc.h"
#if CONFIG_D3D11VA
#include <d3d11.h>
#endif
#if HAVE_WINDOWS_H
#include <windows.h>
#define dlopen(filename, flags) LoadLibrary((filename))
#define dlsym(handle, symbol) GetProcAddress(handle, symbol)
#define dlclose(handle) FreeLibrary(handle)
#else
#include <dlfcn.h>
#endif
#define PTS_PROP L"PtsProp"
const enum AVPixelFormat ff_amf_pix_fmts[] = {
AV_PIX_FMT_NV12,
AV_PIX_FMT_YUV420P,
#if CONFIG_D3D11VA
AV_PIX_FMT_D3D11,
#endif
AV_PIX_FMT_NONE
};
typedef struct FormatMap {
enum AVPixelFormat av_format;
enum AMF_SURFACE_FORMAT amf_format;
} FormatMap;
static const FormatMap format_map[] =
{
{ AV_PIX_FMT_NONE, AMF_SURFACE_UNKNOWN },
{ AV_PIX_FMT_NV12, AMF_SURFACE_NV12 },
// { AV_PIX_FMT_BGR0, AMF_SURFACE_BGRA },
// { AV_PIX_FMT_RGB0, AMF_SURFACE_RGBA },
{ AV_PIX_FMT_GRAY8, AMF_SURFACE_GRAY8 },
{ AV_PIX_FMT_YUV420P, AMF_SURFACE_YUV420P },
{ AV_PIX_FMT_YUYV422, AMF_SURFACE_YUY2 },
{ AV_PIX_FMT_D3D11, AMF_SURFACE_NV12 },
};
static int is_hwaccel_pix_fmt(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
return desc->flags & AV_PIX_FMT_FLAG_HWACCEL;
}
static enum AMF_SURFACE_FORMAT amf_av_to_amf_format(enum AVPixelFormat fmt)
{
int i;
for (i = 0; i < amf_countof(format_map); i++) {
if (format_map[i].av_format == fmt) {
return format_map[i].amf_format;
}
}
return AMF_SURFACE_UNKNOWN;
}
static void AMF_CDECL_CALL AMFTraceWriter_Write(AMFTraceWriter *pThis,
const wchar_t *scope, const wchar_t *message)
{
AmfTraceWriter *tracer = (AmfTraceWriter*)pThis;
av_log(tracer->avctx, AV_LOG_DEBUG, "%ls: %ls", scope, message); // \n is provided from AMF
}
static void AMF_CDECL_CALL AMFTraceWriter_Flush(AMFTraceWriter *pThis)
{
}
static AMFTraceWriterVtbl tracer_vtbl =
{
.Write = AMFTraceWriter_Write,
.Flush = AMFTraceWriter_Flush,
};
static int amf_load_library(AVCodecContext *avctx)
{
AmfContext *ctx = avctx->priv_data;
AMFInit_Fn init_fun = NULL;
AMFQueryVersion_Fn version_fun = NULL;
AMF_RESULT res = AMF_OK;
ctx->eof = 0;
ctx->delayed_drain = 0;
ctx->hw_frames_ctx = NULL;
ctx->hw_device_ctx = NULL;
ctx->delayed_surface = NULL;
ctx->delayed_frame = av_frame_alloc();
if (!ctx->delayed_frame) {
return AVERROR(ENOMEM);
}
// hardcoded to current HW queue size - will realloc in timestamp_queue_enqueue() if too small
ctx->timestamp_list = av_fifo_alloc((avctx->max_b_frames + 16) * sizeof(int64_t));
if (!ctx->timestamp_list) {
return AVERROR(ENOMEM);
}
ctx->dts_delay = 0;
ctx->library = dlopen(AMF_DLL_NAMEA, RTLD_NOW | RTLD_LOCAL);
AMF_RETURN_IF_FALSE(ctx, ctx->library != NULL,
AVERROR_UNKNOWN, "DLL %s failed to open\n", AMF_DLL_NAMEA);
init_fun = (AMFInit_Fn)dlsym(ctx->library, AMF_INIT_FUNCTION_NAME);
AMF_RETURN_IF_FALSE(ctx, init_fun != NULL, AVERROR_UNKNOWN, "DLL %s failed to find function %s\n", AMF_DLL_NAMEA, AMF_INIT_FUNCTION_NAME);
version_fun = (AMFQueryVersion_Fn)dlsym(ctx->library, AMF_QUERY_VERSION_FUNCTION_NAME);
AMF_RETURN_IF_FALSE(ctx, version_fun != NULL, AVERROR_UNKNOWN, "DLL %s failed to find function %s\n", AMF_DLL_NAMEA, AMF_QUERY_VERSION_FUNCTION_NAME);
res = version_fun(&ctx->version);
AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR_UNKNOWN, "%s failed with error %d\n", AMF_QUERY_VERSION_FUNCTION_NAME, res);
res = init_fun(AMF_FULL_VERSION, &ctx->factory);
AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR_UNKNOWN, "%s failed with error %d\n", AMF_INIT_FUNCTION_NAME, res);
res = ctx->factory->pVtbl->GetTrace(ctx->factory, &ctx->trace);
AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR_UNKNOWN, "GetTrace() failed with error %d\n", res);
res = ctx->factory->pVtbl->GetDebug(ctx->factory, &ctx->debug);
AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR_UNKNOWN, "GetDebug() failed with error %d\n", res);
return 0;
}
static int amf_init_context(AVCodecContext *avctx)
{
AmfContext *ctx = avctx->priv_data;
AMF_RESULT res = AMF_OK;
// configure AMF logger
// the return of these functions indicates old state and do not affect behaviour
ctx->trace->pVtbl->EnableWriter(ctx->trace, AMF_TRACE_WRITER_DEBUG_OUTPUT, ctx->log_to_dbg != 0 );
if (ctx->log_to_dbg)
ctx->trace->pVtbl->SetWriterLevel(ctx->trace, AMF_TRACE_WRITER_DEBUG_OUTPUT, AMF_TRACE_TRACE);
ctx->trace->pVtbl->EnableWriter(ctx->trace, AMF_TRACE_WRITER_CONSOLE, 0);
ctx->trace->pVtbl->SetGlobalLevel(ctx->trace, AMF_TRACE_TRACE);
// connect AMF logger to av_log
ctx->tracer.vtbl = &tracer_vtbl;
ctx->tracer.avctx = avctx;
ctx->trace->pVtbl->RegisterWriter(ctx->trace, ctx->writer_id, (AMFTraceWriter*)&ctx->tracer, 1);
ctx->trace->pVtbl->SetWriterLevel(ctx->trace, ctx->writer_id, AMF_TRACE_TRACE);
res = ctx->factory->pVtbl->CreateContext(ctx->factory, &ctx->context);
AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR_UNKNOWN, "CreateContext() failed with error %d\n", res);
// try to reuse existing DX device
#if CONFIG_D3D11VA
if (avctx->hw_frames_ctx) {
AVHWFramesContext *device_ctx = (AVHWFramesContext*)avctx->hw_frames_ctx->data;
if (device_ctx->device_ctx->type == AV_HWDEVICE_TYPE_D3D11VA) {
if (amf_av_to_amf_format(device_ctx->sw_format) != AMF_SURFACE_UNKNOWN) {
if (device_ctx->device_ctx->hwctx) {
AVD3D11VADeviceContext *device_d3d11 = (AVD3D11VADeviceContext *)device_ctx->device_ctx->hwctx;
res = ctx->context->pVtbl->InitDX11(ctx->context, device_d3d11->device, AMF_DX11_1);
if (res == AMF_OK) {
ctx->hw_frames_ctx = av_buffer_ref(avctx->hw_frames_ctx);
if (!ctx->hw_frames_ctx) {
return AVERROR(ENOMEM);
}
} else {
if(res == AMF_NOT_SUPPORTED)
av_log(avctx, AV_LOG_INFO, "avctx->hw_frames_ctx has D3D11 device which doesn't have D3D11VA interface, switching to default\n");
else
av_log(avctx, AV_LOG_INFO, "avctx->hw_frames_ctx has non-AMD device, switching to default\n");
}
}
} else {
av_log(avctx, AV_LOG_INFO, "avctx->hw_frames_ctx has format not uspported by AMF, switching to default\n");
}
}
} else if (avctx->hw_device_ctx) {
AVHWDeviceContext *device_ctx = (AVHWDeviceContext*)(avctx->hw_device_ctx->data);
if (device_ctx->type == AV_HWDEVICE_TYPE_D3D11VA) {
if (device_ctx->hwctx) {
AVD3D11VADeviceContext *device_d3d11 = (AVD3D11VADeviceContext *)device_ctx->hwctx;
res = ctx->context->pVtbl->InitDX11(ctx->context, device_d3d11->device, AMF_DX11_1);
if (res == AMF_OK) {
ctx->hw_device_ctx = av_buffer_ref(avctx->hw_device_ctx);
if (!ctx->hw_device_ctx) {
return AVERROR(ENOMEM);
}
} else {
if (res == AMF_NOT_SUPPORTED)
av_log(avctx, AV_LOG_INFO, "avctx->hw_device_ctx has D3D11 device which doesn't have D3D11VA interface, switching to default\n");
else
av_log(avctx, AV_LOG_INFO, "avctx->hw_device_ctx has non-AMD device, switching to default\n");
}
}
}
}
#endif
if (!ctx->hw_frames_ctx && !ctx->hw_device_ctx) {
res = ctx->context->pVtbl->InitDX11(ctx->context, NULL, AMF_DX11_1);
if (res != AMF_OK) {
res = ctx->context->pVtbl->InitDX9(ctx->context, NULL);
AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR_UNKNOWN, "InitDX9() failed with error %d\n", res);
}
}
return 0;
}
static int amf_init_encoder(AVCodecContext *avctx)
{
AmfContext *ctx = avctx->priv_data;
const wchar_t *codec_id = NULL;
AMF_RESULT res = AMF_OK;
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
codec_id = AMFVideoEncoderVCE_AVC;
break;
case AV_CODEC_ID_HEVC:
codec_id = AMFVideoEncoder_HEVC;
break;
default:
break;
}
AMF_RETURN_IF_FALSE(ctx, codec_id != NULL, AVERROR(EINVAL), "Codec %d is not supported\n", avctx->codec->id);
ctx->format = amf_av_to_amf_format(avctx->pix_fmt);
AMF_RETURN_IF_FALSE(ctx, ctx->format != AMF_SURFACE_UNKNOWN, AVERROR(EINVAL), "Format %d is not supported\n", avctx->pix_fmt);
res = ctx->factory->pVtbl->CreateComponent(ctx->factory, ctx->context, codec_id, &ctx->encoder);
AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR_ENCODER_NOT_FOUND, "CreateComponent(%ls) failed with error %d\n", codec_id, res);
return 0;
}
int av_cold ff_amf_encode_close(AVCodecContext *avctx)
{
AmfContext *ctx = avctx->priv_data;
if (ctx->delayed_surface)
{
ctx->delayed_surface->pVtbl->Release(ctx->delayed_surface);
ctx->delayed_surface = NULL;
}
if (ctx->encoder) {
ctx->encoder->pVtbl->Terminate(ctx->encoder);
ctx->encoder->pVtbl->Release(ctx->encoder);
ctx->encoder = NULL;
}
if (ctx->context) {
ctx->context->pVtbl->Terminate(ctx->context);
ctx->context->pVtbl->Release(ctx->context);
ctx->context = NULL;
}
av_buffer_unref(&ctx->hw_device_ctx);
av_buffer_unref(&ctx->hw_frames_ctx);
if (ctx->trace) {
ctx->trace->pVtbl->UnregisterWriter(ctx->trace, ctx->writer_id);
}
if (ctx->library) {
dlclose(ctx->library);
ctx->library = NULL;
}
ctx->trace = NULL;
ctx->debug = NULL;
ctx->factory = NULL;
ctx->version = 0;
ctx->delayed_drain = 0;
av_frame_free(&ctx->delayed_frame);
av_fifo_free(ctx->timestamp_list);
ctx->timestamp_list = NULL;
ctx->timestamp_last = 0;
return 0;
}
static int amf_copy_surface(AVCodecContext *avctx, const AVFrame *frame,
AMFSurface* surface)
{
AVFrame *sw_frame = NULL;
AMFPlane *plane = NULL;
uint8_t *dst_data[4];
int dst_linesize[4];
int ret = 0;
int planes;
int i;
if (frame->hw_frames_ctx && is_hwaccel_pix_fmt(frame->format)) {
if (!(sw_frame = av_frame_alloc())) {
av_log(avctx, AV_LOG_ERROR, "Can not alloc frame\n");
ret = AVERROR(ENOMEM);
goto fail;
}
if ((ret = av_hwframe_transfer_data(sw_frame, frame, 0)) < 0) {
av_log(avctx, AV_LOG_ERROR, "Error transferring the data to system memory\n");
goto fail;
}
frame = sw_frame;
}
planes = (int)surface->pVtbl->GetPlanesCount(surface);
if (planes > amf_countof(dst_data)) {
av_log(avctx, AV_LOG_ERROR, "Invalid number of planes %d in surface\n", planes);
ret = AVERROR(EINVAL);
goto fail;
}
for (i = 0; i < planes; i++) {
plane = surface->pVtbl->GetPlaneAt(surface, i);
dst_data[i] = plane->pVtbl->GetNative(plane);
dst_linesize[i] = plane->pVtbl->GetHPitch(plane);
}
av_image_copy(dst_data, dst_linesize,
(const uint8_t**)frame->data, frame->linesize, frame->format,
avctx->width, avctx->height);
fail:
if (sw_frame) {
av_frame_free(&sw_frame);
}
return ret;
}
static inline int timestamp_queue_enqueue(AVCodecContext *avctx, int64_t timestamp)
{
AmfContext *ctx = avctx->priv_data;
if (av_fifo_space(ctx->timestamp_list) < sizeof(timestamp)) {
int size = av_fifo_size(ctx->timestamp_list);
if (INT_MAX / 2 - size < sizeof(timestamp))
return AVERROR(EINVAL);
av_fifo_realloc2(ctx->timestamp_list, (size + sizeof(timestamp)) * 2);
}
av_fifo_generic_write(ctx->timestamp_list, &timestamp, sizeof(timestamp), NULL);
ctx->timestamp_last = timestamp;
return 0;
}
static int amf_copy_buffer(AVCodecContext *avctx, AVPacket *pkt, AMFBuffer *buffer)
{
AmfContext *ctx = avctx->priv_data;
int ret;
AMFVariantStruct var = {0};
int64_t timestamp = AV_NOPTS_VALUE;
int64_t size = buffer->pVtbl->GetSize(buffer);
//if ((ret = ff_alloc_packet2(avctx, pkt, size, 0)) < 0) {
if (ret = ff_alloc_packet(pkt, size)) {
return ret;
}
memcpy(pkt->data, buffer->pVtbl->GetNative(buffer), size);
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
buffer->pVtbl->GetProperty(buffer, AMF_VIDEO_ENCODER_OUTPUT_DATA_TYPE, &var);
if(var.int64Value == AMF_VIDEO_ENCODER_OUTPUT_DATA_TYPE_IDR) {
pkt->flags = AV_PKT_FLAG_KEY;
}
break;
case AV_CODEC_ID_HEVC:
buffer->pVtbl->GetProperty(buffer, AMF_VIDEO_ENCODER_HEVC_OUTPUT_DATA_TYPE, &var);
if (var.int64Value == AMF_VIDEO_ENCODER_HEVC_OUTPUT_DATA_TYPE_IDR) {
pkt->flags = AV_PKT_FLAG_KEY;
}
break;
default:
break;
}
buffer->pVtbl->GetProperty(buffer, PTS_PROP, &var);
pkt->pts = var.int64Value; // original pts
AMF_RETURN_IF_FALSE(ctx, av_fifo_size(ctx->timestamp_list) > 0, AVERROR_UNKNOWN, "timestamp_list is empty\n");
av_fifo_generic_read(ctx->timestamp_list, &timestamp, sizeof(timestamp), NULL);
// calc dts shift if max_b_frames > 0
if (avctx->max_b_frames > 0 && ctx->dts_delay == 0) {
AMF_RETURN_IF_FALSE(ctx, av_fifo_size(ctx->timestamp_list) > 0, AVERROR_UNKNOWN,
"timestamp_list is empty while max_b_frames = %d\n", avctx->max_b_frames);
if (timestamp < 0 || ctx->timestamp_last < AV_NOPTS_VALUE) {
return AVERROR(ERANGE);
}
ctx->dts_delay = ctx->timestamp_last - timestamp;
}
pkt->dts = timestamp - ctx->dts_delay;
return 0;
}
// amfenc API implementation
int ff_amf_encode_init(AVCodecContext *avctx)
{
AmfContext *ctx = avctx->priv_data;
int ret;
ctx->factory = NULL;
ctx->debug = NULL;
ctx->trace = NULL;
ctx->context = NULL;
ctx->encoder = NULL;
ctx->library = NULL;
ctx->version = 0;
ctx->eof = 0;
ctx->format = 0;
ctx->tracer.vtbl = NULL;
ctx->tracer.avctx = NULL;
if ((ret = amf_load_library(avctx)) == 0) {
if ((ret = amf_init_context(avctx)) == 0) {
if ((ret = amf_init_encoder(avctx)) == 0) {
return 0;
}
}
}
ff_amf_encode_close(avctx);
return ret;
}
int ff_amf_send_frame(AVCodecContext *avctx, const AVFrame *frame)
{
AMF_RESULT res = AMF_OK;
AmfContext *ctx = avctx->priv_data;
AMFSurface *surface = NULL;
int ret;
if (!ctx->encoder)
return AVERROR(EINVAL);
if (!frame) { // submit drain
if (!ctx->eof) { // submit drain one time only
if (ctx->delayed_surface != NULL) {
ctx->delayed_drain = 1; // input queue is full: resubmit Drain() in ff_amf_receive_packet
} else if(!ctx->delayed_drain) {
res = ctx->encoder->pVtbl->Drain(ctx->encoder);
if (res == AMF_INPUT_FULL) {
ctx->delayed_drain = 1; // input queue is full: resubmit Drain() in ff_amf_receive_packet
} else {
if (res == AMF_OK) {
ctx->eof = 1; // drain started
}
AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR_UNKNOWN, "Drain() failed with error %d\n", res);
}
}
} else{
return AVERROR_EOF;
}
} else { // submit frame
if (ctx->delayed_surface != NULL) {
return AVERROR(EAGAIN); // should not happen when called from ffmpeg, other clients may resubmit
}
// prepare surface from frame
if (frame->hw_frames_ctx && ( // HW frame detected
// check if the same hw_frames_ctx as used in initialization
(ctx->hw_frames_ctx && frame->hw_frames_ctx->data == ctx->hw_frames_ctx->data) ||
// check if the same hw_device_ctx as used in initialization
(ctx->hw_device_ctx && ((AVHWFramesContext*)frame->hw_frames_ctx->data)->device_ctx ==
(AVHWDeviceContext*)ctx->hw_device_ctx->data)
)) {
#if CONFIG_D3D11VA
static const GUID AMFTextureArrayIndexGUID = { 0x28115527, 0xe7c3, 0x4b66, { 0x99, 0xd3, 0x4f, 0x2a, 0xe6, 0xb4, 0x7f, 0xaf } };
ID3D11Texture2D *texture = (ID3D11Texture2D*)frame->data[0]; // actual texture
int index = (int)(size_t)frame->data[1]; // index is a slice in texture array is - set to tell AMF which slice to use
texture->lpVtbl->SetPrivateData(texture, &AMFTextureArrayIndexGUID, sizeof(index), &index);
res = ctx->context->pVtbl->CreateSurfaceFromDX11Native(ctx->context, texture, &surface, NULL); // wrap to AMF surface
AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR(ENOMEM), "CreateSurfaceFromDX11Native() failed with error %d\n", res);
// input HW surfaces can be vertically aligned by 16; tell AMF the real size
surface->pVtbl->SetCrop(surface, 0, 0, frame->width, frame->height);
#endif
} else {
res = ctx->context->pVtbl->AllocSurface(ctx->context, AMF_MEMORY_HOST, ctx->format, avctx->width, avctx->height, &surface);
AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR(ENOMEM), "AllocSurface() failed with error %d\n", res);
amf_copy_surface(avctx, frame, surface);
}
surface->pVtbl->SetPts(surface, frame->pts);
AMF_ASSIGN_PROPERTY_INT64(res, surface, PTS_PROP, frame->pts);
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_INSERT_AUD, !!ctx->aud);
break;
case AV_CODEC_ID_HEVC:
AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_HEVC_INSERT_AUD, !!ctx->aud);
break;
default:
break;
}
// submit surface
res = ctx->encoder->pVtbl->SubmitInput(ctx->encoder, (AMFData*)surface);
if (res == AMF_INPUT_FULL) { // handle full queue
//store surface for later submission
ctx->delayed_surface = surface;
if (surface->pVtbl->GetMemoryType(surface) == AMF_MEMORY_DX11) {
av_frame_ref(ctx->delayed_frame, frame);
}
} else {
surface->pVtbl->Release(surface);
AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR_UNKNOWN, "SubmitInput() failed with error %d\n", res);
if ((ret = timestamp_queue_enqueue(avctx, frame->pts)) < 0) {
return ret;
}
}
}
return 0;
}
int ff_amf_receive_packet(AVCodecContext *avctx, AVPacket *avpkt)
{
int ret;
AMF_RESULT res;
AMF_RESULT res_query;
AmfContext *ctx = avctx->priv_data;
AMFData *data = NULL;
int block_and_wait;
if (!ctx->encoder)
return AVERROR(EINVAL);
do {
block_and_wait = 0;
// poll data
res_query = ctx->encoder->pVtbl->QueryOutput(ctx->encoder, &data);
if (data) {
// copy data to packet
AMFBuffer* buffer;
AMFGuid guid = IID_AMFBuffer();
data->pVtbl->QueryInterface(data, &guid, (void**)&buffer); // query for buffer interface
ret = amf_copy_buffer(avctx, avpkt, buffer);
buffer->pVtbl->Release(buffer);
data->pVtbl->Release(data);
AMF_RETURN_IF_FALSE(ctx, ret >= 0, ret, "amf_copy_buffer() failed with error %d\n", ret);
if (ctx->delayed_surface != NULL) { // try to resubmit frame
res = ctx->encoder->pVtbl->SubmitInput(ctx->encoder, (AMFData*)ctx->delayed_surface);
if (res != AMF_INPUT_FULL) {
int64_t pts = ctx->delayed_surface->pVtbl->GetPts(ctx->delayed_surface);
ctx->delayed_surface->pVtbl->Release(ctx->delayed_surface);
ctx->delayed_surface = NULL;
av_frame_unref(ctx->delayed_frame);
AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR_UNKNOWN, "Repeated SubmitInput() failed with error %d\n", res);
if ((ret = timestamp_queue_enqueue(avctx, pts)) < 0) {
return ret;
}
} else {
av_log(avctx, AV_LOG_WARNING, "Data acquired but delayed frame submission got AMF_INPUT_FULL- should not happen\n");
}
} else if (ctx->delayed_drain) { // try to resubmit drain
res = ctx->encoder->pVtbl->Drain(ctx->encoder);
if (res != AMF_INPUT_FULL) {
ctx->delayed_drain = 0;
ctx->eof = 1; // drain started
AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR_UNKNOWN, "Repeated Drain() failed with error %d\n", res);
} else {
av_log(avctx, AV_LOG_WARNING, "Data acquired but delayed drain submission got AMF_INPUT_FULL- should not happen\n");
}
}
} else if (ctx->delayed_surface != NULL || ctx->delayed_drain || (ctx->eof && res_query != AMF_EOF)) {
block_and_wait = 1;
av_usleep(1000); // wait and poll again
}
} while (block_and_wait);
if (res_query == AMF_EOF) {
ret = AVERROR_EOF;
} else if (data == NULL) {
ret = AVERROR(EAGAIN);
} else {
ret = 0;
}
return ret;
}