1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-02 03:06:28 +02:00
FFmpeg/libavcodec/elbg.c
Vitor Sessak 144b46f21b My commit at r14340 was not the right solution. For a monochromatic
frame, there will be only one centroid and it will be impossible to
find three distinct ones. It is better to just avoid shifting if
there are not three different centroids.

Originally committed as revision 14343 to svn://svn.ffmpeg.org/ffmpeg/trunk
2008-07-23 05:54:34 +00:00

426 lines
13 KiB
C

/*
* Copyright (C) 2007 Vitor Sessak <vitor1001@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file cbook_gen.c
* Codebook Generator using the ELBG algorithm
*/
#include <string.h>
#include "libavutil/random.h"
#include "elbg.h"
#include "avcodec.h"
#define DELTA_ERR_MAX 0.1 ///< Precision of the ELBG algorithm (as percentual error)
/**
* In the ELBG jargon, a cell is the set of points that are closest to a
* codebook entry. Not to be confused with a RoQ Video cell. */
typedef struct cell_s {
int index;
struct cell_s *next;
} cell;
/**
* ELBG internal data
*/
typedef struct{
int error;
int dim;
int numCB;
int *codebook;
cell **cells;
int *utility;
int *utility_inc;
int *nearest_cb;
int *points;
AVRandomState *rand_state;
} elbg_data;
static inline int distance_limited(int *a, int *b, int dim, int limit)
{
int i, dist=0;
for (i=0; i<dim; i++) {
dist += (a[i] - b[i])*(a[i] - b[i]);
if (dist > limit)
return INT_MAX;
}
return dist;
}
static inline void vect_division(int *res, int *vect, int div, int dim)
{
int i;
if (div > 1)
for (i=0; i<dim; i++)
res[i] = ROUNDED_DIV(vect[i],div);
else if (res != vect)
memcpy(res, vect, dim*sizeof(int));
}
static int eval_error_cell(elbg_data *elbg, int *centroid, cell *cells)
{
int error=0;
for (; cells; cells=cells->next)
error += distance_limited(centroid, elbg->points + cells->index*elbg->dim, elbg->dim, INT_MAX);
return error;
}
static int get_closest_codebook(elbg_data *elbg, int index)
{
int i, pick=0, diff, diff_min = INT_MAX;
for (i=0; i<elbg->numCB; i++)
if (i != index) {
diff = distance_limited(elbg->codebook + i*elbg->dim, elbg->codebook + index*elbg->dim, elbg->dim, diff_min);
if (diff < diff_min) {
pick = i;
diff_min = diff;
}
}
return pick;
}
static int get_high_utility_cell(elbg_data *elbg)
{
int i=0;
/* Using linear search, do binary if it ever turns to be speed critical */
int r = av_random(elbg->rand_state)%(elbg->utility_inc[elbg->numCB-1]-1) + 1;
while (elbg->utility_inc[i] < r)
i++;
assert(!elbg->cells[i]);
return i;
}
/**
* Implementation of the simple LBG algorithm for just two codebooks
*/
static int simple_lbg(int dim,
int *centroid[3],
int newutility[3],
int *points,
cell *cells)
{
int i, idx;
int numpoints[2] = {0,0};
int newcentroid[2][dim];
cell *tempcell;
memset(newcentroid, 0, sizeof(newcentroid));
newutility[0] =
newutility[1] = 0;
for (tempcell = cells; tempcell; tempcell=tempcell->next) {
idx = distance_limited(centroid[0], points + tempcell->index*dim, dim, INT_MAX)>=
distance_limited(centroid[1], points + tempcell->index*dim, dim, INT_MAX);
numpoints[idx]++;
for (i=0; i<dim; i++)
newcentroid[idx][i] += points[tempcell->index*dim + i];
}
vect_division(centroid[0], newcentroid[0], numpoints[0], dim);
vect_division(centroid[1], newcentroid[1], numpoints[1], dim);
for (tempcell = cells; tempcell; tempcell=tempcell->next) {
int dist[2] = {distance_limited(centroid[0], points + tempcell->index*dim, dim, INT_MAX),
distance_limited(centroid[1], points + tempcell->index*dim, dim, INT_MAX)};
int idx = dist[0] > dist[1];
newutility[idx] += dist[idx];
}
return newutility[0] + newutility[1];
}
static void get_new_centroids(elbg_data *elbg, int huc, int *newcentroid_i,
int *newcentroid_p)
{
cell *tempcell;
int min[elbg->dim];
int max[elbg->dim];
int i;
for (i=0; i< elbg->dim; i++) {
min[i]=INT_MAX;
max[i]=0;
}
for (tempcell = elbg->cells[huc]; tempcell; tempcell = tempcell->next)
for(i=0; i<elbg->dim; i++) {
min[i]=FFMIN(min[i], elbg->points[tempcell->index*elbg->dim + i]);
max[i]=FFMAX(max[i], elbg->points[tempcell->index*elbg->dim + i]);
}
for (i=0; i<elbg->dim; i++) {
newcentroid_i[i] = min[i] + (max[i] - min[i])/3;
newcentroid_p[i] = min[i] + (2*(max[i] - min[i]))/3;
}
}
/**
* Add the points in the low utility cell to its closest cell. Split the high
* utility cell, putting the separed points in the (now empty) low utility
* cell.
*
* @param elbg Internal elbg data
* @param indexes {luc, huc, cluc}
* @param newcentroid A vector with the position of the new centroids
*/
static void shift_codebook(elbg_data *elbg, int *indexes,
int *newcentroid[3])
{
cell *tempdata;
cell **pp = &elbg->cells[indexes[2]];
while(*pp)
pp= &(*pp)->next;
*pp = elbg->cells[indexes[0]];
elbg->cells[indexes[0]] = NULL;
tempdata = elbg->cells[indexes[1]];
elbg->cells[indexes[1]] = NULL;
while(tempdata) {
cell *tempcell2 = tempdata->next;
int idx = distance_limited(elbg->points + tempdata->index*elbg->dim,
newcentroid[0], elbg->dim, INT_MAX) >
distance_limited(elbg->points + tempdata->index*elbg->dim,
newcentroid[1], elbg->dim, INT_MAX);
tempdata->next = elbg->cells[indexes[idx]];
elbg->cells[indexes[idx]] = tempdata;
tempdata = tempcell2;
}
}
static void evaluate_utility_inc(elbg_data *elbg)
{
int i, inc=0;
for (i=0; i < elbg->numCB; i++) {
if (elbg->numCB*elbg->utility[i] > elbg->error)
inc += elbg->utility[i];
elbg->utility_inc[i] = inc;
}
}
static void update_utility_and_n_cb(elbg_data *elbg, int idx, int newutility)
{
cell *tempcell;
elbg->utility[idx] = newutility;
for (tempcell=elbg->cells[idx]; tempcell; tempcell=tempcell->next)
elbg->nearest_cb[tempcell->index] = idx;
}
/**
* Evaluate if a shift lower the error. If it does, call shift_codebooks
* and update elbg->error, elbg->utility and elbg->nearest_cb.
*
* @param elbg Internal elbg data
* @param indexes {luc (low utility cell, huc (high utility cell), cluc (closest cell to low utility cell)}
*/
static void try_shift_candidate(elbg_data *elbg, int idx[3])
{
int j, k, olderror=0, newerror, cont=0;
int newutility[3];
int newcentroid[3][elbg->dim];
int *newcentroid_ptrs[3];
cell *tempcell;
newcentroid_ptrs[0] = newcentroid[0];
newcentroid_ptrs[1] = newcentroid[1];
newcentroid_ptrs[2] = newcentroid[2];
for (j=0; j<3; j++)
olderror += elbg->utility[idx[j]];
memset(newcentroid[2], 0, elbg->dim*sizeof(int));
for (k=0; k<2; k++)
for (tempcell=elbg->cells[idx[2*k]]; tempcell; tempcell=tempcell->next) {
cont++;
for (j=0; j<elbg->dim; j++)
newcentroid[2][j] += elbg->points[tempcell->index*elbg->dim + j];
}
vect_division(newcentroid[2], newcentroid[2], cont, elbg->dim);
get_new_centroids(elbg, idx[1], newcentroid[0], newcentroid[1]);
newutility[2] = eval_error_cell(elbg, newcentroid[2], elbg->cells[idx[0]]);
newutility[2] += eval_error_cell(elbg, newcentroid[2], elbg->cells[idx[2]]);
newerror = newutility[2];
newerror += simple_lbg(elbg->dim, newcentroid_ptrs, newutility, elbg->points,
elbg->cells[idx[1]]);
if (olderror > newerror) {
shift_codebook(elbg, idx, newcentroid_ptrs);
elbg->error += newerror - olderror;
for (j=0; j<3; j++)
update_utility_and_n_cb(elbg, idx[j], newutility[j]);
evaluate_utility_inc(elbg);
}
}
/**
* Implementation of the ELBG block
*/
static void do_shiftings(elbg_data *elbg)
{
int idx[3];
evaluate_utility_inc(elbg);
for (idx[0]=0; idx[0] < elbg->numCB; idx[0]++)
if (elbg->numCB*elbg->utility[idx[0]] < elbg->error) {
if (elbg->utility_inc[elbg->numCB-1] == 0)
return;
idx[1] = get_high_utility_cell(elbg);
idx[2] = get_closest_codebook(elbg, idx[0]);
if (idx[1] != idx[0] && idx[1] != idx[2])
try_shift_candidate(elbg, idx);
}
}
#define BIG_PRIME 433494437LL
void ff_init_elbg(int *points, int dim, int numpoints, int *codebook,
int numCB, int max_steps, int *closest_cb,
AVRandomState *rand_state)
{
int i, k;
if (numpoints > 24*numCB) {
/* ELBG is very costly for a big number of points. So if we have a lot
of them, get a good initial codebook to save on iterations */
int *temp_points = av_malloc(dim*(numpoints/8)*sizeof(int));
for (i=0; i<numpoints/8; i++) {
k = (i*BIG_PRIME) % numpoints;
memcpy(temp_points + i*dim, points + k*dim, dim*sizeof(int));
}
ff_init_elbg(temp_points, dim, numpoints/8, codebook, numCB, 2*max_steps, closest_cb, rand_state);
ff_do_elbg(temp_points, dim, numpoints/8, codebook, numCB, 2*max_steps, closest_cb, rand_state);
av_free(temp_points);
} else // If not, initialize the codebook with random positions
for (i=0; i < numCB; i++)
memcpy(codebook + i*dim, points + ((i*BIG_PRIME)%numpoints)*dim,
dim*sizeof(int));
}
void ff_do_elbg(int *points, int dim, int numpoints, int *codebook,
int numCB, int max_steps, int *closest_cb,
AVRandomState *rand_state)
{
int dist;
elbg_data elbg_d;
elbg_data *elbg = &elbg_d;
int i, j, k, last_error, steps=0;
int *dist_cb = av_malloc(numpoints*sizeof(int));
int *size_part = av_malloc(numCB*sizeof(int));
cell *list_buffer = av_malloc(numpoints*sizeof(cell));
cell *free_cells;
elbg->error = INT_MAX;
elbg->dim = dim;
elbg->numCB = numCB;
elbg->codebook = codebook;
elbg->cells = av_malloc(numCB*sizeof(cell *));
elbg->utility = av_malloc(numCB*sizeof(int));
elbg->nearest_cb = closest_cb;
elbg->points = points;
elbg->utility_inc = av_malloc(numCB*sizeof(int));
elbg->rand_state = rand_state;
do {
free_cells = list_buffer;
last_error = elbg->error;
steps++;
memset(elbg->utility, 0, numCB*sizeof(int));
memset(elbg->cells, 0, numCB*sizeof(cell *));
elbg->error = 0;
/* This loop evaluate the actual Voronoi partition. It is the most
costly part of the algorithm. */
for (i=0; i < numpoints; i++) {
dist_cb[i] = INT_MAX;
for (k=0; k < elbg->numCB; k++) {
dist = distance_limited(elbg->points + i*elbg->dim, elbg->codebook + k*elbg->dim, dim, dist_cb[i]);
if (dist < dist_cb[i]) {
dist_cb[i] = dist;
elbg->nearest_cb[i] = k;
}
}
elbg->error += dist_cb[i];
elbg->utility[elbg->nearest_cb[i]] += dist_cb[i];
free_cells->index = i;
free_cells->next = elbg->cells[elbg->nearest_cb[i]];
elbg->cells[elbg->nearest_cb[i]] = free_cells;
free_cells++;
}
do_shiftings(elbg);
memset(size_part, 0, numCB*sizeof(int));
memset(elbg->codebook, 0, elbg->numCB*dim*sizeof(int));
for (i=0; i < numpoints; i++) {
size_part[elbg->nearest_cb[i]]++;
for (j=0; j < elbg->dim; j++)
elbg->codebook[elbg->nearest_cb[i]*elbg->dim + j] +=
elbg->points[i*elbg->dim + j];
}
for (i=0; i < elbg->numCB; i++)
vect_division(elbg->codebook + i*elbg->dim,
elbg->codebook + i*elbg->dim, size_part[i], elbg->dim);
} while(((last_error - elbg->error) > DELTA_ERR_MAX*elbg->error) &&
(steps < max_steps));
av_free(dist_cb);
av_free(size_part);
av_free(elbg->utility);
av_free(list_buffer);
av_free(elbg->cells);
av_free(elbg->utility_inc);
}