1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-02 03:06:28 +02:00
FFmpeg/libavcodec/aacenc_utils.h
Ganesh Ajjanagadde db1a642cd2 all: move ff_exp10, ff_exp10f, ff_fast_powf to lavu/ffmath.h
The idea is to use ffmath.h for internal implementations of math functions.
Currently, it is used for variants of libm functions, but is by no means
limited to such things.

Note that this is not exported; use lavu/mathematics for such purposes.

Reviewed-by: Ronald S. Bultje <rsbultje@gmail.com>
Signed-off-by: Ganesh Ajjanagadde <gajjanag@gmail.com>
2016-03-22 10:15:31 -07:00

267 lines
8.1 KiB
C

/*
* AAC encoder utilities
* Copyright (C) 2015 Rostislav Pehlivanov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* AAC encoder utilities
* @author Rostislav Pehlivanov ( atomnuker gmail com )
*/
#ifndef AVCODEC_AACENC_UTILS_H
#define AVCODEC_AACENC_UTILS_H
#include "libavutil/ffmath.h"
#include "aac.h"
#include "aacenctab.h"
#include "aactab.h"
#define ROUND_STANDARD 0.4054f
#define ROUND_TO_ZERO 0.1054f
#define C_QUANT 0.4054f
static inline void abs_pow34_v(float *out, const float *in, const int size)
{
int i;
for (i = 0; i < size; i++) {
float a = fabsf(in[i]);
out[i] = sqrtf(a * sqrtf(a));
}
}
static inline float pos_pow34(float a)
{
return sqrtf(a * sqrtf(a));
}
/**
* Quantize one coefficient.
* @return absolute value of the quantized coefficient
* @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
*/
static inline int quant(float coef, const float Q, const float rounding)
{
float a = coef * Q;
return sqrtf(a * sqrtf(a)) + rounding;
}
static inline void quantize_bands(int *out, const float *in, const float *scaled,
int size, float Q34, int is_signed, int maxval,
const float rounding)
{
int i;
for (i = 0; i < size; i++) {
float qc = scaled[i] * Q34;
int tmp = (int)FFMIN(qc + rounding, (float)maxval);
if (is_signed && in[i] < 0.0f) {
tmp = -tmp;
}
out[i] = tmp;
}
}
static inline float find_max_val(int group_len, int swb_size, const float *scaled)
{
float maxval = 0.0f;
int w2, i;
for (w2 = 0; w2 < group_len; w2++) {
for (i = 0; i < swb_size; i++) {
maxval = FFMAX(maxval, scaled[w2*128+i]);
}
}
return maxval;
}
static inline int find_min_book(float maxval, int sf)
{
float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512];
int qmaxval, cb;
qmaxval = maxval * Q34 + C_QUANT;
if (qmaxval >= (FF_ARRAY_ELEMS(aac_maxval_cb)))
cb = 11;
else
cb = aac_maxval_cb[qmaxval];
return cb;
}
static inline float find_form_factor(int group_len, int swb_size, float thresh,
const float *scaled, float nzslope) {
const float iswb_size = 1.0f / swb_size;
const float iswb_sizem1 = 1.0f / (swb_size - 1);
const float ethresh = thresh;
float form = 0.0f, weight = 0.0f;
int w2, i;
for (w2 = 0; w2 < group_len; w2++) {
float e = 0.0f, e2 = 0.0f, var = 0.0f, maxval = 0.0f;
float nzl = 0;
for (i = 0; i < swb_size; i++) {
float s = fabsf(scaled[w2*128+i]);
maxval = FFMAX(maxval, s);
e += s;
e2 += s *= s;
/* We really don't want a hard non-zero-line count, since
* even below-threshold lines do add up towards band spectral power.
* So, fall steeply towards zero, but smoothly
*/
if (s >= ethresh) {
nzl += 1.0f;
} else {
if (nzslope == 2.f)
nzl += (s / ethresh) * (s / ethresh);
else
nzl += ff_fast_powf(s / ethresh, nzslope);
}
}
if (e2 > thresh) {
float frm;
e *= iswb_size;
/** compute variance */
for (i = 0; i < swb_size; i++) {
float d = fabsf(scaled[w2*128+i]) - e;
var += d*d;
}
var = sqrtf(var * iswb_sizem1);
e2 *= iswb_size;
frm = e / FFMIN(e+4*var,maxval);
form += e2 * sqrtf(frm) / FFMAX(0.5f,nzl);
weight += e2;
}
}
if (weight > 0) {
return form / weight;
} else {
return 1.0f;
}
}
/** Return the minimum scalefactor where the quantized coef does not clip. */
static inline uint8_t coef2minsf(float coef)
{
return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
}
/** Return the maximum scalefactor where the quantized coef is not zero. */
static inline uint8_t coef2maxsf(float coef)
{
return av_clip_uint8(log2f(coef)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512);
}
/*
* Returns the closest possible index to an array of float values, given a value.
*/
static inline int quant_array_idx(const float val, const float *arr, const int num)
{
int i, index = 0;
float quant_min_err = INFINITY;
for (i = 0; i < num; i++) {
float error = (val - arr[i])*(val - arr[i]);
if (error < quant_min_err) {
quant_min_err = error;
index = i;
}
}
return index;
}
/**
* approximates exp10f(-3.0f*(0.5f + 0.5f * cosf(FFMIN(b,15.5f) / 15.5f)))
*/
static av_always_inline float bval2bmax(float b)
{
return 0.001f + 0.0035f * (b*b*b) / (15.5f*15.5f*15.5f);
}
/*
* Compute a nextband map to be used with SF delta constraint utilities.
* The nextband array should contain 128 elements, and positions that don't
* map to valid, nonzero bands of the form w*16+g (with w being the initial
* window of the window group, only) are left indetermined.
*/
static inline void ff_init_nextband_map(const SingleChannelElement *sce, uint8_t *nextband)
{
unsigned char prevband = 0;
int w, g;
/** Just a safe default */
for (g = 0; g < 128; g++)
nextband[g] = g;
/** Now really navigate the nonzero band chain */
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = 0; g < sce->ics.num_swb; g++) {
if (!sce->zeroes[w*16+g] && sce->band_type[w*16+g] < RESERVED_BT)
prevband = nextband[prevband] = w*16+g;
}
}
nextband[prevband] = prevband; /* terminate */
}
/*
* Updates nextband to reflect a removed band (equivalent to
* calling ff_init_nextband_map after marking a band as zero)
*/
static inline void ff_nextband_remove(uint8_t *nextband, int prevband, int band)
{
nextband[prevband] = nextband[band];
}
/*
* Checks whether the specified band could be removed without inducing
* scalefactor delta that violates SF delta encoding constraints.
* prev_sf has to be the scalefactor of the previous nonzero, nonspecial
* band, in encoding order, or negative if there was no such band.
*/
static inline int ff_sfdelta_can_remove_band(const SingleChannelElement *sce,
const uint8_t *nextband, int prev_sf, int band)
{
return prev_sf >= 0
&& sce->sf_idx[nextband[band]] >= (prev_sf - SCALE_MAX_DIFF)
&& sce->sf_idx[nextband[band]] <= (prev_sf + SCALE_MAX_DIFF);
}
/*
* Checks whether the specified band's scalefactor could be replaced
* with another one without violating SF delta encoding constraints.
* prev_sf has to be the scalefactor of the previous nonzero, nonsepcial
* band, in encoding order, or negative if there was no such band.
*/
static inline int ff_sfdelta_can_replace(const SingleChannelElement *sce,
const uint8_t *nextband, int prev_sf, int new_sf, int band)
{
return new_sf >= (prev_sf - SCALE_MAX_DIFF)
&& new_sf <= (prev_sf + SCALE_MAX_DIFF)
&& sce->sf_idx[nextband[band]] >= (new_sf - SCALE_MAX_DIFF)
&& sce->sf_idx[nextband[band]] <= (new_sf + SCALE_MAX_DIFF);
}
#define ERROR_IF(cond, ...) \
if (cond) { \
av_log(avctx, AV_LOG_ERROR, __VA_ARGS__); \
return AVERROR(EINVAL); \
}
#define WARN_IF(cond, ...) \
if (cond) { \
av_log(avctx, AV_LOG_WARNING, __VA_ARGS__); \
}
#endif /* AVCODEC_AACENC_UTILS_H */