1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-24 13:56:33 +02:00
FFmpeg/libavfilter/af_afftfilt.c
2023-01-17 17:46:58 +01:00

462 lines
14 KiB
C

/*
* Copyright (c) 2016 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation; either version 2.1 of the License,
* or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/avstring.h"
#include "libavfilter/internal.h"
#include "libavutil/common.h"
#include "libavutil/cpu.h"
#include "libavutil/opt.h"
#include "libavutil/eval.h"
#include "libavutil/tx.h"
#include "audio.h"
#include "filters.h"
#include "window_func.h"
typedef struct AFFTFiltContext {
const AVClass *class;
char *real_str;
char *img_str;
int fft_size;
AVTXContext **fft, **ifft;
av_tx_fn tx_fn, itx_fn;
AVComplexFloat **fft_in;
AVComplexFloat **fft_out;
AVComplexFloat **fft_temp;
int nb_exprs;
int channels;
int window_size;
AVExpr **real;
AVExpr **imag;
int hop_size;
float overlap;
AVFrame *window;
AVFrame *buffer;
int win_func;
float *window_func_lut;
} AFFTFiltContext;
static const char *const var_names[] = { "sr", "b", "nb", "ch", "chs", "pts", "re", "im", NULL };
enum { VAR_SAMPLE_RATE, VAR_BIN, VAR_NBBINS, VAR_CHANNEL, VAR_CHANNELS, VAR_PTS, VAR_REAL, VAR_IMAG, VAR_VARS_NB };
#define OFFSET(x) offsetof(AFFTFiltContext, x)
#define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
static const AVOption afftfilt_options[] = {
{ "real", "set channels real expressions", OFFSET(real_str), AV_OPT_TYPE_STRING, {.str = "re" }, 0, 0, A },
{ "imag", "set channels imaginary expressions", OFFSET(img_str), AV_OPT_TYPE_STRING, {.str = "im" }, 0, 0, A },
{ "win_size", "set window size", OFFSET(fft_size), AV_OPT_TYPE_INT, {.i64=4096}, 16, 131072, A },
WIN_FUNC_OPTION("win_func", OFFSET(win_func), A, WFUNC_HANNING),
{ "overlap", "set window overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl=0.75}, 0, 1, A },
{ NULL },
};
AVFILTER_DEFINE_CLASS(afftfilt);
static inline double getreal(void *priv, double x, double ch)
{
AFFTFiltContext *s = priv;
int ich, ix;
ich = av_clip(ch, 0, s->nb_exprs - 1);
ix = av_clip(x, 0, s->window_size / 2);
return s->fft_out[ich][ix].re;
}
static inline double getimag(void *priv, double x, double ch)
{
AFFTFiltContext *s = priv;
int ich, ix;
ich = av_clip(ch, 0, s->nb_exprs - 1);
ix = av_clip(x, 0, s->window_size / 2);
return s->fft_out[ich][ix].im;
}
static double realf(void *priv, double x, double ch) { return getreal(priv, x, ch); }
static double imagf(void *priv, double x, double ch) { return getimag(priv, x, ch); }
static const char *const func2_names[] = { "real", "imag", NULL };
static double (*const func2[])(void *, double, double) = { realf, imagf, NULL };
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
AFFTFiltContext *s = ctx->priv;
char *saveptr = NULL;
int ret = 0, ch;
float overlap, scale = 1.f;
char *args;
const char *last_expr = "1";
int buf_size;
s->channels = inlink->ch_layout.nb_channels;
s->fft = av_calloc(s->channels, sizeof(*s->fft));
s->ifft = av_calloc(s->channels, sizeof(*s->ifft));
if (!s->fft || !s->ifft)
return AVERROR(ENOMEM);
for (int ch = 0; ch < s->channels; ch++) {
ret = av_tx_init(&s->fft[ch], &s->tx_fn, AV_TX_FLOAT_FFT, 0, s->fft_size, &scale, 0);
if (ret < 0)
return ret;
}
for (int ch = 0; ch < s->channels; ch++) {
ret = av_tx_init(&s->ifft[ch], &s->itx_fn, AV_TX_FLOAT_FFT, 1, s->fft_size, &scale, 0);
if (ret < 0)
return ret;
}
s->window_size = s->fft_size;
buf_size = FFALIGN(s->window_size, av_cpu_max_align());
s->fft_in = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->fft_in));
if (!s->fft_in)
return AVERROR(ENOMEM);
s->fft_out = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->fft_out));
if (!s->fft_out)
return AVERROR(ENOMEM);
s->fft_temp = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->fft_temp));
if (!s->fft_temp)
return AVERROR(ENOMEM);
for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) {
s->fft_in[ch] = av_calloc(buf_size, sizeof(**s->fft_in));
if (!s->fft_in[ch])
return AVERROR(ENOMEM);
s->fft_out[ch] = av_calloc(buf_size, sizeof(**s->fft_out));
if (!s->fft_out[ch])
return AVERROR(ENOMEM);
s->fft_temp[ch] = av_calloc(buf_size, sizeof(**s->fft_temp));
if (!s->fft_temp[ch])
return AVERROR(ENOMEM);
}
s->real = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->real));
if (!s->real)
return AVERROR(ENOMEM);
s->imag = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->imag));
if (!s->imag)
return AVERROR(ENOMEM);
args = av_strdup(s->real_str);
if (!args)
return AVERROR(ENOMEM);
for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) {
char *arg = av_strtok(ch == 0 ? args : NULL, "|", &saveptr);
ret = av_expr_parse(&s->real[ch], arg ? arg : last_expr, var_names,
NULL, NULL, func2_names, func2, 0, ctx);
if (ret < 0)
goto fail;
if (arg)
last_expr = arg;
s->nb_exprs++;
}
av_freep(&args);
args = av_strdup(s->img_str ? s->img_str : s->real_str);
if (!args)
return AVERROR(ENOMEM);
saveptr = NULL;
last_expr = "1";
for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) {
char *arg = av_strtok(ch == 0 ? args : NULL, "|", &saveptr);
ret = av_expr_parse(&s->imag[ch], arg ? arg : last_expr, var_names,
NULL, NULL, func2_names, func2, 0, ctx);
if (ret < 0)
goto fail;
if (arg)
last_expr = arg;
}
av_freep(&args);
s->window_func_lut = av_realloc_f(s->window_func_lut, s->window_size,
sizeof(*s->window_func_lut));
if (!s->window_func_lut)
return AVERROR(ENOMEM);
generate_window_func(s->window_func_lut, s->window_size, s->win_func, &overlap);
for (int i = 0; i < s->window_size; i++)
s->window_func_lut[i] = sqrtf(s->window_func_lut[i] / s->window_size);
if (s->overlap == 1)
s->overlap = overlap;
s->hop_size = s->window_size * (1 - s->overlap);
if (s->hop_size <= 0)
return AVERROR(EINVAL);
s->window = ff_get_audio_buffer(inlink, s->window_size * 2);
if (!s->window)
return AVERROR(ENOMEM);
s->buffer = ff_get_audio_buffer(inlink, s->window_size * 2);
if (!s->buffer)
return AVERROR(ENOMEM);
fail:
av_freep(&args);
return ret;
}
static int tx_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
AFFTFiltContext *s = ctx->priv;
const int channels = s->channels;
const int start = (channels * jobnr) / nb_jobs;
const int end = (channels * (jobnr+1)) / nb_jobs;
for (int ch = start; ch < end; ch++) {
AVComplexFloat *fft_in = s->fft_in[ch];
AVComplexFloat *fft_out = s->fft_out[ch];
s->tx_fn(s->fft[ch], fft_out, fft_in, sizeof(*fft_in));
}
return 0;
}
static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
AFFTFiltContext *s = ctx->priv;
const int window_size = s->window_size;
const float *window_lut = s->window_func_lut;
const float f = sqrtf(1.f - s->overlap);
const int channels = s->channels;
const int start = (channels * jobnr) / nb_jobs;
const int end = (channels * (jobnr+1)) / nb_jobs;
double values[VAR_VARS_NB];
memcpy(values, arg, sizeof(values));
for (int ch = start; ch < end; ch++) {
AVComplexFloat *fft_out = s->fft_out[ch];
AVComplexFloat *fft_temp = s->fft_temp[ch];
float *buf = (float *)s->buffer->extended_data[ch];
values[VAR_CHANNEL] = ch;
if (ctx->is_disabled) {
for (int n = 0; n < window_size; n++) {
fft_temp[n].re = fft_out[n].re;
fft_temp[n].im = fft_out[n].im;
}
} else {
for (int n = 0; n <= window_size / 2; n++) {
float fr, fi;
values[VAR_BIN] = n;
values[VAR_REAL] = fft_out[n].re;
values[VAR_IMAG] = fft_out[n].im;
fr = av_expr_eval(s->real[ch], values, s);
fi = av_expr_eval(s->imag[ch], values, s);
fft_temp[n].re = fr;
fft_temp[n].im = fi;
}
for (int n = window_size / 2 + 1, x = window_size / 2 - 1; n < window_size; n++, x--) {
fft_temp[n].re = fft_temp[x].re;
fft_temp[n].im = -fft_temp[x].im;
}
}
s->itx_fn(s->ifft[ch], fft_out, fft_temp, sizeof(*fft_temp));
memmove(buf, buf + s->hop_size, window_size * sizeof(float));
for (int i = 0; i < window_size; i++)
buf[i] += fft_out[i].re * window_lut[i] * f;
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
AVFilterLink *outlink = ctx->outputs[0];
AFFTFiltContext *s = ctx->priv;
const int window_size = s->window_size;
const float *window_lut = s->window_func_lut;
double values[VAR_VARS_NB];
int ch, n, ret;
AVFrame *out;
for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) {
const int offset = s->window_size - s->hop_size;
float *src = (float *)s->window->extended_data[ch];
AVComplexFloat *fft_in = s->fft_in[ch];
memmove(src, &src[s->hop_size], offset * sizeof(float));
memcpy(&src[offset], in->extended_data[ch], in->nb_samples * sizeof(float));
memset(&src[offset + in->nb_samples], 0, (s->hop_size - in->nb_samples) * sizeof(float));
for (n = 0; n < window_size; n++) {
fft_in[n].re = src[n] * window_lut[n];
fft_in[n].im = 0;
}
}
values[VAR_PTS] = in->pts;
values[VAR_SAMPLE_RATE] = inlink->sample_rate;
values[VAR_NBBINS] = window_size / 2;
values[VAR_CHANNELS] = inlink->ch_layout.nb_channels;
ff_filter_execute(ctx, tx_channel, NULL, NULL,
FFMIN(s->channels, ff_filter_get_nb_threads(ctx)));
ff_filter_execute(ctx, filter_channel, values, NULL,
FFMIN(s->channels, ff_filter_get_nb_threads(ctx)));
out = ff_get_audio_buffer(outlink, s->hop_size);
if (!out) {
ret = AVERROR(ENOMEM);
goto fail;
}
av_frame_copy_props(out, in);
out->nb_samples = in->nb_samples;
for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) {
float *dst = (float *)out->extended_data[ch];
float *buf = (float *)s->buffer->extended_data[ch];
memcpy(dst, buf, s->hop_size * sizeof(float));
}
ret = ff_filter_frame(outlink, out);
if (ret < 0)
goto fail;
fail:
av_frame_free(&in);
return ret < 0 ? ret : 0;
}
static int activate(AVFilterContext *ctx)
{
AVFilterLink *inlink = ctx->inputs[0];
AVFilterLink *outlink = ctx->outputs[0];
AFFTFiltContext *s = ctx->priv;
AVFrame *in = NULL;
int ret = 0, status;
int64_t pts;
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
ret = ff_inlink_consume_samples(inlink, s->hop_size, s->hop_size, &in);
if (ret < 0)
return ret;
if (ret > 0)
ret = filter_frame(inlink, in);
if (ret < 0)
return ret;
if (ff_inlink_acknowledge_status(inlink, &status, &pts)) {
ff_outlink_set_status(outlink, status, pts);
return 0;
}
FF_FILTER_FORWARD_WANTED(outlink, inlink);
return FFERROR_NOT_READY;
}
static av_cold void uninit(AVFilterContext *ctx)
{
AFFTFiltContext *s = ctx->priv;
int i;
for (i = 0; i < s->channels; i++) {
if (s->ifft)
av_tx_uninit(&s->ifft[i]);
if (s->fft)
av_tx_uninit(&s->fft[i]);
if (s->fft_in)
av_freep(&s->fft_in[i]);
if (s->fft_out)
av_freep(&s->fft_out[i]);
if (s->fft_temp)
av_freep(&s->fft_temp[i]);
}
av_freep(&s->fft);
av_freep(&s->ifft);
av_freep(&s->fft_in);
av_freep(&s->fft_out);
av_freep(&s->fft_temp);
for (i = 0; i < s->nb_exprs; i++) {
av_expr_free(s->real[i]);
av_expr_free(s->imag[i]);
}
av_freep(&s->real);
av_freep(&s->imag);
av_frame_free(&s->buffer);
av_frame_free(&s->window);
av_freep(&s->window_func_lut);
}
static const AVFilterPad inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.config_props = config_input,
},
};
static const AVFilterPad outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
},
};
const AVFilter ff_af_afftfilt = {
.name = "afftfilt",
.description = NULL_IF_CONFIG_SMALL("Apply arbitrary expressions to samples in frequency domain."),
.priv_size = sizeof(AFFTFiltContext),
.priv_class = &afftfilt_class,
FILTER_INPUTS(inputs),
FILTER_OUTPUTS(outputs),
FILTER_SINGLE_SAMPLEFMT(AV_SAMPLE_FMT_FLTP),
.activate = activate,
.uninit = uninit,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL |
AVFILTER_FLAG_SLICE_THREADS,
};