1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavfilter/vf_yadif.c
Michael Niedermayer feed239021 yadif: Account for the buffer alignment while processing the frame edges
Avoid out of bound reads.

Bug-Id: 1031
CC: libav-stable@libav.org
Signed-off-by: Luca Barbato <lu_zero@gentoo.org>
2017-08-22 22:31:19 +02:00

549 lines
16 KiB
C

/*
* Copyright (C) 2006-2010 Michael Niedermayer <michaelni@gmx.at>
* 2010 James Darnley <james.darnley@gmail.com>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/cpu.h"
#include "libavutil/common.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#include "yadif.h"
#undef NDEBUG
#include <assert.h>
typedef struct ThreadData {
AVFrame *frame;
int plane;
int w, h;
int parity;
int tff;
} ThreadData;
#define MAX_ALIGN 8
#define CHECK(j)\
{ int score = FFABS(cur[mrefs - 1 + (j)] - cur[prefs - 1 - (j)])\
+ FFABS(cur[mrefs +(j)] - cur[prefs -(j)])\
+ FFABS(cur[mrefs + 1 + (j)] - cur[prefs + 1 - (j)]);\
if (score < spatial_score) {\
spatial_score= score;\
spatial_pred= (cur[mrefs +(j)] + cur[prefs -(j)])>>1;\
/* The is_not_edge argument here controls when the code will enter a branch
* which reads up to and including x-3 and x+3. */
#define FILTER(start, end, is_not_edge) \
for (x = start; x < end; x++) { \
int c = cur[mrefs]; \
int d = (prev2[0] + next2[0])>>1; \
int e = cur[prefs]; \
int temporal_diff0 = FFABS(prev2[0] - next2[0]); \
int temporal_diff1 =(FFABS(prev[mrefs] - c) + FFABS(prev[prefs] - e) )>>1; \
int temporal_diff2 =(FFABS(next[mrefs] - c) + FFABS(next[prefs] - e) )>>1; \
int diff = FFMAX3(temporal_diff0 >> 1, temporal_diff1, temporal_diff2); \
int spatial_pred = (c+e) >> 1; \
\
if (is_not_edge) {\
int spatial_score = FFABS(cur[mrefs - 1] - cur[prefs - 1]) + FFABS(c-e) \
+ FFABS(cur[mrefs + 1] - cur[prefs + 1]) - 1; \
CHECK(-1) CHECK(-2) }} }} \
CHECK( 1) CHECK( 2) }} }} \
}\
\
if (mode < 2) { \
int b = (prev2[2 * mrefs] + next2[2 * mrefs])>>1; \
int f = (prev2[2 * prefs] + next2[2 * prefs])>>1; \
int max = FFMAX3(d - e, d - c, FFMIN(b - c, f - e)); \
int min = FFMIN3(d - e, d - c, FFMAX(b - c, f - e)); \
\
diff = FFMAX3(diff, min, -max); \
} \
\
if (spatial_pred > d + diff) \
spatial_pred = d + diff; \
else if (spatial_pred < d - diff) \
spatial_pred = d - diff; \
\
dst[0] = spatial_pred; \
\
dst++; \
cur++; \
prev++; \
next++; \
prev2++; \
next2++; \
}
static void filter_line_c(void *dst1,
void *prev1, void *cur1, void *next1,
int w, int prefs, int mrefs, int parity, int mode)
{
uint8_t *dst = dst1;
uint8_t *prev = prev1;
uint8_t *cur = cur1;
uint8_t *next = next1;
int x;
uint8_t *prev2 = parity ? prev : cur ;
uint8_t *next2 = parity ? cur : next;
/* The function is called with the pointers already pointing to data[3] and
* with 6 subtracted from the width. This allows the FILTER macro to be
* called so that it processes all the pixels normally. A constant value of
* true for is_not_edge lets the compiler ignore the if statement. */
FILTER(0, w, 1)
}
static void filter_edges(void *dst1, void *prev1, void *cur1, void *next1,
int w, int prefs, int mrefs, int parity, int mode)
{
uint8_t *dst = dst1;
uint8_t *prev = prev1;
uint8_t *cur = cur1;
uint8_t *next = next1;
int x;
uint8_t *prev2 = parity ? prev : cur ;
uint8_t *next2 = parity ? cur : next;
const int edge = MAX_ALIGN - 1;
/* Only edge pixels need to be processed here. A constant value of false
* for is_not_edge should let the compiler ignore the whole branch. */
FILTER(0, 3, 0)
dst = (uint8_t*)dst1 + w - edge;
prev = (uint8_t*)prev1 + w - edge;
cur = (uint8_t*)cur1 + w - edge;
next = (uint8_t*)next1 + w - edge;
prev2 = (uint8_t*)(parity ? prev : cur);
next2 = (uint8_t*)(parity ? cur : next);
FILTER(w - edge, w - 3, 1)
FILTER(w - 3, w, 0)
}
static void filter_line_c_16bit(void *dst1,
void *prev1, void *cur1, void *next1,
int w, int prefs, int mrefs, int parity,
int mode)
{
uint16_t *dst = dst1;
uint16_t *prev = prev1;
uint16_t *cur = cur1;
uint16_t *next = next1;
int x;
uint16_t *prev2 = parity ? prev : cur ;
uint16_t *next2 = parity ? cur : next;
mrefs /= 2;
prefs /= 2;
FILTER(0, w, 1)
}
static void filter_edges_16bit(void *dst1, void *prev1, void *cur1, void *next1,
int w, int prefs, int mrefs, int parity, int mode)
{
uint16_t *dst = dst1;
uint16_t *prev = prev1;
uint16_t *cur = cur1;
uint16_t *next = next1;
int x;
uint16_t *prev2 = parity ? prev : cur ;
uint16_t *next2 = parity ? cur : next;
const int edge = MAX_ALIGN / 2 - 1;
mrefs /= 2;
prefs /= 2;
FILTER(0, 3, 0)
dst = (uint16_t*)dst1 + w - edge;
prev = (uint16_t*)prev1 + w - edge;
cur = (uint16_t*)cur1 + w - edge;
next = (uint16_t*)next1 + w - edge;
prev2 = (uint16_t*)(parity ? prev : cur);
next2 = (uint16_t*)(parity ? cur : next);
FILTER(w - edge, w - 3, 1)
FILTER(w - 3, w, 0)
}
static int filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
YADIFContext *s = ctx->priv;
ThreadData *td = arg;
int refs = s->cur->linesize[td->plane];
int df = (s->csp->comp[td->plane].depth + 7) / 8;
int pix_3 = 3 * df;
int slice_h = td->h / nb_jobs;
int slice_start = jobnr * slice_h;
int slice_end = (jobnr == nb_jobs - 1) ? td->h : (jobnr + 1) * slice_h;
int y;
int edge = 3 + MAX_ALIGN / df - 1;
/* filtering reads 3 pixels to the left/right; to avoid invalid reads,
* we need to call the c variant which avoids this for border pixels
*/
for (y = slice_start; y < slice_end; y++) {
if ((y ^ td->parity) & 1) {
uint8_t *prev = &s->prev->data[td->plane][y * refs];
uint8_t *cur = &s->cur ->data[td->plane][y * refs];
uint8_t *next = &s->next->data[td->plane][y * refs];
uint8_t *dst = &td->frame->data[td->plane][y * td->frame->linesize[td->plane]];
int mode = y == 1 || y + 2 == td->h ? 2 : s->mode;
s->filter_line(dst + pix_3, prev + pix_3, cur + pix_3,
next + pix_3, td->w - edge,
y + 1 < td->h ? refs : -refs,
y ? -refs : refs,
td->parity ^ td->tff, mode);
s->filter_edges(dst, prev, cur, next, td->w,
y + 1 < td->h ? refs : -refs,
y ? -refs : refs,
td->parity ^ td->tff, mode);
} else {
memcpy(&td->frame->data[td->plane][y * td->frame->linesize[td->plane]],
&s->cur->data[td->plane][y * refs], td->w * df);
}
}
return 0;
}
static void filter(AVFilterContext *ctx, AVFrame *dstpic,
int parity, int tff)
{
YADIFContext *yadif = ctx->priv;
ThreadData td = { .frame = dstpic, .parity = parity, .tff = tff };
int i;
for (i = 0; i < yadif->csp->nb_components; i++) {
int w = dstpic->width;
int h = dstpic->height;
if (i == 1 || i == 2) {
w >>= yadif->csp->log2_chroma_w;
h >>= yadif->csp->log2_chroma_h;
}
td.w = w;
td.h = h;
td.plane = i;
ctx->internal->execute(ctx, filter_slice, &td, NULL, FFMIN(h, ctx->graph->nb_threads));
}
emms_c();
}
static AVFrame *get_video_buffer(AVFilterLink *link, int w, int h)
{
AVFrame *frame;
int width = FFALIGN(w, 32);
int height = FFALIGN(h + 2, 32);
int i;
frame = ff_default_get_video_buffer(link, width, height);
frame->width = w;
frame->height = h;
for (i = 0; i < 3; i++)
frame->data[i] += frame->linesize[i];
return frame;
}
static int return_frame(AVFilterContext *ctx, int is_second)
{
YADIFContext *yadif = ctx->priv;
AVFilterLink *link = ctx->outputs[0];
int tff, ret;
if (yadif->parity == -1) {
tff = yadif->cur->interlaced_frame ?
yadif->cur->top_field_first : 1;
} else {
tff = yadif->parity ^ 1;
}
if (is_second) {
yadif->out = ff_get_video_buffer(link, link->w, link->h);
if (!yadif->out)
return AVERROR(ENOMEM);
av_frame_copy_props(yadif->out, yadif->cur);
yadif->out->interlaced_frame = 0;
}
filter(ctx, yadif->out, tff ^ !is_second, tff);
if (is_second) {
int64_t cur_pts = yadif->cur->pts;
int64_t next_pts = yadif->next->pts;
if (next_pts != AV_NOPTS_VALUE && cur_pts != AV_NOPTS_VALUE) {
yadif->out->pts = cur_pts + next_pts;
} else {
yadif->out->pts = AV_NOPTS_VALUE;
}
}
ret = ff_filter_frame(ctx->outputs[0], yadif->out);
yadif->frame_pending = (yadif->mode&1) && !is_second;
return ret;
}
static int filter_frame(AVFilterLink *link, AVFrame *frame)
{
AVFilterContext *ctx = link->dst;
YADIFContext *yadif = ctx->priv;
if (yadif->frame_pending)
return_frame(ctx, 1);
if (yadif->prev)
av_frame_free(&yadif->prev);
yadif->prev = yadif->cur;
yadif->cur = yadif->next;
yadif->next = frame;
if (!yadif->cur)
return 0;
if (yadif->auto_enable && !yadif->cur->interlaced_frame) {
yadif->out = av_frame_clone(yadif->cur);
if (!yadif->out)
return AVERROR(ENOMEM);
av_frame_free(&yadif->prev);
if (yadif->out->pts != AV_NOPTS_VALUE)
yadif->out->pts *= 2;
return ff_filter_frame(ctx->outputs[0], yadif->out);
}
if (!yadif->prev &&
!(yadif->prev = av_frame_clone(yadif->cur)))
return AVERROR(ENOMEM);
yadif->out = ff_get_video_buffer(ctx->outputs[0], link->w, link->h);
if (!yadif->out)
return AVERROR(ENOMEM);
av_frame_copy_props(yadif->out, yadif->cur);
yadif->out->interlaced_frame = 0;
if (yadif->out->pts != AV_NOPTS_VALUE)
yadif->out->pts *= 2;
return return_frame(ctx, 0);
}
static int request_frame(AVFilterLink *link)
{
AVFilterContext *ctx = link->src;
YADIFContext *yadif = ctx->priv;
if (yadif->frame_pending) {
return_frame(ctx, 1);
return 0;
}
do {
int ret;
if (yadif->eof)
return AVERROR_EOF;
ret = ff_request_frame(link->src->inputs[0]);
if (ret == AVERROR_EOF && yadif->next) {
AVFrame *next = av_frame_clone(yadif->next);
if (!next)
return AVERROR(ENOMEM);
next->pts = yadif->next->pts * 2 - yadif->cur->pts;
filter_frame(link->src->inputs[0], next);
yadif->eof = 1;
} else if (ret < 0) {
return ret;
}
} while (!yadif->cur);
return 0;
}
static int poll_frame(AVFilterLink *link)
{
YADIFContext *yadif = link->src->priv;
int ret, val;
if (yadif->frame_pending)
return 1;
val = ff_poll_frame(link->src->inputs[0]);
if (val <= 0)
return val;
//FIXME change API to not require this red tape
if (val == 1 && !yadif->next) {
if ((ret = ff_request_frame(link->src->inputs[0])) < 0)
return ret;
val = ff_poll_frame(link->src->inputs[0]);
if (val <= 0)
return val;
}
assert(yadif->next || !val);
if (yadif->auto_enable && yadif->next && !yadif->next->interlaced_frame)
return val;
return val * ((yadif->mode&1)+1);
}
static av_cold void uninit(AVFilterContext *ctx)
{
YADIFContext *yadif = ctx->priv;
if (yadif->prev) av_frame_free(&yadif->prev);
if (yadif->cur ) av_frame_free(&yadif->cur );
if (yadif->next) av_frame_free(&yadif->next);
}
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUV420P,
AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUV410P,
AV_PIX_FMT_YUV411P,
AV_PIX_FMT_GRAY8,
AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ422P,
AV_PIX_FMT_YUVJ444P,
AV_NE( AV_PIX_FMT_GRAY16BE, AV_PIX_FMT_GRAY16LE ),
AV_PIX_FMT_YUV440P,
AV_PIX_FMT_YUVJ440P,
AV_NE( AV_PIX_FMT_YUV420P10BE, AV_PIX_FMT_YUV420P10LE ),
AV_NE( AV_PIX_FMT_YUV422P10BE, AV_PIX_FMT_YUV422P10LE ),
AV_NE( AV_PIX_FMT_YUV444P10BE, AV_PIX_FMT_YUV444P10LE ),
AV_NE( AV_PIX_FMT_YUV420P16BE, AV_PIX_FMT_YUV420P16LE ),
AV_NE( AV_PIX_FMT_YUV422P16BE, AV_PIX_FMT_YUV422P16LE ),
AV_NE( AV_PIX_FMT_YUV444P16BE, AV_PIX_FMT_YUV444P16LE ),
AV_PIX_FMT_YUVA420P,
AV_PIX_FMT_NONE
};
ff_set_common_formats(ctx, ff_make_format_list(pix_fmts));
return 0;
}
static int config_props(AVFilterLink *link)
{
YADIFContext *s = link->src->priv;
link->time_base.num = link->src->inputs[0]->time_base.num;
link->time_base.den = link->src->inputs[0]->time_base.den * 2;
link->w = link->src->inputs[0]->w;
link->h = link->src->inputs[0]->h;
if (s->mode & 1)
link->frame_rate = av_mul_q(link->src->inputs[0]->frame_rate,
(AVRational){2, 1});
s->csp = av_pix_fmt_desc_get(link->format);
if (s->csp->comp[0].depth > 8) {
s->filter_line = filter_line_c_16bit;
s->filter_edges = filter_edges_16bit;
} else {
s->filter_line = filter_line_c;
s->filter_edges = filter_edges;
if (ARCH_X86)
ff_yadif_init_x86(s);
}
return 0;
}
#define OFFSET(x) offsetof(YADIFContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM
static const AVOption options[] = {
{ "mode", NULL, OFFSET(mode), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 3, FLAGS },
{ "parity", NULL, OFFSET(parity), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, 1, FLAGS, "parity" },
{ "auto", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = -1 }, .unit = "parity" },
{ "tff", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, .unit = "parity" },
{ "bff", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, .unit = "parity" },
{ "auto", NULL, OFFSET(auto_enable), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS },
{ NULL },
};
static const AVClass yadif_class = {
.class_name = "yadif",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
static const AVFilterPad avfilter_vf_yadif_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.get_video_buffer = get_video_buffer,
.filter_frame = filter_frame,
},
{ NULL }
};
static const AVFilterPad avfilter_vf_yadif_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.poll_frame = poll_frame,
.request_frame = request_frame,
.config_props = config_props,
},
{ NULL }
};
AVFilter ff_vf_yadif = {
.name = "yadif",
.description = NULL_IF_CONFIG_SMALL("Deinterlace the input image"),
.priv_size = sizeof(YADIFContext),
.priv_class = &yadif_class,
.uninit = uninit,
.query_formats = query_formats,
.inputs = avfilter_vf_yadif_inputs,
.outputs = avfilter_vf_yadif_outputs,
.flags = AVFILTER_FLAG_SLICE_THREADS,
};