1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-08 13:22:53 +02:00
FFmpeg/libavfilter/vf_v360.c
Eugene Lyapustin 596ecc295f avfilter/vf_v360: add dual fisheye format
Signed-off-by: Eugene Lyapustin <unishifft@gmail.com>
2019-08-19 09:07:38 +01:00

1975 lines
62 KiB
C

/*
* Copyright (c) 2019 Eugene Lyapustin
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* 360 video conversion filter.
* Principle of operation:
*
* (for each pixel in output frame)\n
* 1) Calculate OpenGL-like coordinates (x, y, z) for pixel position (i, j)\n
* 2) Apply 360 operations (rotation, mirror) to (x, y, z)\n
* 3) Calculate pixel position (u, v) in input frame\n
* 4) Calculate interpolation window and weight for each pixel
*
* (for each frame)\n
* 5) Remap input frame to output frame using precalculated data\n
*/
#include "libavutil/eval.h"
#include "libavutil/imgutils.h"
#include "libavutil/pixdesc.h"
#include "libavutil/opt.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
enum Projections {
EQUIRECTANGULAR,
CUBEMAP_3_2,
CUBEMAP_6_1,
EQUIANGULAR,
FLAT,
DUAL_FISHEYE,
NB_PROJECTIONS,
};
enum InterpMethod {
NEAREST,
BILINEAR,
BICUBIC,
LANCZOS,
NB_INTERP_METHODS,
};
enum Faces {
TOP_LEFT,
TOP_MIDDLE,
TOP_RIGHT,
BOTTOM_LEFT,
BOTTOM_MIDDLE,
BOTTOM_RIGHT,
NB_FACES,
};
enum Direction {
RIGHT, ///< Axis +X
LEFT, ///< Axis -X
UP, ///< Axis +Y
DOWN, ///< Axis -Y
FRONT, ///< Axis -Z
BACK, ///< Axis +Z
NB_DIRECTIONS,
};
enum Rotation {
ROT_0,
ROT_90,
ROT_180,
ROT_270,
NB_ROTATIONS,
};
typedef struct V360Context {
const AVClass *class;
int in, out;
int interp;
int width, height;
char* in_forder;
char* out_forder;
char* in_frot;
char* out_frot;
int in_cubemap_face_order[6];
int out_cubemap_direction_order[6];
int in_cubemap_face_rotation[6];
int out_cubemap_face_rotation[6];
float in_pad, out_pad;
float yaw, pitch, roll;
int h_flip, v_flip, d_flip;
float h_fov, v_fov;
float flat_range[3];
int planewidth[4], planeheight[4];
int inplanewidth[4], inplaneheight[4];
int nb_planes;
void *remap[4];
int (*remap_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
} V360Context;
typedef struct ThreadData {
V360Context *s;
AVFrame *in;
AVFrame *out;
int nb_planes;
} ThreadData;
#define OFFSET(x) offsetof(V360Context, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption v360_options[] = {
{ "input", "set input projection", OFFSET(in), AV_OPT_TYPE_INT, {.i64=EQUIRECTANGULAR}, 0, NB_PROJECTIONS-1, FLAGS, "in" },
{ "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "in" },
{ "c3x2", "cubemap3x2", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0, 0, FLAGS, "in" },
{ "c6x1", "cubemap6x1", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_6_1}, 0, 0, FLAGS, "in" },
{ "eac", "equi-angular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIANGULAR}, 0, 0, FLAGS, "in" },
{ "dfisheye", "dual fisheye", 0, AV_OPT_TYPE_CONST, {.i64=DUAL_FISHEYE}, 0, 0, FLAGS, "in" },
{ "output", "set output projection", OFFSET(out), AV_OPT_TYPE_INT, {.i64=CUBEMAP_3_2}, 0, NB_PROJECTIONS-1, FLAGS, "out" },
{ "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "out" },
{ "c3x2", "cubemap3x2", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0, 0, FLAGS, "out" },
{ "c6x1", "cubemap6x1", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_6_1}, 0, 0, FLAGS, "out" },
{ "eac", "equi-angular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIANGULAR}, 0, 0, FLAGS, "out" },
{ "flat", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "out" },
{ "interp", "set interpolation method", OFFSET(interp), AV_OPT_TYPE_INT, {.i64=BILINEAR}, 0, NB_INTERP_METHODS-1, FLAGS, "interp" },
{ "near", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, "interp" },
{ "nearest", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, "interp" },
{ "line", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BILINEAR}, 0, 0, FLAGS, "interp" },
{ "linear", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BILINEAR}, 0, 0, FLAGS, "interp" },
{ "cube", "bicubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BICUBIC}, 0, 0, FLAGS, "interp" },
{ "cubic", "bicubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BICUBIC}, 0, 0, FLAGS, "interp" },
{ "lanc", "lanczos interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0, 0, FLAGS, "interp" },
{ "lanczos", "lanczos interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0, 0, FLAGS, "interp" },
{ "w", "output width", OFFSET(width), AV_OPT_TYPE_INT, {.i64=0}, 0, INT_MAX, FLAGS, "w"},
{ "h", "output height", OFFSET(height), AV_OPT_TYPE_INT, {.i64=0}, 0, INT_MAX, FLAGS, "h"},
{ "in_forder", "input cubemap face order", OFFSET(in_forder), AV_OPT_TYPE_STRING, {.str="rludfb"}, 0, NB_DIRECTIONS-1, FLAGS, "in_forder"},
{"out_forder", "output cubemap face order", OFFSET(out_forder), AV_OPT_TYPE_STRING, {.str="rludfb"}, 0, NB_DIRECTIONS-1, FLAGS, "out_forder"},
{ "in_frot", "input cubemap face rotation", OFFSET(in_frot), AV_OPT_TYPE_STRING, {.str="000000"}, 0, NB_DIRECTIONS-1, FLAGS, "in_frot"},
{ "out_frot", "output cubemap face rotation",OFFSET(out_frot), AV_OPT_TYPE_STRING, {.str="000000"}, 0, NB_DIRECTIONS-1, FLAGS, "out_frot"},
{ "in_pad", "input cubemap pads", OFFSET(in_pad), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 1.f, FLAGS, "in_pad"},
{ "out_pad", "output cubemap pads", OFFSET(out_pad), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 1.f, FLAGS, "out_pad"},
{ "yaw", "yaw rotation", OFFSET(yaw), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f, FLAGS, "yaw"},
{ "pitch", "pitch rotation", OFFSET(pitch), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f, FLAGS, "pitch"},
{ "roll", "roll rotation", OFFSET(roll), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f, FLAGS, "roll"},
{ "h_fov", "horizontal field of view", OFFSET(h_fov), AV_OPT_TYPE_FLOAT, {.dbl=90.f}, 0.f, 180.f, FLAGS, "h_fov"},
{ "v_fov", "vertical field of view", OFFSET(v_fov), AV_OPT_TYPE_FLOAT, {.dbl=45.f}, 0.f, 90.f, FLAGS, "v_fov"},
{ "h_flip", "flip video horizontally", OFFSET(h_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "h_flip"},
{ "v_flip", "flip video vertically", OFFSET(v_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "v_flip"},
{ "d_flip", "flip video indepth", OFFSET(d_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "d_flip"},
{ NULL }
};
AVFILTER_DEFINE_CLASS(v360);
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
// YUVA444
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA444P9,
AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12,
AV_PIX_FMT_YUVA444P16,
// YUVA422
AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA422P9,
AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12,
AV_PIX_FMT_YUVA422P16,
// YUVA420
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA420P9,
AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
// YUVJ
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ411P,
// YUV444
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV444P9,
AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12,
AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16,
// YUV440
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV440P10,
AV_PIX_FMT_YUV440P12,
// YUV422
AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV422P9,
AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12,
AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV422P16,
// YUV420
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV420P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12,
AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16,
// YUV411
AV_PIX_FMT_YUV411P,
// YUV410
AV_PIX_FMT_YUV410P,
// GBR
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9,
AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12,
AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
// GBRA
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10,
AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
// GRAY
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9,
AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_NONE
};
AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
if (!fmts_list)
return AVERROR(ENOMEM);
return ff_set_common_formats(ctx, fmts_list);
}
typedef struct XYRemap1 {
uint16_t u;
uint16_t v;
} XYRemap1;
/**
* Generate no-interpolation remapping function with a given pixel depth.
*
* @param bits number of bits per pixel
* @param div number of bytes per pixel
*/
#define DEFINE_REMAP1(bits, div) \
static int remap1_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
{ \
ThreadData *td = (ThreadData*)arg; \
const V360Context *s = td->s; \
const AVFrame *in = td->in; \
AVFrame *out = td->out; \
\
int plane, x, y; \
\
for (plane = 0; plane < td->nb_planes; plane++) { \
const int in_linesize = in->linesize[plane] / div; \
const int out_linesize = out->linesize[plane] / div; \
const uint##bits##_t *src = (const uint##bits##_t *)in->data[plane]; \
uint##bits##_t *dst = (uint##bits##_t *)out->data[plane]; \
const XYRemap1 *remap = s->remap[plane]; \
const int width = s->planewidth[plane]; \
const int height = s->planeheight[plane]; \
\
const int slice_start = (height * jobnr ) / nb_jobs; \
const int slice_end = (height * (jobnr + 1)) / nb_jobs; \
\
for (y = slice_start; y < slice_end; y++) { \
uint##bits##_t *d = dst + y * out_linesize; \
for (x = 0; x < width; x++) { \
const XYRemap1 *r = &remap[y * width + x]; \
\
*d++ = src[r->v * in_linesize + r->u]; \
} \
} \
} \
\
return 0; \
}
DEFINE_REMAP1( 8, 1)
DEFINE_REMAP1(16, 2)
typedef struct XYRemap2 {
uint16_t u[2][2];
uint16_t v[2][2];
float ker[2][2];
} XYRemap2;
typedef struct XYRemap4 {
uint16_t u[4][4];
uint16_t v[4][4];
float ker[4][4];
} XYRemap4;
/**
* Generate remapping function with a given window size and pixel depth.
*
* @param window_size size of interpolation window
* @param bits number of bits per pixel
* @param div number of bytes per pixel
*/
#define DEFINE_REMAP(window_size, bits, div) \
static int remap##window_size##_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
{ \
ThreadData *td = (ThreadData*)arg; \
const V360Context *s = td->s; \
const AVFrame *in = td->in; \
AVFrame *out = td->out; \
\
int plane, x, y, i, j; \
\
for (plane = 0; plane < td->nb_planes; plane++) { \
const int in_linesize = in->linesize[plane] / div; \
const int out_linesize = out->linesize[plane] / div; \
const uint##bits##_t *src = (const uint##bits##_t *)in->data[plane]; \
uint##bits##_t *dst = (uint##bits##_t *)out->data[plane]; \
const XYRemap##window_size *remap = s->remap[plane]; \
const int width = s->planewidth[plane]; \
const int height = s->planeheight[plane]; \
\
const int slice_start = (height * jobnr ) / nb_jobs; \
const int slice_end = (height * (jobnr + 1)) / nb_jobs; \
\
for (y = slice_start; y < slice_end; y++) { \
uint##bits##_t *d = dst + y * out_linesize; \
for (x = 0; x < width; x++) { \
const XYRemap##window_size *r = &remap[y * width + x]; \
float tmp = 0.f; \
\
for (i = 0; i < window_size; i++) { \
for (j = 0; j < window_size; j++) { \
tmp += r->ker[i][j] * src[r->v[i][j] * in_linesize + r->u[i][j]]; \
} \
} \
\
*d++ = av_clip_uint##bits(roundf(tmp)); \
} \
} \
} \
\
return 0; \
}
DEFINE_REMAP(2, 8, 1)
DEFINE_REMAP(4, 8, 1)
DEFINE_REMAP(2, 16, 2)
DEFINE_REMAP(4, 16, 2)
/**
* Save nearest pixel coordinates for remapping.
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param shift shift for remap array
* @param r_tmp calculated 4x4 window
* @param r_void remap data
*/
static void nearest_kernel(float du, float dv, int shift, const XYRemap4 *r_tmp, void *r_void)
{
XYRemap1 *r = (XYRemap1*)r_void + shift;
const int i = roundf(dv) + 1;
const int j = roundf(du) + 1;
r->u = r_tmp->u[i][j];
r->v = r_tmp->v[i][j];
}
/**
* Calculate kernel for bilinear interpolation.
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param shift shift for remap array
* @param r_tmp calculated 4x4 window
* @param r_void remap data
*/
static void bilinear_kernel(float du, float dv, int shift, const XYRemap4 *r_tmp, void *r_void)
{
XYRemap2 *r = (XYRemap2*)r_void + shift;
int i, j;
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
r->u[i][j] = r_tmp->u[i + 1][j + 1];
r->v[i][j] = r_tmp->v[i + 1][j + 1];
}
}
r->ker[0][0] = (1.f - du) * (1.f - dv);
r->ker[0][1] = du * (1.f - dv);
r->ker[1][0] = (1.f - du) * dv;
r->ker[1][1] = du * dv;
}
/**
* Calculate 1-dimensional cubic coefficients.
*
* @param t relative coordinate
* @param coeffs coefficients
*/
static inline void calculate_bicubic_coeffs(float t, float *coeffs)
{
const float tt = t * t;
const float ttt = t * t * t;
coeffs[0] = - t / 3.f + tt / 2.f - ttt / 6.f;
coeffs[1] = 1.f - t / 2.f - tt + ttt / 2.f;
coeffs[2] = t + tt / 2.f - ttt / 2.f;
coeffs[3] = - t / 6.f + ttt / 6.f;
}
/**
* Calculate kernel for bicubic interpolation.
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param shift shift for remap array
* @param r_tmp calculated 4x4 window
* @param r_void remap data
*/
static void bicubic_kernel(float du, float dv, int shift, const XYRemap4 *r_tmp, void *r_void)
{
XYRemap4 *r = (XYRemap4*)r_void + shift;
int i, j;
float du_coeffs[4];
float dv_coeffs[4];
calculate_bicubic_coeffs(du, du_coeffs);
calculate_bicubic_coeffs(dv, dv_coeffs);
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
r->u[i][j] = r_tmp->u[i][j];
r->v[i][j] = r_tmp->v[i][j];
r->ker[i][j] = du_coeffs[j] * dv_coeffs[i];
}
}
}
/**
* Calculate 1-dimensional lanczos coefficients.
*
* @param t relative coordinate
* @param coeffs coefficients
*/
static inline void calculate_lanczos_coeffs(float t, float *coeffs)
{
int i;
float sum = 0.f;
for (i = 0; i < 4; i++) {
const float x = M_PI * (t - i + 1);
if (x == 0.f) {
coeffs[i] = 1.f;
} else {
coeffs[i] = sinf(x) * sinf(x / 2.f) / (x * x / 2.f);
}
sum += coeffs[i];
}
for (i = 0; i < 4; i++) {
coeffs[i] /= sum;
}
}
/**
* Calculate kernel for lanczos interpolation.
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param shift shift for remap array
* @param r_tmp calculated 4x4 window
* @param r_void remap data
*/
static void lanczos_kernel(float du, float dv, int shift, const XYRemap4 *r_tmp, void *r_void)
{
XYRemap4 *r = (XYRemap4*)r_void + shift;
int i, j;
float du_coeffs[4];
float dv_coeffs[4];
calculate_lanczos_coeffs(du, du_coeffs);
calculate_lanczos_coeffs(dv, dv_coeffs);
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
r->u[i][j] = r_tmp->u[i][j];
r->v[i][j] = r_tmp->v[i][j];
r->ker[i][j] = du_coeffs[j] * dv_coeffs[i];
}
}
}
/**
* Modulo operation with only positive remainders.
*
* @param a dividend
* @param b divisor
*
* @return positive remainder of (a / b)
*/
static inline int mod(int a, int b)
{
const int res = a % b;
if (res < 0) {
return res + b;
} else {
return res;
}
}
/**
* Convert char to corresponding direction.
* Used for cubemap options.
*/
static int get_direction(char c)
{
switch (c) {
case 'r':
return RIGHT;
case 'l':
return LEFT;
case 'u':
return UP;
case 'd':
return DOWN;
case 'f':
return FRONT;
case 'b':
return BACK;
default:
return -1;
}
}
/**
* Convert char to corresponding rotation angle.
* Used for cubemap options.
*/
static int get_rotation(char c)
{
switch (c) {
case '0':
return ROT_0;
case '1':
return ROT_90;
case '2':
return ROT_180;
case '3':
return ROT_270;
default:
return -1;
}
}
/**
* Prepare data for processing cubemap input format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_cube_in(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
for (int face = 0; face < NB_FACES; face++) {
const char c = s->in_forder[face];
int direction;
if (c == '\0') {
av_log(ctx, AV_LOG_ERROR,
"Incomplete in_forder option. Direction for all 6 faces should be specified.\n");
return AVERROR(EINVAL);
}
direction = get_direction(c);
if (direction == -1) {
av_log(ctx, AV_LOG_ERROR,
"Incorrect direction symbol '%c' in in_forder option.\n", c);
return AVERROR(EINVAL);
}
s->in_cubemap_face_order[direction] = face;
}
for (int face = 0; face < NB_FACES; face++) {
const char c = s->in_frot[face];
int rotation;
if (c == '\0') {
av_log(ctx, AV_LOG_ERROR,
"Incomplete in_frot option. Rotation for all 6 faces should be specified.\n");
return AVERROR(EINVAL);
}
rotation = get_rotation(c);
if (rotation == -1) {
av_log(ctx, AV_LOG_ERROR,
"Incorrect rotation symbol '%c' in in_frot option.\n", c);
return AVERROR(EINVAL);
}
s->in_cubemap_face_rotation[face] = rotation;
}
return 0;
}
/**
* Prepare data for processing cubemap output format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_cube_out(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
for (int face = 0; face < NB_FACES; face++) {
const char c = s->out_forder[face];
int direction;
if (c == '\0') {
av_log(ctx, AV_LOG_ERROR,
"Incomplete out_forder option. Direction for all 6 faces should be specified.\n");
return AVERROR(EINVAL);
}
direction = get_direction(c);
if (direction == -1) {
av_log(ctx, AV_LOG_ERROR,
"Incorrect direction symbol '%c' in out_forder option.\n", c);
return AVERROR(EINVAL);
}
s->out_cubemap_direction_order[face] = direction;
}
for (int face = 0; face < NB_FACES; face++) {
const char c = s->out_frot[face];
int rotation;
if (c == '\0') {
av_log(ctx, AV_LOG_ERROR,
"Incomplete out_frot option. Rotation for all 6 faces should be specified.\n");
return AVERROR(EINVAL);
}
rotation = get_rotation(c);
if (rotation == -1) {
av_log(ctx, AV_LOG_ERROR,
"Incorrect rotation symbol '%c' in out_frot option.\n", c);
return AVERROR(EINVAL);
}
s->out_cubemap_face_rotation[face] = rotation;
}
return 0;
}
static inline void rotate_cube_face(float *uf, float *vf, int rotation)
{
float tmp;
switch (rotation) {
case ROT_0:
break;
case ROT_90:
tmp = *uf;
*uf = -*vf;
*vf = tmp;
break;
case ROT_180:
*uf = -*uf;
*vf = -*vf;
break;
case ROT_270:
tmp = -*uf;
*uf = *vf;
*vf = tmp;
break;
}
}
static inline void rotate_cube_face_inverse(float *uf, float *vf, int rotation)
{
float tmp;
switch (rotation) {
case ROT_0:
break;
case ROT_90:
tmp = -*uf;
*uf = *vf;
*vf = tmp;
break;
case ROT_180:
*uf = -*uf;
*vf = -*vf;
break;
case ROT_270:
tmp = *uf;
*uf = -*vf;
*vf = tmp;
break;
}
}
/**
* Calculate 3D coordinates on sphere for corresponding cubemap position.
* Common operation for every cubemap.
*
* @param s filter context
* @param uf horizontal cubemap coordinate [0, 1)
* @param vf vertical cubemap coordinate [0, 1)
* @param face face of cubemap
* @param vec coordinates on sphere
*/
static void cube_to_xyz(const V360Context *s,
float uf, float vf, int face,
float *vec)
{
const int direction = s->out_cubemap_direction_order[face];
float norm;
float l_x, l_y, l_z;
uf /= (1.f - s->out_pad);
vf /= (1.f - s->out_pad);
rotate_cube_face_inverse(&uf, &vf, s->out_cubemap_face_rotation[face]);
switch (direction) {
case RIGHT:
l_x = 1.f;
l_y = -vf;
l_z = uf;
break;
case LEFT:
l_x = -1.f;
l_y = -vf;
l_z = -uf;
break;
case UP:
l_x = uf;
l_y = 1.f;
l_z = -vf;
break;
case DOWN:
l_x = uf;
l_y = -1.f;
l_z = vf;
break;
case FRONT:
l_x = uf;
l_y = -vf;
l_z = -1.f;
break;
case BACK:
l_x = -uf;
l_y = -vf;
l_z = 1.f;
break;
}
norm = sqrtf(l_x * l_x + l_y * l_y + l_z * l_z);
vec[0] = l_x / norm;
vec[1] = l_y / norm;
vec[2] = l_z / norm;
}
/**
* Calculate cubemap position for corresponding 3D coordinates on sphere.
* Common operation for every cubemap.
*
* @param s filter context
* @param vec coordinated on sphere
* @param uf horizontal cubemap coordinate [0, 1)
* @param vf vertical cubemap coordinate [0, 1)
* @param direction direction of view
*/
static void xyz_to_cube(const V360Context *s,
const float *vec,
float *uf, float *vf, int *direction)
{
const float phi = atan2f(vec[0], -vec[2]);
const float theta = asinf(-vec[1]);
float phi_norm, theta_threshold;
int face;
if (phi >= -M_PI_4 && phi < M_PI_4) {
*direction = FRONT;
phi_norm = phi;
} else if (phi >= -(M_PI_2 + M_PI_4) && phi < -M_PI_4) {
*direction = LEFT;
phi_norm = phi + M_PI_2;
} else if (phi >= M_PI_4 && phi < M_PI_2 + M_PI_4) {
*direction = RIGHT;
phi_norm = phi - M_PI_2;
} else {
*direction = BACK;
phi_norm = phi + ((phi > 0.f) ? -M_PI : M_PI);
}
theta_threshold = atanf(cosf(phi_norm));
if (theta > theta_threshold) {
*direction = DOWN;
} else if (theta < -theta_threshold) {
*direction = UP;
}
switch (*direction) {
case RIGHT:
*uf = vec[2] / vec[0];
*vf = -vec[1] / vec[0];
break;
case LEFT:
*uf = vec[2] / vec[0];
*vf = vec[1] / vec[0];
break;
case UP:
*uf = vec[0] / vec[1];
*vf = -vec[2] / vec[1];
break;
case DOWN:
*uf = -vec[0] / vec[1];
*vf = -vec[2] / vec[1];
break;
case FRONT:
*uf = -vec[0] / vec[2];
*vf = vec[1] / vec[2];
break;
case BACK:
*uf = -vec[0] / vec[2];
*vf = -vec[1] / vec[2];
break;
}
face = s->in_cubemap_face_order[*direction];
rotate_cube_face(uf, vf, s->in_cubemap_face_rotation[face]);
}
/**
* Find position on another cube face in case of overflow/underflow.
* Used for calculation of interpolation window.
*
* @param s filter context
* @param uf horizontal cubemap coordinate
* @param vf vertical cubemap coordinate
* @param direction direction of view
* @param new_uf new horizontal cubemap coordinate
* @param new_vf new vertical cubemap coordinate
* @param face face position on cubemap
*/
static void process_cube_coordinates(const V360Context *s,
float uf, float vf, int direction,
float *new_uf, float *new_vf, int *face)
{
/*
* Cubemap orientation
*
* width
* <------->
* +-------+
* | | U
* | up | h ------->
* +-------+-------+-------+-------+ ^ e |
* | | | | | | i V |
* | left | front | right | back | | g |
* +-------+-------+-------+-------+ v h v
* | | t
* | down |
* +-------+
*/
*face = s->in_cubemap_face_order[direction];
rotate_cube_face_inverse(&uf, &vf, s->in_cubemap_face_rotation[*face]);
if ((uf < -1.f || uf >= 1.f) && (vf < -1.f || vf >= 1.f)) {
// There are no pixels to use in this case
*new_uf = uf;
*new_vf = vf;
} else if (uf < -1.f) {
uf += 2.f;
switch (direction) {
case RIGHT:
direction = FRONT;
*new_uf = uf;
*new_vf = vf;
break;
case LEFT:
direction = BACK;
*new_uf = uf;
*new_vf = vf;
break;
case UP:
direction = LEFT;
*new_uf = vf;
*new_vf = -uf;
break;
case DOWN:
direction = LEFT;
*new_uf = -vf;
*new_vf = uf;
break;
case FRONT:
direction = LEFT;
*new_uf = uf;
*new_vf = vf;
break;
case BACK:
direction = RIGHT;
*new_uf = uf;
*new_vf = vf;
break;
}
} else if (uf >= 1.f) {
uf -= 2.f;
switch (direction) {
case RIGHT:
direction = BACK;
*new_uf = uf;
*new_vf = vf;
break;
case LEFT:
direction = FRONT;
*new_uf = uf;
*new_vf = vf;
break;
case UP:
direction = RIGHT;
*new_uf = -vf;
*new_vf = uf;
break;
case DOWN:
direction = RIGHT;
*new_uf = vf;
*new_vf = -uf;
break;
case FRONT:
direction = RIGHT;
*new_uf = uf;
*new_vf = vf;
break;
case BACK:
direction = LEFT;
*new_uf = uf;
*new_vf = vf;
break;
}
} else if (vf < -1.f) {
vf += 2.f;
switch (direction) {
case RIGHT:
direction = UP;
*new_uf = vf;
*new_vf = -uf;
break;
case LEFT:
direction = UP;
*new_uf = -vf;
*new_vf = uf;
break;
case UP:
direction = BACK;
*new_uf = -uf;
*new_vf = -vf;
break;
case DOWN:
direction = FRONT;
*new_uf = uf;
*new_vf = vf;
break;
case FRONT:
direction = UP;
*new_uf = uf;
*new_vf = vf;
break;
case BACK:
direction = UP;
*new_uf = -uf;
*new_vf = -vf;
break;
}
} else if (vf >= 1.f) {
vf -= 2.f;
switch (direction) {
case RIGHT:
direction = DOWN;
*new_uf = -vf;
*new_vf = uf;
break;
case LEFT:
direction = DOWN;
*new_uf = vf;
*new_vf = -uf;
break;
case UP:
direction = FRONT;
*new_uf = uf;
*new_vf = vf;
break;
case DOWN:
direction = BACK;
*new_uf = -uf;
*new_vf = -vf;
break;
case FRONT:
direction = DOWN;
*new_uf = uf;
*new_vf = vf;
break;
case BACK:
direction = DOWN;
*new_uf = -uf;
*new_vf = -vf;
break;
}
} else {
// Inside cube face
*new_uf = uf;
*new_vf = vf;
}
*face = s->in_cubemap_face_order[direction];
rotate_cube_face(new_uf, new_vf, s->in_cubemap_face_rotation[*face]);
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in cubemap3x2 format.
*
* @param s filter context
* @param i horizontal position on frame [0, height)
* @param j vertical position on frame [0, width)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static void cube3x2_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float ew = width / 3.f;
const float eh = height / 2.f;
const int u_face = floorf(i / ew);
const int v_face = floorf(j / eh);
const int face = u_face + 3 * v_face;
const int u_shift = ceilf(ew * u_face);
const int v_shift = ceilf(eh * v_face);
const int ewi = ceilf(ew * (u_face + 1)) - u_shift;
const int ehi = ceilf(eh * (v_face + 1)) - v_shift;
const float uf = 2.f * (i - u_shift) / ewi - 1.f;
const float vf = 2.f * (j - v_shift) / ehi - 1.f;
cube_to_xyz(s, uf, vf, face, vec);
}
/**
* Calculate frame position in cubemap3x2 format for corresponding 3D coordinates on sphere.
*
* @param s filter context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static void xyz_to_cube3x2(const V360Context *s,
const float *vec, int width, int height,
uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
{
const float ew = width / 3.f;
const float eh = height / 2.f;
float uf, vf;
int ui, vi;
int ewi, ehi;
int i, j;
int direction, face;
int u_face, v_face;
xyz_to_cube(s, vec, &uf, &vf, &direction);
uf *= (1.f - s->in_pad);
vf *= (1.f - s->in_pad);
face = s->in_cubemap_face_order[direction];
u_face = face % 3;
v_face = face / 3;
ewi = ceilf(ew * (u_face + 1)) - ceilf(ew * u_face);
ehi = ceilf(eh * (v_face + 1)) - ceilf(eh * v_face);
uf = 0.5f * ewi * (uf + 1.f);
vf = 0.5f * ehi * (vf + 1.f);
ui = floorf(uf);
vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (i = -1; i < 3; i++) {
for (j = -1; j < 3; j++) {
int new_ui = ui + j;
int new_vi = vi + i;
int u_shift, v_shift;
int new_ewi, new_ehi;
if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
face = s->in_cubemap_face_order[direction];
u_face = face % 3;
v_face = face / 3;
u_shift = ceilf(ew * u_face);
v_shift = ceilf(eh * v_face);
} else {
uf = 2.f * new_ui / ewi - 1.f;
vf = 2.f * new_vi / ehi - 1.f;
uf /= (1.f - s->in_pad);
vf /= (1.f - s->in_pad);
process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
uf *= (1.f - s->in_pad);
vf *= (1.f - s->in_pad);
u_face = face % 3;
v_face = face / 3;
u_shift = ceilf(ew * u_face);
v_shift = ceilf(eh * v_face);
new_ewi = ceilf(ew * (u_face + 1)) - u_shift;
new_ehi = ceilf(eh * (v_face + 1)) - v_shift;
new_ui = av_clip(roundf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1);
new_vi = av_clip(roundf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1);
}
us[i + 1][j + 1] = u_shift + new_ui;
vs[i + 1][j + 1] = v_shift + new_vi;
}
}
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in cubemap6x1 format.
*
* @param s filter context
* @param i horizontal position on frame [0, height)
* @param j vertical position on frame [0, width)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static void cube6x1_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float ew = width / 6.f;
const float eh = height;
const int face = floorf(i / ew);
const int u_shift = ceilf(ew * face);
const int ewi = ceilf(ew * (face + 1)) - u_shift;
const float uf = 2.f * (i - u_shift) / ewi - 1.f;
const float vf = 2.f * j / eh - 1.f;
cube_to_xyz(s, uf, vf, face, vec);
}
/**
* Calculate frame position in cubemap6x1 format for corresponding 3D coordinates on sphere.
*
* @param s filter context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static void xyz_to_cube6x1(const V360Context *s,
const float *vec, int width, int height,
uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
{
const float ew = width / 6.f;
const int ehi = height;
float uf, vf;
int ui, vi;
int ewi;
int i, j;
int direction, face;
xyz_to_cube(s, vec, &uf, &vf, &direction);
uf *= (1.f - s->in_pad);
vf *= (1.f - s->in_pad);
face = s->in_cubemap_face_order[direction];
ewi = ceilf(ew * (face + 1)) - ceilf(ew * face);
uf = 0.5f * ewi * (uf + 1.f);
vf = 0.5f * ehi * (vf + 1.f);
ui = floorf(uf);
vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (i = -1; i < 3; i++) {
for (j = -1; j < 3; j++) {
int new_ui = ui + j;
int new_vi = vi + i;
int u_shift;
int new_ewi;
if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
face = s->in_cubemap_face_order[direction];
u_shift = ceilf(ew * face);
} else {
uf = 2.f * new_ui / ewi - 1.f;
vf = 2.f * new_vi / ehi - 1.f;
uf /= (1.f - s->in_pad);
vf /= (1.f - s->in_pad);
process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
uf *= (1.f - s->in_pad);
vf *= (1.f - s->in_pad);
u_shift = ceilf(ew * face);
new_ewi = ceilf(ew * (face + 1)) - u_shift;
new_ui = av_clip(roundf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1);
new_vi = av_clip(roundf(0.5f * ehi * (vf + 1.f)), 0, ehi - 1);
}
us[i + 1][j + 1] = u_shift + new_ui;
vs[i + 1][j + 1] = new_vi;
}
}
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in equirectangular format.
*
* @param s filter context
* @param i horizontal position on frame [0, height)
* @param j vertical position on frame [0, width)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static void equirect_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float phi = ((2.f * i) / width - 1.f) * M_PI;
const float theta = ((2.f * j) / height - 1.f) * M_PI_2;
const float sin_phi = sinf(phi);
const float cos_phi = cosf(phi);
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
vec[0] = cos_theta * sin_phi;
vec[1] = -sin_theta;
vec[2] = -cos_theta * cos_phi;
}
/**
* Calculate frame position in equirectangular format for corresponding 3D coordinates on sphere.
*
* @param s filter context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static void xyz_to_equirect(const V360Context *s,
const float *vec, int width, int height,
uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
{
const float phi = atan2f(vec[0], -vec[2]);
const float theta = asinf(-vec[1]);
float uf, vf;
int ui, vi;
int i, j;
uf = (phi / M_PI + 1.f) * width / 2.f;
vf = (theta / M_PI_2 + 1.f) * height / 2.f;
ui = floorf(uf);
vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (i = -1; i < 3; i++) {
for (j = -1; j < 3; j++) {
us[i + 1][j + 1] = mod(ui + j, width);
vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
}
}
}
/**
* Prepare data for processing equi-angular cubemap input format.
*
* @param ctx filter context
* @return error code
*/
static int prepare_eac_in(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->in_cubemap_face_order[RIGHT] = TOP_RIGHT;
s->in_cubemap_face_order[LEFT] = TOP_LEFT;
s->in_cubemap_face_order[UP] = BOTTOM_RIGHT;
s->in_cubemap_face_order[DOWN] = BOTTOM_LEFT;
s->in_cubemap_face_order[FRONT] = TOP_MIDDLE;
s->in_cubemap_face_order[BACK] = BOTTOM_MIDDLE;
s->in_cubemap_face_rotation[TOP_LEFT] = ROT_0;
s->in_cubemap_face_rotation[TOP_MIDDLE] = ROT_0;
s->in_cubemap_face_rotation[TOP_RIGHT] = ROT_0;
s->in_cubemap_face_rotation[BOTTOM_LEFT] = ROT_270;
s->in_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90;
s->in_cubemap_face_rotation[BOTTOM_RIGHT] = ROT_270;
return 0;
}
/**
* Prepare data for processing equi-angular cubemap output format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_eac_out(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->out_cubemap_direction_order[TOP_LEFT] = LEFT;
s->out_cubemap_direction_order[TOP_MIDDLE] = FRONT;
s->out_cubemap_direction_order[TOP_RIGHT] = RIGHT;
s->out_cubemap_direction_order[BOTTOM_LEFT] = DOWN;
s->out_cubemap_direction_order[BOTTOM_MIDDLE] = BACK;
s->out_cubemap_direction_order[BOTTOM_RIGHT] = UP;
s->out_cubemap_face_rotation[TOP_LEFT] = ROT_0;
s->out_cubemap_face_rotation[TOP_MIDDLE] = ROT_0;
s->out_cubemap_face_rotation[TOP_RIGHT] = ROT_0;
s->out_cubemap_face_rotation[BOTTOM_LEFT] = ROT_270;
s->out_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90;
s->out_cubemap_face_rotation[BOTTOM_RIGHT] = ROT_270;
return 0;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in equi-angular cubemap format.
*
* @param s filter context
* @param i horizontal position on frame [0, height)
* @param j vertical position on frame [0, width)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static void eac_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float pixel_pad = 2;
const float u_pad = pixel_pad / width;
const float v_pad = pixel_pad / height;
int u_face, v_face, face;
float l_x, l_y, l_z;
float norm;
float uf = (float)i / width;
float vf = (float)j / height;
// EAC has 2-pixel padding on faces except between faces on the same row
// Padding pixels seems not to be stretched with tangent as regular pixels
// Formulas below approximate original padding as close as I could get experimentally
// Horizontal padding
uf = 3.f * (uf - u_pad) / (1.f - 2.f * u_pad);
if (uf < 0.f) {
u_face = 0;
uf -= 0.5f;
} else if (uf >= 3.f) {
u_face = 2;
uf -= 2.5f;
} else {
u_face = floorf(uf);
uf = fmodf(uf, 1.f) - 0.5f;
}
// Vertical padding
v_face = floorf(vf * 2.f);
vf = (vf - v_pad - 0.5f * v_face) / (0.5f - 2.f * v_pad) - 0.5f;
if (uf >= -0.5f && uf < 0.5f) {
uf = tanf(M_PI_2 * uf);
} else {
uf = 2.f * uf;
}
if (vf >= -0.5f && vf < 0.5f) {
vf = tanf(M_PI_2 * vf);
} else {
vf = 2.f * vf;
}
face = u_face + 3 * v_face;
switch (face) {
case TOP_LEFT:
l_x = -1.f;
l_y = -vf;
l_z = -uf;
break;
case TOP_MIDDLE:
l_x = uf;
l_y = -vf;
l_z = -1.f;
break;
case TOP_RIGHT:
l_x = 1.f;
l_y = -vf;
l_z = uf;
break;
case BOTTOM_LEFT:
l_x = -vf;
l_y = -1.f;
l_z = uf;
break;
case BOTTOM_MIDDLE:
l_x = -vf;
l_y = uf;
l_z = 1.f;
break;
case BOTTOM_RIGHT:
l_x = -vf;
l_y = 1.f;
l_z = -uf;
break;
}
norm = sqrtf(l_x * l_x + l_y * l_y + l_z * l_z);
vec[0] = l_x / norm;
vec[1] = l_y / norm;
vec[2] = l_z / norm;
}
/**
* Calculate frame position in equi-angular cubemap format for corresponding 3D coordinates on sphere.
*
* @param s filter context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static void xyz_to_eac(const V360Context *s,
const float *vec, int width, int height,
uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
{
const float pixel_pad = 2;
const float u_pad = pixel_pad / width;
const float v_pad = pixel_pad / height;
float uf, vf;
int ui, vi;
int i, j;
int direction, face;
int u_face, v_face;
xyz_to_cube(s, vec, &uf, &vf, &direction);
face = s->in_cubemap_face_order[direction];
u_face = face % 3;
v_face = face / 3;
uf = M_2_PI * atanf(uf) + 0.5f;
vf = M_2_PI * atanf(vf) + 0.5f;
// These formulas are inversed from eac_to_xyz ones
uf = (uf + u_face) * (1.f - 2.f * u_pad) / 3.f + u_pad;
vf = vf * (0.5f - 2.f * v_pad) + v_pad + 0.5f * v_face;
uf *= width;
vf *= height;
ui = floorf(uf);
vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (i = -1; i < 3; i++) {
for (j = -1; j < 3; j++) {
us[i + 1][j + 1] = av_clip(ui + j, 0, width - 1);
vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
}
}
}
/**
* Prepare data for processing flat output format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_flat_out(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
const float h_angle = 0.5f * s->h_fov * M_PI / 180.f;
const float v_angle = 0.5f * s->v_fov * M_PI / 180.f;
const float sin_phi = sinf(h_angle);
const float cos_phi = cosf(h_angle);
const float sin_theta = sinf(v_angle);
const float cos_theta = cosf(v_angle);
s->flat_range[0] = cos_theta * sin_phi;
s->flat_range[1] = sin_theta;
s->flat_range[2] = -cos_theta * cos_phi;
return 0;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in flat format.
*
* @param s filter context
* @param i horizontal position on frame [0, height)
* @param j vertical position on frame [0, width)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static void flat_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float l_x = s->flat_range[0] * (2.f * i / width - 1.f);
const float l_y = -s->flat_range[1] * (2.f * j / height - 1.f);
const float l_z = s->flat_range[2];
const float norm = sqrtf(l_x * l_x + l_y * l_y + l_z * l_z);
vec[0] = l_x / norm;
vec[1] = l_y / norm;
vec[2] = l_z / norm;
}
/**
* Calculate frame position in dual fisheye format for corresponding 3D coordinates on sphere.
*
* @param s filter context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static void xyz_to_dfisheye(const V360Context *s,
const float *vec, int width, int height,
uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
{
const float scale = 1.f - s->in_pad;
const float ew = width / 2.f;
const float eh = height;
const float phi = atan2f(-vec[1], -vec[0]);
const float theta = acosf(fabsf(vec[2])) / M_PI;
float uf = (theta * cosf(phi) * scale + 0.5f) * ew;
float vf = (theta * sinf(phi) * scale + 0.5f) * eh;
int ui, vi;
int u_shift;
int i, j;
if (vec[2] >= 0) {
u_shift = 0;
} else {
u_shift = ceilf(ew);
uf = ew - uf;
}
ui = floorf(uf);
vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (i = -1; i < 3; i++) {
for (j = -1; j < 3; j++) {
us[i + 1][j + 1] = av_clip(u_shift + ui + j, 0, width - 1);
vs[i + 1][j + 1] = av_clip( vi + i, 0, height - 1);
}
}
}
/**
* Calculate rotation matrix for yaw/pitch/roll angles.
*/
static inline void calculate_rotation_matrix(float yaw, float pitch, float roll,
float rot_mat[3][3])
{
const float yaw_rad = yaw * M_PI / 180.f;
const float pitch_rad = pitch * M_PI / 180.f;
const float roll_rad = roll * M_PI / 180.f;
const float sin_yaw = sinf(-yaw_rad);
const float cos_yaw = cosf(-yaw_rad);
const float sin_pitch = sinf(pitch_rad);
const float cos_pitch = cosf(pitch_rad);
const float sin_roll = sinf(roll_rad);
const float cos_roll = cosf(roll_rad);
rot_mat[0][0] = sin_yaw * sin_pitch * sin_roll + cos_yaw * cos_roll;
rot_mat[0][1] = sin_yaw * sin_pitch * cos_roll - cos_yaw * sin_roll;
rot_mat[0][2] = sin_yaw * cos_pitch;
rot_mat[1][0] = cos_pitch * sin_roll;
rot_mat[1][1] = cos_pitch * cos_roll;
rot_mat[1][2] = -sin_pitch;
rot_mat[2][0] = cos_yaw * sin_pitch * sin_roll - sin_yaw * cos_roll;
rot_mat[2][1] = cos_yaw * sin_pitch * cos_roll + sin_yaw * sin_roll;
rot_mat[2][2] = cos_yaw * cos_pitch;
}
/**
* Rotate vector with given rotation matrix.
*
* @param rot_mat rotation matrix
* @param vec vector
*/
static inline void rotate(const float rot_mat[3][3],
float *vec)
{
const float x_tmp = vec[0] * rot_mat[0][0] + vec[1] * rot_mat[0][1] + vec[2] * rot_mat[0][2];
const float y_tmp = vec[0] * rot_mat[1][0] + vec[1] * rot_mat[1][1] + vec[2] * rot_mat[1][2];
const float z_tmp = vec[0] * rot_mat[2][0] + vec[1] * rot_mat[2][1] + vec[2] * rot_mat[2][2];
vec[0] = x_tmp;
vec[1] = y_tmp;
vec[2] = z_tmp;
}
static inline void set_mirror_modifier(int h_flip, int v_flip, int d_flip,
float *modifier)
{
modifier[0] = h_flip ? -1.f : 1.f;
modifier[1] = v_flip ? -1.f : 1.f;
modifier[2] = d_flip ? -1.f : 1.f;
}
static inline void mirror(const float *modifier,
float *vec)
{
vec[0] *= modifier[0];
vec[1] *= modifier[1];
vec[2] *= modifier[2];
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
AVFilterLink *inlink = ctx->inputs[0];
V360Context *s = ctx->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
const int depth = desc->comp[0].depth;
float remap_data_size = 0.f;
int sizeof_remap;
int err;
int p, h, w;
float hf, wf;
float mirror_modifier[3];
void (*in_transform)(const V360Context *s,
const float *vec, int width, int height,
uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv);
void (*out_transform)(const V360Context *s,
int i, int j, int width, int height,
float *vec);
void (*calculate_kernel)(float du, float dv, int shift, const XYRemap4 *r_tmp, void *r);
float rot_mat[3][3];
switch (s->interp) {
case NEAREST:
calculate_kernel = nearest_kernel;
s->remap_slice = depth <= 8 ? remap1_8bit_slice : remap1_16bit_slice;
sizeof_remap = sizeof(XYRemap1);
break;
case BILINEAR:
calculate_kernel = bilinear_kernel;
s->remap_slice = depth <= 8 ? remap2_8bit_slice : remap2_16bit_slice;
sizeof_remap = sizeof(XYRemap2);
break;
case BICUBIC:
calculate_kernel = bicubic_kernel;
s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
sizeof_remap = sizeof(XYRemap4);
break;
case LANCZOS:
calculate_kernel = lanczos_kernel;
s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
sizeof_remap = sizeof(XYRemap4);
break;
}
switch (s->in) {
case EQUIRECTANGULAR:
in_transform = xyz_to_equirect;
err = 0;
wf = inlink->w;
hf = inlink->h;
break;
case CUBEMAP_3_2:
in_transform = xyz_to_cube3x2;
err = prepare_cube_in(ctx);
wf = inlink->w / 3.f * 4.f;
hf = inlink->h;
break;
case CUBEMAP_6_1:
in_transform = xyz_to_cube6x1;
err = prepare_cube_in(ctx);
wf = inlink->w / 3.f * 2.f;
hf = inlink->h * 2.f;
break;
case EQUIANGULAR:
in_transform = xyz_to_eac;
err = prepare_eac_in(ctx);
wf = inlink->w;
hf = inlink->h / 9.f * 8.f;
break;
case FLAT:
av_log(ctx, AV_LOG_ERROR, "Flat format is not accepted as input.\n");
return AVERROR(EINVAL);
case DUAL_FISHEYE:
in_transform = xyz_to_dfisheye;
err = 0;
wf = inlink->w;
hf = inlink->h;
break;
default:
av_log(ctx, AV_LOG_ERROR, "Specified input format is not handled.\n");
return AVERROR_BUG;
}
if (err != 0) {
return err;
}
switch (s->out) {
case EQUIRECTANGULAR:
out_transform = equirect_to_xyz;
err = 0;
w = roundf(wf);
h = roundf(hf);
break;
case CUBEMAP_3_2:
out_transform = cube3x2_to_xyz;
err = prepare_cube_out(ctx);
w = roundf(wf / 4.f * 3.f);
h = roundf(hf);
break;
case CUBEMAP_6_1:
out_transform = cube6x1_to_xyz;
err = prepare_cube_out(ctx);
w = roundf(wf / 2.f * 3.f);
h = roundf(hf / 2.f);
break;
case EQUIANGULAR:
out_transform = eac_to_xyz;
err = prepare_eac_out(ctx);
w = roundf(wf);
h = roundf(hf / 8.f * 9.f);
break;
case FLAT:
out_transform = flat_to_xyz;
err = prepare_flat_out(ctx);
w = roundf(wf * s->flat_range[0] / s->flat_range[1] / 2.f);
h = roundf(hf);
break;
case DUAL_FISHEYE:
av_log(ctx, AV_LOG_ERROR, "Dual fisheye format is not accepted as output.\n");
return AVERROR(EINVAL);
default:
av_log(ctx, AV_LOG_ERROR, "Specified output format is not handled.\n");
return AVERROR_BUG;
}
if (err != 0) {
return err;
}
// Override resolution with user values if specified
if (s->width > 0 && s->height > 0) {
w = s->width;
h = s->height;
} else if (s->width > 0 || s->height > 0) {
av_log(ctx, AV_LOG_ERROR, "Both width and height values should be specified.\n");
return AVERROR(EINVAL);
}
s->planeheight[1] = s->planeheight[2] = FF_CEIL_RSHIFT(h, desc->log2_chroma_h);
s->planeheight[0] = s->planeheight[3] = h;
s->planewidth[1] = s->planewidth[2] = FF_CEIL_RSHIFT(w, desc->log2_chroma_w);
s->planewidth[0] = s->planewidth[3] = w;
outlink->h = h;
outlink->w = w;
s->inplaneheight[1] = s->inplaneheight[2] = FF_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
s->inplaneheight[0] = s->inplaneheight[3] = inlink->h;
s->inplanewidth[1] = s->inplanewidth[2] = FF_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
s->inplanewidth[0] = s->inplanewidth[3] = inlink->w;
s->nb_planes = av_pix_fmt_count_planes(inlink->format);
for (p = 0; p < s->nb_planes; p++) {
remap_data_size += (float)s->planewidth[p] * s->planeheight[p] * sizeof_remap;
}
for (p = 0; p < s->nb_planes; p++) {
s->remap[p] = av_calloc(s->planewidth[p] * s->planeheight[p], sizeof_remap);
if (!s->remap[p]) {
av_log(ctx, AV_LOG_ERROR,
"Not enough memory to allocate remap data. Need at least %.3f GiB.\n",
remap_data_size / (1024 * 1024 * 1024));
return AVERROR(ENOMEM);
}
}
calculate_rotation_matrix(s->yaw, s->pitch, s->roll, rot_mat);
set_mirror_modifier(s->h_flip, s->v_flip, s->d_flip, mirror_modifier);
// Calculate remap data
for (p = 0; p < s->nb_planes; p++) {
const int width = s->planewidth[p];
const int height = s->planeheight[p];
const int in_width = s->inplanewidth[p];
const int in_height = s->inplaneheight[p];
void *r = s->remap[p];
float du, dv;
float vec[3];
XYRemap4 r_tmp;
int i, j;
for (i = 0; i < width; i++) {
for (j = 0; j < height; j++) {
out_transform(s, i, j, width, height, vec);
rotate(rot_mat, vec);
mirror(mirror_modifier, vec);
in_transform(s, vec, in_width, in_height, r_tmp.u, r_tmp.v, &du, &dv);
calculate_kernel(du, dv, j * width + i, &r_tmp, r);
}
}
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
AVFilterLink *outlink = ctx->outputs[0];
V360Context *s = ctx->priv;
AVFrame *out;
ThreadData td;
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
td.s = s;
td.in = in;
td.out = out;
td.nb_planes = s->nb_planes;
ctx->internal->execute(ctx, s->remap_slice, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static av_cold void uninit(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
int p;
for (p = 0; p < s->nb_planes; p++)
av_freep(&s->remap[p]);
}
static const AVFilterPad inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
},
{ NULL }
};
static const AVFilterPad outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
},
{ NULL }
};
AVFilter ff_vf_v360 = {
.name = "v360",
.description = NULL_IF_CONFIG_SMALL("Convert 360 projection of video."),
.priv_size = sizeof(V360Context),
.uninit = uninit,
.query_formats = query_formats,
.inputs = inputs,
.outputs = outputs,
.priv_class = &v360_class,
.flags = AVFILTER_FLAG_SLICE_THREADS,
};