1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/vp9recon.c
Linjie Fu 9473268cfb lavc/vp9: fix reference frame dimensions check for SINGLE_REFERENCE mode
With the description in frame size with refs semantics (SPEC 7.2.5),
it is a requirement of bitstream conformance that for at least one
reference frame has the valid dimensions.

Modify the check to make sure the decoder works well in SINGLE_REFERENCE
mode that not all reference frames have valid dimensions.

Check and error out if invalid reference frame is used in inter_recon.

One of the failure case is a 480x272 inter frame (SINGLE_REFERENCE mode)
with following reference pool:

0.  960x544    LAST    valid
1. 1920x1088 GOLDEN  invalid, but not used in single reference mode
2. 1920x1088 ALTREF  invalid, but not used in single reference mode
3~7  ...     Unused

Identical logic in libvpx:
<https://github.com/webmproject/libvpx/blob/master/vp9/decoder/vp9_decodeframe.c#L736>

Signed-off-by: Linjie Fu <linjie.fu@intel.com>
Signed-off-by: Ronald S. Bultje <rsbultje@gmail.com>
2020-05-05 08:22:28 -04:00

655 lines
29 KiB
C

/*
* VP9 compatible video decoder
*
* Copyright (C) 2013 Ronald S. Bultje <rsbultje gmail com>
* Copyright (C) 2013 Clément Bœsch <u pkh me>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/avassert.h"
#include "avcodec.h"
#include "internal.h"
#include "videodsp.h"
#include "vp9data.h"
#include "vp9dec.h"
static av_always_inline int check_intra_mode(VP9TileData *td, int mode, uint8_t **a,
uint8_t *dst_edge, ptrdiff_t stride_edge,
uint8_t *dst_inner, ptrdiff_t stride_inner,
uint8_t *l, int col, int x, int w,
int row, int y, enum TxfmMode tx,
int p, int ss_h, int ss_v, int bytesperpixel)
{
VP9Context *s = td->s;
int have_top = row > 0 || y > 0;
int have_left = col > td->tile_col_start || x > 0;
int have_right = x < w - 1;
int bpp = s->s.h.bpp;
static const uint8_t mode_conv[10][2 /* have_left */][2 /* have_top */] = {
[VERT_PRED] = { { DC_127_PRED, VERT_PRED },
{ DC_127_PRED, VERT_PRED } },
[HOR_PRED] = { { DC_129_PRED, DC_129_PRED },
{ HOR_PRED, HOR_PRED } },
[DC_PRED] = { { DC_128_PRED, TOP_DC_PRED },
{ LEFT_DC_PRED, DC_PRED } },
[DIAG_DOWN_LEFT_PRED] = { { DC_127_PRED, DIAG_DOWN_LEFT_PRED },
{ DC_127_PRED, DIAG_DOWN_LEFT_PRED } },
[DIAG_DOWN_RIGHT_PRED] = { { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED },
{ DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED } },
[VERT_RIGHT_PRED] = { { VERT_RIGHT_PRED, VERT_RIGHT_PRED },
{ VERT_RIGHT_PRED, VERT_RIGHT_PRED } },
[HOR_DOWN_PRED] = { { HOR_DOWN_PRED, HOR_DOWN_PRED },
{ HOR_DOWN_PRED, HOR_DOWN_PRED } },
[VERT_LEFT_PRED] = { { DC_127_PRED, VERT_LEFT_PRED },
{ DC_127_PRED, VERT_LEFT_PRED } },
[HOR_UP_PRED] = { { DC_129_PRED, DC_129_PRED },
{ HOR_UP_PRED, HOR_UP_PRED } },
[TM_VP8_PRED] = { { DC_129_PRED, VERT_PRED },
{ HOR_PRED, TM_VP8_PRED } },
};
static const struct {
uint8_t needs_left:1;
uint8_t needs_top:1;
uint8_t needs_topleft:1;
uint8_t needs_topright:1;
uint8_t invert_left:1;
} edges[N_INTRA_PRED_MODES] = {
[VERT_PRED] = { .needs_top = 1 },
[HOR_PRED] = { .needs_left = 1 },
[DC_PRED] = { .needs_top = 1, .needs_left = 1 },
[DIAG_DOWN_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 },
[DIAG_DOWN_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1,
.needs_topleft = 1 },
[VERT_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1,
.needs_topleft = 1 },
[HOR_DOWN_PRED] = { .needs_left = 1, .needs_top = 1,
.needs_topleft = 1 },
[VERT_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 },
[HOR_UP_PRED] = { .needs_left = 1, .invert_left = 1 },
[TM_VP8_PRED] = { .needs_left = 1, .needs_top = 1,
.needs_topleft = 1 },
[LEFT_DC_PRED] = { .needs_left = 1 },
[TOP_DC_PRED] = { .needs_top = 1 },
[DC_128_PRED] = { 0 },
[DC_127_PRED] = { 0 },
[DC_129_PRED] = { 0 }
};
av_assert2(mode >= 0 && mode < 10);
mode = mode_conv[mode][have_left][have_top];
if (edges[mode].needs_top) {
uint8_t *top, *topleft;
int n_px_need = 4 << tx, n_px_have = (((s->cols - col) << !ss_h) - x) * 4;
int n_px_need_tr = 0;
if (tx == TX_4X4 && edges[mode].needs_topright && have_right)
n_px_need_tr = 4;
// if top of sb64-row, use s->intra_pred_data[] instead of
// dst[-stride] for intra prediction (it contains pre- instead of
// post-loopfilter data)
if (have_top) {
top = !(row & 7) && !y ?
s->intra_pred_data[p] + (col * (8 >> ss_h) + x * 4) * bytesperpixel :
y == 0 ? &dst_edge[-stride_edge] : &dst_inner[-stride_inner];
if (have_left)
topleft = !(row & 7) && !y ?
s->intra_pred_data[p] + (col * (8 >> ss_h) + x * 4) * bytesperpixel :
y == 0 || x == 0 ? &dst_edge[-stride_edge] :
&dst_inner[-stride_inner];
}
if (have_top &&
(!edges[mode].needs_topleft || (have_left && top == topleft)) &&
(tx != TX_4X4 || !edges[mode].needs_topright || have_right) &&
n_px_need + n_px_need_tr <= n_px_have) {
*a = top;
} else {
if (have_top) {
if (n_px_need <= n_px_have) {
memcpy(*a, top, n_px_need * bytesperpixel);
} else {
#define memset_bpp(c, i1, v, i2, num) do { \
if (bytesperpixel == 1) { \
memset(&(c)[(i1)], (v)[(i2)], (num)); \
} else { \
int n, val = AV_RN16A(&(v)[(i2) * 2]); \
for (n = 0; n < (num); n++) { \
AV_WN16A(&(c)[((i1) + n) * 2], val); \
} \
} \
} while (0)
memcpy(*a, top, n_px_have * bytesperpixel);
memset_bpp(*a, n_px_have, (*a), n_px_have - 1, n_px_need - n_px_have);
}
} else {
#define memset_val(c, val, num) do { \
if (bytesperpixel == 1) { \
memset((c), (val), (num)); \
} else { \
int n; \
for (n = 0; n < (num); n++) { \
AV_WN16A(&(c)[n * 2], (val)); \
} \
} \
} while (0)
memset_val(*a, (128 << (bpp - 8)) - 1, n_px_need);
}
if (edges[mode].needs_topleft) {
if (have_left && have_top) {
#define assign_bpp(c, i1, v, i2) do { \
if (bytesperpixel == 1) { \
(c)[(i1)] = (v)[(i2)]; \
} else { \
AV_COPY16(&(c)[(i1) * 2], &(v)[(i2) * 2]); \
} \
} while (0)
assign_bpp(*a, -1, topleft, -1);
} else {
#define assign_val(c, i, v) do { \
if (bytesperpixel == 1) { \
(c)[(i)] = (v); \
} else { \
AV_WN16A(&(c)[(i) * 2], (v)); \
} \
} while (0)
assign_val((*a), -1, (128 << (bpp - 8)) + (have_top ? +1 : -1));
}
}
if (tx == TX_4X4 && edges[mode].needs_topright) {
if (have_top && have_right &&
n_px_need + n_px_need_tr <= n_px_have) {
memcpy(&(*a)[4 * bytesperpixel], &top[4 * bytesperpixel], 4 * bytesperpixel);
} else {
memset_bpp(*a, 4, *a, 3, 4);
}
}
}
}
if (edges[mode].needs_left) {
if (have_left) {
int n_px_need = 4 << tx, i, n_px_have = (((s->rows - row) << !ss_v) - y) * 4;
uint8_t *dst = x == 0 ? dst_edge : dst_inner;
ptrdiff_t stride = x == 0 ? stride_edge : stride_inner;
if (edges[mode].invert_left) {
if (n_px_need <= n_px_have) {
for (i = 0; i < n_px_need; i++)
assign_bpp(l, i, &dst[i * stride], -1);
} else {
for (i = 0; i < n_px_have; i++)
assign_bpp(l, i, &dst[i * stride], -1);
memset_bpp(l, n_px_have, l, n_px_have - 1, n_px_need - n_px_have);
}
} else {
if (n_px_need <= n_px_have) {
for (i = 0; i < n_px_need; i++)
assign_bpp(l, n_px_need - 1 - i, &dst[i * stride], -1);
} else {
for (i = 0; i < n_px_have; i++)
assign_bpp(l, n_px_need - 1 - i, &dst[i * stride], -1);
memset_bpp(l, 0, l, n_px_need - n_px_have, n_px_need - n_px_have);
}
}
} else {
memset_val(l, (128 << (bpp - 8)) + 1, 4 << tx);
}
}
return mode;
}
static av_always_inline void intra_recon(VP9TileData *td, ptrdiff_t y_off,
ptrdiff_t uv_off, int bytesperpixel)
{
VP9Context *s = td->s;
VP9Block *b = td->b;
int row = td->row, col = td->col;
int w4 = ff_vp9_bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n;
int h4 = ff_vp9_bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2);
int end_x = FFMIN(2 * (s->cols - col), w4);
int end_y = FFMIN(2 * (s->rows - row), h4);
int tx = 4 * s->s.h.lossless + b->tx, uvtx = b->uvtx + 4 * s->s.h.lossless;
int uvstep1d = 1 << b->uvtx, p;
uint8_t *dst = td->dst[0], *dst_r = s->s.frames[CUR_FRAME].tf.f->data[0] + y_off;
LOCAL_ALIGNED_32(uint8_t, a_buf, [96]);
LOCAL_ALIGNED_32(uint8_t, l, [64]);
for (n = 0, y = 0; y < end_y; y += step1d) {
uint8_t *ptr = dst, *ptr_r = dst_r;
for (x = 0; x < end_x; x += step1d, ptr += 4 * step1d * bytesperpixel,
ptr_r += 4 * step1d * bytesperpixel, n += step) {
int mode = b->mode[b->bs > BS_8x8 && b->tx == TX_4X4 ?
y * 2 + x : 0];
uint8_t *a = &a_buf[32];
enum TxfmType txtp = ff_vp9_intra_txfm_type[mode];
int eob = b->skip ? 0 : b->tx > TX_8X8 ? AV_RN16A(&td->eob[n]) : td->eob[n];
mode = check_intra_mode(td, mode, &a, ptr_r,
s->s.frames[CUR_FRAME].tf.f->linesize[0],
ptr, td->y_stride, l,
col, x, w4, row, y, b->tx, 0, 0, 0, bytesperpixel);
s->dsp.intra_pred[b->tx][mode](ptr, td->y_stride, l, a);
if (eob)
s->dsp.itxfm_add[tx][txtp](ptr, td->y_stride,
td->block + 16 * n * bytesperpixel, eob);
}
dst_r += 4 * step1d * s->s.frames[CUR_FRAME].tf.f->linesize[0];
dst += 4 * step1d * td->y_stride;
}
// U/V
w4 >>= s->ss_h;
end_x >>= s->ss_h;
end_y >>= s->ss_v;
step = 1 << (b->uvtx * 2);
for (p = 0; p < 2; p++) {
dst = td->dst[1 + p];
dst_r = s->s.frames[CUR_FRAME].tf.f->data[1 + p] + uv_off;
for (n = 0, y = 0; y < end_y; y += uvstep1d) {
uint8_t *ptr = dst, *ptr_r = dst_r;
for (x = 0; x < end_x; x += uvstep1d, ptr += 4 * uvstep1d * bytesperpixel,
ptr_r += 4 * uvstep1d * bytesperpixel, n += step) {
int mode = b->uvmode;
uint8_t *a = &a_buf[32];
int eob = b->skip ? 0 : b->uvtx > TX_8X8 ? AV_RN16A(&td->uveob[p][n]) : td->uveob[p][n];
mode = check_intra_mode(td, mode, &a, ptr_r,
s->s.frames[CUR_FRAME].tf.f->linesize[1],
ptr, td->uv_stride, l, col, x, w4, row, y,
b->uvtx, p + 1, s->ss_h, s->ss_v, bytesperpixel);
s->dsp.intra_pred[b->uvtx][mode](ptr, td->uv_stride, l, a);
if (eob)
s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, td->uv_stride,
td->uvblock[p] + 16 * n * bytesperpixel, eob);
}
dst_r += 4 * uvstep1d * s->s.frames[CUR_FRAME].tf.f->linesize[1];
dst += 4 * uvstep1d * td->uv_stride;
}
}
}
void ff_vp9_intra_recon_8bpp(VP9TileData *td, ptrdiff_t y_off, ptrdiff_t uv_off)
{
intra_recon(td, y_off, uv_off, 1);
}
void ff_vp9_intra_recon_16bpp(VP9TileData *td, ptrdiff_t y_off, ptrdiff_t uv_off)
{
intra_recon(td, y_off, uv_off, 2);
}
static av_always_inline void mc_luma_unscaled(VP9TileData *td, vp9_mc_func (*mc)[2],
uint8_t *dst, ptrdiff_t dst_stride,
const uint8_t *ref, ptrdiff_t ref_stride,
ThreadFrame *ref_frame,
ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
int bw, int bh, int w, int h, int bytesperpixel)
{
VP9Context *s = td->s;
int mx = mv->x, my = mv->y, th;
y += my >> 3;
x += mx >> 3;
ref += y * ref_stride + x * bytesperpixel;
mx &= 7;
my &= 7;
// FIXME bilinear filter only needs 0/1 pixels, not 3/4
// we use +7 because the last 7 pixels of each sbrow can be changed in
// the longest loopfilter of the next sbrow
th = (y + bh + 4 * !!my + 7) >> 6;
ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
// The arm/aarch64 _hv filters read one more row than what actually is
// needed, so switch to emulated edge one pixel sooner vertically
// (!!my * 5) than horizontally (!!mx * 4).
if (x < !!mx * 3 || y < !!my * 3 ||
x + !!mx * 4 > w - bw || y + !!my * 5 > h - bh) {
s->vdsp.emulated_edge_mc(td->edge_emu_buffer,
ref - !!my * 3 * ref_stride - !!mx * 3 * bytesperpixel,
160, ref_stride,
bw + !!mx * 7, bh + !!my * 7,
x - !!mx * 3, y - !!my * 3, w, h);
ref = td->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel;
ref_stride = 160;
}
mc[!!mx][!!my](dst, dst_stride, ref, ref_stride, bh, mx << 1, my << 1);
}
static av_always_inline void mc_chroma_unscaled(VP9TileData *td, vp9_mc_func (*mc)[2],
uint8_t *dst_u, uint8_t *dst_v,
ptrdiff_t dst_stride,
const uint8_t *ref_u, ptrdiff_t src_stride_u,
const uint8_t *ref_v, ptrdiff_t src_stride_v,
ThreadFrame *ref_frame,
ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
int bw, int bh, int w, int h, int bytesperpixel)
{
VP9Context *s = td->s;
int mx = mv->x * (1 << !s->ss_h), my = mv->y * (1 << !s->ss_v), th;
y += my >> 4;
x += mx >> 4;
ref_u += y * src_stride_u + x * bytesperpixel;
ref_v += y * src_stride_v + x * bytesperpixel;
mx &= 15;
my &= 15;
// FIXME bilinear filter only needs 0/1 pixels, not 3/4
// we use +7 because the last 7 pixels of each sbrow can be changed in
// the longest loopfilter of the next sbrow
th = (y + bh + 4 * !!my + 7) >> (6 - s->ss_v);
ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
// The arm/aarch64 _hv filters read one more row than what actually is
// needed, so switch to emulated edge one pixel sooner vertically
// (!!my * 5) than horizontally (!!mx * 4).
if (x < !!mx * 3 || y < !!my * 3 ||
x + !!mx * 4 > w - bw || y + !!my * 5 > h - bh) {
s->vdsp.emulated_edge_mc(td->edge_emu_buffer,
ref_u - !!my * 3 * src_stride_u - !!mx * 3 * bytesperpixel,
160, src_stride_u,
bw + !!mx * 7, bh + !!my * 7,
x - !!mx * 3, y - !!my * 3, w, h);
ref_u = td->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel;
mc[!!mx][!!my](dst_u, dst_stride, ref_u, 160, bh, mx, my);
s->vdsp.emulated_edge_mc(td->edge_emu_buffer,
ref_v - !!my * 3 * src_stride_v - !!mx * 3 * bytesperpixel,
160, src_stride_v,
bw + !!mx * 7, bh + !!my * 7,
x - !!mx * 3, y - !!my * 3, w, h);
ref_v = td->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel;
mc[!!mx][!!my](dst_v, dst_stride, ref_v, 160, bh, mx, my);
} else {
mc[!!mx][!!my](dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my);
mc[!!mx][!!my](dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my);
}
}
#define mc_luma_dir(td, mc, dst, dst_ls, src, src_ls, tref, row, col, mv, \
px, py, pw, ph, bw, bh, w, h, i) \
mc_luma_unscaled(td, s->dsp.mc, dst, dst_ls, src, src_ls, tref, row, col, \
mv, bw, bh, w, h, bytesperpixel)
#define mc_chroma_dir(td, mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
row, col, mv, px, py, pw, ph, bw, bh, w, h, i) \
mc_chroma_unscaled(td, s->dsp.mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
row, col, mv, bw, bh, w, h, bytesperpixel)
#define SCALED 0
#define FN(x) x##_8bpp
#define BYTES_PER_PIXEL 1
#include "vp9_mc_template.c"
#undef FN
#undef BYTES_PER_PIXEL
#define FN(x) x##_16bpp
#define BYTES_PER_PIXEL 2
#include "vp9_mc_template.c"
#undef mc_luma_dir
#undef mc_chroma_dir
#undef FN
#undef BYTES_PER_PIXEL
#undef SCALED
static av_always_inline void mc_luma_scaled(VP9TileData *td, vp9_scaled_mc_func smc,
vp9_mc_func (*mc)[2],
uint8_t *dst, ptrdiff_t dst_stride,
const uint8_t *ref, ptrdiff_t ref_stride,
ThreadFrame *ref_frame,
ptrdiff_t y, ptrdiff_t x, const VP56mv *in_mv,
int px, int py, int pw, int ph,
int bw, int bh, int w, int h, int bytesperpixel,
const uint16_t *scale, const uint8_t *step)
{
VP9Context *s = td->s;
if (s->s.frames[CUR_FRAME].tf.f->width == ref_frame->f->width &&
s->s.frames[CUR_FRAME].tf.f->height == ref_frame->f->height) {
mc_luma_unscaled(td, mc, dst, dst_stride, ref, ref_stride, ref_frame,
y, x, in_mv, bw, bh, w, h, bytesperpixel);
} else {
#define scale_mv(n, dim) (((int64_t)(n) * scale[dim]) >> 14)
int mx, my;
int refbw_m1, refbh_m1;
int th;
VP56mv mv;
mv.x = av_clip(in_mv->x, -(x + pw - px + 4) * 8, (s->cols * 8 - x + px + 3) * 8);
mv.y = av_clip(in_mv->y, -(y + ph - py + 4) * 8, (s->rows * 8 - y + py + 3) * 8);
// BUG libvpx seems to scale the two components separately. This introduces
// rounding errors but we have to reproduce them to be exactly compatible
// with the output from libvpx...
mx = scale_mv(mv.x * 2, 0) + scale_mv(x * 16, 0);
my = scale_mv(mv.y * 2, 1) + scale_mv(y * 16, 1);
y = my >> 4;
x = mx >> 4;
ref += y * ref_stride + x * bytesperpixel;
mx &= 15;
my &= 15;
refbw_m1 = ((bw - 1) * step[0] + mx) >> 4;
refbh_m1 = ((bh - 1) * step[1] + my) >> 4;
// FIXME bilinear filter only needs 0/1 pixels, not 3/4
// we use +7 because the last 7 pixels of each sbrow can be changed in
// the longest loopfilter of the next sbrow
th = (y + refbh_m1 + 4 + 7) >> 6;
ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
// The arm/aarch64 _hv filters read one more row than what actually is
// needed, so switch to emulated edge one pixel sooner vertically
// (y + 5 >= h - refbh_m1) than horizontally (x + 4 >= w - refbw_m1).
if (x < 3 || y < 3 || x + 4 >= w - refbw_m1 || y + 5 >= h - refbh_m1) {
s->vdsp.emulated_edge_mc(td->edge_emu_buffer,
ref - 3 * ref_stride - 3 * bytesperpixel,
288, ref_stride,
refbw_m1 + 8, refbh_m1 + 8,
x - 3, y - 3, w, h);
ref = td->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel;
ref_stride = 288;
}
smc(dst, dst_stride, ref, ref_stride, bh, mx, my, step[0], step[1]);
}
}
static av_always_inline void mc_chroma_scaled(VP9TileData *td, vp9_scaled_mc_func smc,
vp9_mc_func (*mc)[2],
uint8_t *dst_u, uint8_t *dst_v,
ptrdiff_t dst_stride,
const uint8_t *ref_u, ptrdiff_t src_stride_u,
const uint8_t *ref_v, ptrdiff_t src_stride_v,
ThreadFrame *ref_frame,
ptrdiff_t y, ptrdiff_t x, const VP56mv *in_mv,
int px, int py, int pw, int ph,
int bw, int bh, int w, int h, int bytesperpixel,
const uint16_t *scale, const uint8_t *step)
{
VP9Context *s = td->s;
if (s->s.frames[CUR_FRAME].tf.f->width == ref_frame->f->width &&
s->s.frames[CUR_FRAME].tf.f->height == ref_frame->f->height) {
mc_chroma_unscaled(td, mc, dst_u, dst_v, dst_stride, ref_u, src_stride_u,
ref_v, src_stride_v, ref_frame,
y, x, in_mv, bw, bh, w, h, bytesperpixel);
} else {
int mx, my;
int refbw_m1, refbh_m1;
int th;
VP56mv mv;
if (s->ss_h) {
// BUG https://code.google.com/p/webm/issues/detail?id=820
mv.x = av_clip(in_mv->x, -(x + pw - px + 4) * 16, (s->cols * 4 - x + px + 3) * 16);
mx = scale_mv(mv.x, 0) + (scale_mv(x * 16, 0) & ~15) + (scale_mv(x * 32, 0) & 15);
} else {
mv.x = av_clip(in_mv->x, -(x + pw - px + 4) * 8, (s->cols * 8 - x + px + 3) * 8);
mx = scale_mv(mv.x * 2, 0) + scale_mv(x * 16, 0);
}
if (s->ss_v) {
// BUG https://code.google.com/p/webm/issues/detail?id=820
mv.y = av_clip(in_mv->y, -(y + ph - py + 4) * 16, (s->rows * 4 - y + py + 3) * 16);
my = scale_mv(mv.y, 1) + (scale_mv(y * 16, 1) & ~15) + (scale_mv(y * 32, 1) & 15);
} else {
mv.y = av_clip(in_mv->y, -(y + ph - py + 4) * 8, (s->rows * 8 - y + py + 3) * 8);
my = scale_mv(mv.y * 2, 1) + scale_mv(y * 16, 1);
}
#undef scale_mv
y = my >> 4;
x = mx >> 4;
ref_u += y * src_stride_u + x * bytesperpixel;
ref_v += y * src_stride_v + x * bytesperpixel;
mx &= 15;
my &= 15;
refbw_m1 = ((bw - 1) * step[0] + mx) >> 4;
refbh_m1 = ((bh - 1) * step[1] + my) >> 4;
// FIXME bilinear filter only needs 0/1 pixels, not 3/4
// we use +7 because the last 7 pixels of each sbrow can be changed in
// the longest loopfilter of the next sbrow
th = (y + refbh_m1 + 4 + 7) >> (6 - s->ss_v);
ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
// The arm/aarch64 _hv filters read one more row than what actually is
// needed, so switch to emulated edge one pixel sooner vertically
// (y + 5 >= h - refbh_m1) than horizontally (x + 4 >= w - refbw_m1).
if (x < 3 || y < 3 || x + 4 >= w - refbw_m1 || y + 5 >= h - refbh_m1) {
s->vdsp.emulated_edge_mc(td->edge_emu_buffer,
ref_u - 3 * src_stride_u - 3 * bytesperpixel,
288, src_stride_u,
refbw_m1 + 8, refbh_m1 + 8,
x - 3, y - 3, w, h);
ref_u = td->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel;
smc(dst_u, dst_stride, ref_u, 288, bh, mx, my, step[0], step[1]);
s->vdsp.emulated_edge_mc(td->edge_emu_buffer,
ref_v - 3 * src_stride_v - 3 * bytesperpixel,
288, src_stride_v,
refbw_m1 + 8, refbh_m1 + 8,
x - 3, y - 3, w, h);
ref_v = td->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel;
smc(dst_v, dst_stride, ref_v, 288, bh, mx, my, step[0], step[1]);
} else {
smc(dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my, step[0], step[1]);
smc(dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my, step[0], step[1]);
}
}
}
#define mc_luma_dir(td, mc, dst, dst_ls, src, src_ls, tref, row, col, mv, \
px, py, pw, ph, bw, bh, w, h, i) \
mc_luma_scaled(td, s->dsp.s##mc, s->dsp.mc, dst, dst_ls, src, src_ls, tref, row, col, \
mv, px, py, pw, ph, bw, bh, w, h, bytesperpixel, \
s->mvscale[b->ref[i]], s->mvstep[b->ref[i]])
#define mc_chroma_dir(td, mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
row, col, mv, px, py, pw, ph, bw, bh, w, h, i) \
mc_chroma_scaled(td, s->dsp.s##mc, s->dsp.mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
row, col, mv, px, py, pw, ph, bw, bh, w, h, bytesperpixel, \
s->mvscale[b->ref[i]], s->mvstep[b->ref[i]])
#define SCALED 1
#define FN(x) x##_scaled_8bpp
#define BYTES_PER_PIXEL 1
#include "vp9_mc_template.c"
#undef FN
#undef BYTES_PER_PIXEL
#define FN(x) x##_scaled_16bpp
#define BYTES_PER_PIXEL 2
#include "vp9_mc_template.c"
#undef mc_luma_dir
#undef mc_chroma_dir
#undef FN
#undef BYTES_PER_PIXEL
#undef SCALED
static av_always_inline void inter_recon(VP9TileData *td, int bytesperpixel)
{
VP9Context *s = td->s;
VP9Block *b = td->b;
int row = td->row, col = td->col;
if (s->mvscale[b->ref[0]][0] == REF_INVALID_SCALE ||
(b->comp && s->mvscale[b->ref[1]][0] == REF_INVALID_SCALE)) {
if (!s->td->error_info) {
s->td->error_info = AVERROR_INVALIDDATA;
av_log(NULL, AV_LOG_ERROR, "Bitstream not supported, "
"reference frame has invalid dimensions\n");
}
return;
}
if (s->mvscale[b->ref[0]][0] || (b->comp && s->mvscale[b->ref[1]][0])) {
if (bytesperpixel == 1) {
inter_pred_scaled_8bpp(td);
} else {
inter_pred_scaled_16bpp(td);
}
} else {
if (bytesperpixel == 1) {
inter_pred_8bpp(td);
} else {
inter_pred_16bpp(td);
}
}
if (!b->skip) {
/* mostly copied intra_recon() */
int w4 = ff_vp9_bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n;
int h4 = ff_vp9_bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2);
int end_x = FFMIN(2 * (s->cols - col), w4);
int end_y = FFMIN(2 * (s->rows - row), h4);
int tx = 4 * s->s.h.lossless + b->tx, uvtx = b->uvtx + 4 * s->s.h.lossless;
int uvstep1d = 1 << b->uvtx, p;
uint8_t *dst = td->dst[0];
// y itxfm add
for (n = 0, y = 0; y < end_y; y += step1d) {
uint8_t *ptr = dst;
for (x = 0; x < end_x; x += step1d,
ptr += 4 * step1d * bytesperpixel, n += step) {
int eob = b->tx > TX_8X8 ? AV_RN16A(&td->eob[n]) : td->eob[n];
if (eob)
s->dsp.itxfm_add[tx][DCT_DCT](ptr, td->y_stride,
td->block + 16 * n * bytesperpixel, eob);
}
dst += 4 * td->y_stride * step1d;
}
// uv itxfm add
end_x >>= s->ss_h;
end_y >>= s->ss_v;
step = 1 << (b->uvtx * 2);
for (p = 0; p < 2; p++) {
dst = td->dst[p + 1];
for (n = 0, y = 0; y < end_y; y += uvstep1d) {
uint8_t *ptr = dst;
for (x = 0; x < end_x; x += uvstep1d,
ptr += 4 * uvstep1d * bytesperpixel, n += step) {
int eob = b->uvtx > TX_8X8 ? AV_RN16A(&td->uveob[p][n]) : td->uveob[p][n];
if (eob)
s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, td->uv_stride,
td->uvblock[p] + 16 * n * bytesperpixel, eob);
}
dst += 4 * uvstep1d * td->uv_stride;
}
}
}
}
void ff_vp9_inter_recon_8bpp(VP9TileData *td)
{
inter_recon(td, 1);
}
void ff_vp9_inter_recon_16bpp(VP9TileData *td)
{
inter_recon(td, 2);
}