1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavcodec/huffyuv.c
Diego Elio Pettenò e7e2df27f8 Add ff_ prefix to data symbols of encoders, decoders, hwaccel, parsers, bsf.
None of these symbols should be accessed directly, so declare them as
hidden.

Signed-off-by: Mans Rullgard <mans@mansr.com>
(cherry picked from commit d36beb3f69)
2011-01-28 03:15:34 +01:00

1477 lines
48 KiB
C

/*
* huffyuv codec for libavcodec
*
* Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
*
* see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
* the algorithm used
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* huffyuv codec for libavcodec.
*/
#include "avcodec.h"
#include "get_bits.h"
#include "put_bits.h"
#include "dsputil.h"
#define VLC_BITS 11
#if HAVE_BIGENDIAN
#define B 3
#define G 2
#define R 1
#define A 0
#else
#define B 0
#define G 1
#define R 2
#define A 3
#endif
typedef enum Predictor{
LEFT= 0,
PLANE,
MEDIAN,
} Predictor;
typedef struct HYuvContext{
AVCodecContext *avctx;
Predictor predictor;
GetBitContext gb;
PutBitContext pb;
int interlaced;
int decorrelate;
int bitstream_bpp;
int version;
int yuy2; //use yuy2 instead of 422P
int bgr32; //use bgr32 instead of bgr24
int width, height;
int flags;
int context;
int picture_number;
int last_slice_end;
uint8_t *temp[3];
uint64_t stats[3][256];
uint8_t len[3][256];
uint32_t bits[3][256];
uint32_t pix_bgr_map[1<<VLC_BITS];
VLC vlc[6]; //Y,U,V,YY,YU,YV
AVFrame picture;
uint8_t *bitstream_buffer;
unsigned int bitstream_buffer_size;
DSPContext dsp;
}HYuvContext;
static const unsigned char classic_shift_luma[] = {
34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
69,68, 0
};
static const unsigned char classic_shift_chroma[] = {
66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
};
static const unsigned char classic_add_luma[256] = {
3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
};
static const unsigned char classic_add_chroma[256] = {
3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
};
static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
int i;
if(w<32){
for(i=0; i<w; i++){
const int temp= src[i];
dst[i]= temp - left;
left= temp;
}
return left;
}else{
for(i=0; i<16; i++){
const int temp= src[i];
dst[i]= temp - left;
left= temp;
}
s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
return src[w-1];
}
}
static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
int i;
int r,g,b;
r= *red;
g= *green;
b= *blue;
for(i=0; i<FFMIN(w,4); i++){
const int rt= src[i*4+R];
const int gt= src[i*4+G];
const int bt= src[i*4+B];
dst[i*4+R]= rt - r;
dst[i*4+G]= gt - g;
dst[i*4+B]= bt - b;
r = rt;
g = gt;
b = bt;
}
s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
*red= src[(w-1)*4+R];
*green= src[(w-1)*4+G];
*blue= src[(w-1)*4+B];
}
static int read_len_table(uint8_t *dst, GetBitContext *gb){
int i, val, repeat;
for(i=0; i<256;){
repeat= get_bits(gb, 3);
val = get_bits(gb, 5);
if(repeat==0)
repeat= get_bits(gb, 8);
//printf("%d %d\n", val, repeat);
if(i+repeat > 256) {
av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n");
return -1;
}
while (repeat--)
dst[i++] = val;
}
return 0;
}
static int generate_bits_table(uint32_t *dst, const uint8_t *len_table){
int len, index;
uint32_t bits=0;
for(len=32; len>0; len--){
for(index=0; index<256; index++){
if(len_table[index]==len)
dst[index]= bits++;
}
if(bits & 1){
av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
return -1;
}
bits >>= 1;
}
return 0;
}
#if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
typedef struct {
uint64_t val;
int name;
} HeapElem;
static void heap_sift(HeapElem *h, int root, int size)
{
while(root*2+1 < size) {
int child = root*2+1;
if(child < size-1 && h[child].val > h[child+1].val)
child++;
if(h[root].val > h[child].val) {
FFSWAP(HeapElem, h[root], h[child]);
root = child;
} else
break;
}
}
static void generate_len_table(uint8_t *dst, const uint64_t *stats){
HeapElem h[256];
int up[2*256];
int len[2*256];
int offset, i, next;
int size = 256;
for(offset=1; ; offset<<=1){
for(i=0; i<size; i++){
h[i].name = i;
h[i].val = (stats[i] << 8) + offset;
}
for(i=size/2-1; i>=0; i--)
heap_sift(h, i, size);
for(next=size; next<size*2-1; next++){
// merge the two smallest entries, and put it back in the heap
uint64_t min1v = h[0].val;
up[h[0].name] = next;
h[0].val = INT64_MAX;
heap_sift(h, 0, size);
up[h[0].name] = next;
h[0].name = next;
h[0].val += min1v;
heap_sift(h, 0, size);
}
len[2*size-2] = 0;
for(i=2*size-3; i>=size; i--)
len[i] = len[up[i]] + 1;
for(i=0; i<size; i++) {
dst[i] = len[up[i]] + 1;
if(dst[i] >= 32) break;
}
if(i==size) break;
}
}
#endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
static void generate_joint_tables(HYuvContext *s){
uint16_t symbols[1<<VLC_BITS];
uint16_t bits[1<<VLC_BITS];
uint8_t len[1<<VLC_BITS];
if(s->bitstream_bpp < 24){
int p, i, y, u;
for(p=0; p<3; p++){
for(i=y=0; y<256; y++){
int len0 = s->len[0][y];
int limit = VLC_BITS - len0;
if(limit <= 0)
continue;
for(u=0; u<256; u++){
int len1 = s->len[p][u];
if(len1 > limit)
continue;
len[i] = len0 + len1;
bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
symbols[i] = (y<<8) + u;
if(symbols[i] != 0xffff) // reserved to mean "invalid"
i++;
}
}
free_vlc(&s->vlc[3+p]);
init_vlc_sparse(&s->vlc[3+p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0);
}
}else{
uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
int i, b, g, r, code;
int p0 = s->decorrelate;
int p1 = !s->decorrelate;
// restrict the range to +/-16 becaues that's pretty much guaranteed to
// cover all the combinations that fit in 11 bits total, and it doesn't
// matter if we miss a few rare codes.
for(i=0, g=-16; g<16; g++){
int len0 = s->len[p0][g&255];
int limit0 = VLC_BITS - len0;
if(limit0 < 2)
continue;
for(b=-16; b<16; b++){
int len1 = s->len[p1][b&255];
int limit1 = limit0 - len1;
if(limit1 < 1)
continue;
code = (s->bits[p0][g&255] << len1) + s->bits[p1][b&255];
for(r=-16; r<16; r++){
int len2 = s->len[2][r&255];
if(len2 > limit1)
continue;
len[i] = len0 + len1 + len2;
bits[i] = (code << len2) + s->bits[2][r&255];
if(s->decorrelate){
map[i][G] = g;
map[i][B] = g+b;
map[i][R] = g+r;
}else{
map[i][B] = g;
map[i][G] = b;
map[i][R] = r;
}
i++;
}
}
}
free_vlc(&s->vlc[3]);
init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
}
}
static int read_huffman_tables(HYuvContext *s, const uint8_t *src, int length){
GetBitContext gb;
int i;
init_get_bits(&gb, src, length*8);
for(i=0; i<3; i++){
if(read_len_table(s->len[i], &gb)<0)
return -1;
if(generate_bits_table(s->bits[i], s->len[i])<0){
return -1;
}
#if 0
for(j=0; j<256; j++){
printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
}
#endif
free_vlc(&s->vlc[i]);
init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
}
generate_joint_tables(s);
return (get_bits_count(&gb)+7)/8;
}
static int read_old_huffman_tables(HYuvContext *s){
#if 1
GetBitContext gb;
int i;
init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
if(read_len_table(s->len[0], &gb)<0)
return -1;
init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
if(read_len_table(s->len[1], &gb)<0)
return -1;
for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
if(s->bitstream_bpp >= 24){
memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
}
memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
for(i=0; i<3; i++){
free_vlc(&s->vlc[i]);
init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
}
generate_joint_tables(s);
return 0;
#else
av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
return -1;
#endif
}
static av_cold void alloc_temp(HYuvContext *s){
int i;
if(s->bitstream_bpp<24){
for(i=0; i<3; i++){
s->temp[i]= av_malloc(s->width + 16);
}
}else{
s->temp[0]= av_mallocz(4*s->width + 16);
}
}
static av_cold int common_init(AVCodecContext *avctx){
HYuvContext *s = avctx->priv_data;
s->avctx= avctx;
s->flags= avctx->flags;
dsputil_init(&s->dsp, avctx);
s->width= avctx->width;
s->height= avctx->height;
assert(s->width>0 && s->height>0);
return 0;
}
#if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
static av_cold int decode_init(AVCodecContext *avctx)
{
HYuvContext *s = avctx->priv_data;
common_init(avctx);
memset(s->vlc, 0, 3*sizeof(VLC));
avctx->coded_frame= &s->picture;
s->interlaced= s->height > 288;
s->bgr32=1;
//if(avctx->extradata)
// printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
if(avctx->extradata_size){
if((avctx->bits_per_coded_sample&7) && avctx->bits_per_coded_sample != 12)
s->version=1; // do such files exist at all?
else
s->version=2;
}else
s->version=0;
if(s->version==2){
int method, interlace;
if (avctx->extradata_size < 4)
return -1;
method= ((uint8_t*)avctx->extradata)[0];
s->decorrelate= method&64 ? 1 : 0;
s->predictor= method&63;
s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
if(s->bitstream_bpp==0)
s->bitstream_bpp= avctx->bits_per_coded_sample&~7;
interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size-4) < 0)
return -1;
}else{
switch(avctx->bits_per_coded_sample&7){
case 1:
s->predictor= LEFT;
s->decorrelate= 0;
break;
case 2:
s->predictor= LEFT;
s->decorrelate= 1;
break;
case 3:
s->predictor= PLANE;
s->decorrelate= avctx->bits_per_coded_sample >= 24;
break;
case 4:
s->predictor= MEDIAN;
s->decorrelate= 0;
break;
default:
s->predictor= LEFT; //OLD
s->decorrelate= 0;
break;
}
s->bitstream_bpp= avctx->bits_per_coded_sample & ~7;
s->context= 0;
if(read_old_huffman_tables(s) < 0)
return -1;
}
switch(s->bitstream_bpp){
case 12:
avctx->pix_fmt = PIX_FMT_YUV420P;
break;
case 16:
if(s->yuy2){
avctx->pix_fmt = PIX_FMT_YUYV422;
}else{
avctx->pix_fmt = PIX_FMT_YUV422P;
}
break;
case 24:
case 32:
if(s->bgr32){
avctx->pix_fmt = PIX_FMT_RGB32;
}else{
avctx->pix_fmt = PIX_FMT_BGR24;
}
break;
default:
assert(0);
}
alloc_temp(s);
// av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
return 0;
}
#endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
#if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf){
int i;
int index= 0;
for(i=0; i<256;){
int val= len[i];
int repeat=0;
for(; i<256 && len[i]==val && repeat<255; i++)
repeat++;
assert(val < 32 && val >0 && repeat<256 && repeat>0);
if(repeat>7){
buf[index++]= val;
buf[index++]= repeat;
}else{
buf[index++]= val | (repeat<<5);
}
}
return index;
}
static av_cold int encode_init(AVCodecContext *avctx)
{
HYuvContext *s = avctx->priv_data;
int i, j;
common_init(avctx);
avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
s->version=2;
avctx->coded_frame= &s->picture;
switch(avctx->pix_fmt){
case PIX_FMT_YUV420P:
s->bitstream_bpp= 12;
break;
case PIX_FMT_YUV422P:
s->bitstream_bpp= 16;
break;
case PIX_FMT_RGB32:
s->bitstream_bpp= 24;
break;
default:
av_log(avctx, AV_LOG_ERROR, "format not supported\n");
return -1;
}
avctx->bits_per_coded_sample= s->bitstream_bpp;
s->decorrelate= s->bitstream_bpp >= 24;
s->predictor= avctx->prediction_method;
s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
if(avctx->context_model==1){
s->context= avctx->context_model;
if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
return -1;
}
}else s->context= 0;
if(avctx->codec->id==CODEC_ID_HUFFYUV){
if(avctx->pix_fmt==PIX_FMT_YUV420P){
av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
return -1;
}
if(avctx->context_model){
av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
return -1;
}
if(s->interlaced != ( s->height > 288 ))
av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
}
if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
return -1;
}
((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
if(s->context)
((uint8_t*)avctx->extradata)[2]|= 0x40;
((uint8_t*)avctx->extradata)[3]= 0;
s->avctx->extradata_size= 4;
if(avctx->stats_in){
char *p= avctx->stats_in;
for(i=0; i<3; i++)
for(j=0; j<256; j++)
s->stats[i][j]= 1;
for(;;){
for(i=0; i<3; i++){
char *next;
for(j=0; j<256; j++){
s->stats[i][j]+= strtol(p, &next, 0);
if(next==p) return -1;
p=next;
}
}
if(p[0]==0 || p[1]==0 || p[2]==0) break;
}
}else{
for(i=0; i<3; i++)
for(j=0; j<256; j++){
int d= FFMIN(j, 256-j);
s->stats[i][j]= 100000000/(d+1);
}
}
for(i=0; i<3; i++){
generate_len_table(s->len[i], s->stats[i]);
if(generate_bits_table(s->bits[i], s->len[i])<0){
return -1;
}
s->avctx->extradata_size+=
store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
}
if(s->context){
for(i=0; i<3; i++){
int pels = s->width*s->height / (i?40:10);
for(j=0; j<256; j++){
int d= FFMIN(j, 256-j);
s->stats[i][j]= pels/(d+1);
}
}
}else{
for(i=0; i<3; i++)
for(j=0; j<256; j++)
s->stats[i][j]= 0;
}
// printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
alloc_temp(s);
s->picture_number=0;
return 0;
}
#endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
/* TODO instead of restarting the read when the code isn't in the first level
* of the joint table, jump into the 2nd level of the individual table. */
#define READ_2PIX(dst0, dst1, plane1){\
uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
if(code != 0xffff){\
dst0 = code>>8;\
dst1 = code;\
}else{\
dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
}\
}
static void decode_422_bitstream(HYuvContext *s, int count){
int i;
count/=2;
if(count >= (get_bits_left(&s->gb))/(31*4)){
for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
}
}else{
for(i=0; i<count; i++){
READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
}
}
}
static void decode_gray_bitstream(HYuvContext *s, int count){
int i;
count/=2;
if(count >= (get_bits_left(&s->gb))/(31*2)){
for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
}
}else{
for(i=0; i<count; i++){
READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
}
}
}
#if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
static int encode_422_bitstream(HYuvContext *s, int offset, int count){
int i;
const uint8_t *y = s->temp[0] + offset;
const uint8_t *u = s->temp[1] + offset/2;
const uint8_t *v = s->temp[2] + offset/2;
if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
#define LOAD4\
int y0 = y[2*i];\
int y1 = y[2*i+1];\
int u0 = u[i];\
int v0 = v[i];
count/=2;
if(s->flags&CODEC_FLAG_PASS1){
for(i=0; i<count; i++){
LOAD4;
s->stats[0][y0]++;
s->stats[1][u0]++;
s->stats[0][y1]++;
s->stats[2][v0]++;
}
}
if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
return 0;
if(s->context){
for(i=0; i<count; i++){
LOAD4;
s->stats[0][y0]++;
put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
s->stats[1][u0]++;
put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
s->stats[0][y1]++;
put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
s->stats[2][v0]++;
put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
}
}else{
for(i=0; i<count; i++){
LOAD4;
put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
}
}
return 0;
}
static int encode_gray_bitstream(HYuvContext *s, int count){
int i;
if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
#define LOAD2\
int y0 = s->temp[0][2*i];\
int y1 = s->temp[0][2*i+1];
#define STAT2\
s->stats[0][y0]++;\
s->stats[0][y1]++;
#define WRITE2\
put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
count/=2;
if(s->flags&CODEC_FLAG_PASS1){
for(i=0; i<count; i++){
LOAD2;
STAT2;
}
}
if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
return 0;
if(s->context){
for(i=0; i<count; i++){
LOAD2;
STAT2;
WRITE2;
}
}else{
for(i=0; i<count; i++){
LOAD2;
WRITE2;
}
}
return 0;
}
#endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
static av_always_inline void decode_bgr_1(HYuvContext *s, int count, int decorrelate, int alpha){
int i;
for(i=0; i<count; i++){
int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
if(code != -1){
*(uint32_t*)&s->temp[0][4*i] = s->pix_bgr_map[code];
}else if(decorrelate){
s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
}else{
s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
}
if(alpha)
s->temp[0][4*i+A] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
}
}
static void decode_bgr_bitstream(HYuvContext *s, int count){
if(s->decorrelate){
if(s->bitstream_bpp==24)
decode_bgr_1(s, count, 1, 0);
else
decode_bgr_1(s, count, 1, 1);
}else{
if(s->bitstream_bpp==24)
decode_bgr_1(s, count, 0, 0);
else
decode_bgr_1(s, count, 0, 1);
}
}
static int encode_bgr_bitstream(HYuvContext *s, int count){
int i;
if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3*4*count){
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
#define LOAD3\
int g= s->temp[0][4*i+G];\
int b= (s->temp[0][4*i+B] - g) & 0xff;\
int r= (s->temp[0][4*i+R] - g) & 0xff;
#define STAT3\
s->stats[0][b]++;\
s->stats[1][g]++;\
s->stats[2][r]++;
#define WRITE3\
put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
put_bits(&s->pb, s->len[2][r], s->bits[2][r]);
if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
for(i=0; i<count; i++){
LOAD3;
STAT3;
}
}else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
for(i=0; i<count; i++){
LOAD3;
STAT3;
WRITE3;
}
}else{
for(i=0; i<count; i++){
LOAD3;
WRITE3;
}
}
return 0;
}
#if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
static void draw_slice(HYuvContext *s, int y){
int h, cy;
int offset[4];
if(s->avctx->draw_horiz_band==NULL)
return;
h= y - s->last_slice_end;
y -= h;
if(s->bitstream_bpp==12){
cy= y>>1;
}else{
cy= y;
}
offset[0] = s->picture.linesize[0]*y;
offset[1] = s->picture.linesize[1]*cy;
offset[2] = s->picture.linesize[2]*cy;
offset[3] = 0;
emms_c();
s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
s->last_slice_end= y + h;
}
static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
HYuvContext *s = avctx->priv_data;
const int width= s->width;
const int width2= s->width>>1;
const int height= s->height;
int fake_ystride, fake_ustride, fake_vstride;
AVFrame * const p= &s->picture;
int table_size= 0;
AVFrame *picture = data;
av_fast_malloc(&s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
if (!s->bitstream_buffer)
return AVERROR(ENOMEM);
memset(s->bitstream_buffer + buf_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (const uint32_t*)buf, buf_size/4);
if(p->data[0])
avctx->release_buffer(avctx, p);
p->reference= 0;
if(avctx->get_buffer(avctx, p) < 0){
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return -1;
}
if(s->context){
table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
if(table_size < 0)
return -1;
}
if((unsigned)(buf_size-table_size) >= INT_MAX/8)
return -1;
init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
s->last_slice_end= 0;
if(s->bitstream_bpp<24){
int y, cy;
int lefty, leftu, leftv;
int lefttopy, lefttopu, lefttopv;
if(s->yuy2){
p->data[0][3]= get_bits(&s->gb, 8);
p->data[0][2]= get_bits(&s->gb, 8);
p->data[0][1]= get_bits(&s->gb, 8);
p->data[0][0]= get_bits(&s->gb, 8);
av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
return -1;
}else{
leftv= p->data[2][0]= get_bits(&s->gb, 8);
lefty= p->data[0][1]= get_bits(&s->gb, 8);
leftu= p->data[1][0]= get_bits(&s->gb, 8);
p->data[0][0]= get_bits(&s->gb, 8);
switch(s->predictor){
case LEFT:
case PLANE:
decode_422_bitstream(s, width-2);
lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
if(!(s->flags&CODEC_FLAG_GRAY)){
leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
}
for(cy=y=1; y<s->height; y++,cy++){
uint8_t *ydst, *udst, *vdst;
if(s->bitstream_bpp==12){
decode_gray_bitstream(s, width);
ydst= p->data[0] + p->linesize[0]*y;
lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
if(s->predictor == PLANE){
if(y>s->interlaced)
s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
}
y++;
if(y>=s->height) break;
}
draw_slice(s, y);
ydst= p->data[0] + p->linesize[0]*y;
udst= p->data[1] + p->linesize[1]*cy;
vdst= p->data[2] + p->linesize[2]*cy;
decode_422_bitstream(s, width);
lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
if(!(s->flags&CODEC_FLAG_GRAY)){
leftu= s->dsp.add_hfyu_left_prediction(udst, s->temp[1], width2, leftu);
leftv= s->dsp.add_hfyu_left_prediction(vdst, s->temp[2], width2, leftv);
}
if(s->predictor == PLANE){
if(cy>s->interlaced){
s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
if(!(s->flags&CODEC_FLAG_GRAY)){
s->dsp.add_bytes(udst, udst - fake_ustride, width2);
s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
}
}
}
}
draw_slice(s, height);
break;
case MEDIAN:
/* first line except first 2 pixels is left predicted */
decode_422_bitstream(s, width-2);
lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
if(!(s->flags&CODEC_FLAG_GRAY)){
leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
}
cy=y=1;
/* second line is left predicted for interlaced case */
if(s->interlaced){
decode_422_bitstream(s, width);
lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
if(!(s->flags&CODEC_FLAG_GRAY)){
leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
}
y++; cy++;
}
/* next 4 pixels are left predicted too */
decode_422_bitstream(s, 4);
lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
if(!(s->flags&CODEC_FLAG_GRAY)){
leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
}
/* next line except the first 4 pixels is median predicted */
lefttopy= p->data[0][3];
decode_422_bitstream(s, width-4);
s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
if(!(s->flags&CODEC_FLAG_GRAY)){
lefttopu= p->data[1][1];
lefttopv= p->data[2][1];
s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
}
y++; cy++;
for(; y<height; y++,cy++){
uint8_t *ydst, *udst, *vdst;
if(s->bitstream_bpp==12){
while(2*cy > y){
decode_gray_bitstream(s, width);
ydst= p->data[0] + p->linesize[0]*y;
s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
y++;
}
if(y>=height) break;
}
draw_slice(s, y);
decode_422_bitstream(s, width);
ydst= p->data[0] + p->linesize[0]*y;
udst= p->data[1] + p->linesize[1]*cy;
vdst= p->data[2] + p->linesize[2]*cy;
s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
if(!(s->flags&CODEC_FLAG_GRAY)){
s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
}
}
draw_slice(s, height);
break;
}
}
}else{
int y;
int leftr, leftg, leftb, lefta;
const int last_line= (height-1)*p->linesize[0];
if(s->bitstream_bpp==32){
lefta= p->data[0][last_line+A]= get_bits(&s->gb, 8);
leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
}else{
leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
lefta= p->data[0][last_line+A]= 255;
skip_bits(&s->gb, 8);
}
if(s->bgr32){
switch(s->predictor){
case LEFT:
case PLANE:
decode_bgr_bitstream(s, width-1);
s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb, &lefta);
for(y=s->height-2; y>=0; y--){ //Yes it is stored upside down.
decode_bgr_bitstream(s, width);
s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb, &lefta);
if(s->predictor == PLANE){
if(s->bitstream_bpp!=32) lefta=0;
if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
}
}
}
draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
break;
default:
av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
}
}else{
av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
return -1;
}
}
emms_c();
*picture= *p;
*data_size = sizeof(AVFrame);
return (get_bits_count(&s->gb)+31)/32*4 + table_size;
}
#endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
static int common_end(HYuvContext *s){
int i;
for(i=0; i<3; i++){
av_freep(&s->temp[i]);
}
return 0;
}
#if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
static av_cold int decode_end(AVCodecContext *avctx)
{
HYuvContext *s = avctx->priv_data;
int i;
if (s->picture.data[0])
avctx->release_buffer(avctx, &s->picture);
common_end(s);
av_freep(&s->bitstream_buffer);
for(i=0; i<6; i++){
free_vlc(&s->vlc[i]);
}
return 0;
}
#endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
#if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
HYuvContext *s = avctx->priv_data;
AVFrame *pict = data;
const int width= s->width;
const int width2= s->width>>1;
const int height= s->height;
const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
AVFrame * const p= &s->picture;
int i, j, size=0;
*p = *pict;
p->pict_type= FF_I_TYPE;
p->key_frame= 1;
if(s->context){
for(i=0; i<3; i++){
generate_len_table(s->len[i], s->stats[i]);
if(generate_bits_table(s->bits[i], s->len[i])<0)
return -1;
size+= store_table(s, s->len[i], &buf[size]);
}
for(i=0; i<3; i++)
for(j=0; j<256; j++)
s->stats[i][j] >>= 1;
}
init_put_bits(&s->pb, buf+size, buf_size-size);
if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
int lefty, leftu, leftv, y, cy;
put_bits(&s->pb, 8, leftv= p->data[2][0]);
put_bits(&s->pb, 8, lefty= p->data[0][1]);
put_bits(&s->pb, 8, leftu= p->data[1][0]);
put_bits(&s->pb, 8, p->data[0][0]);
lefty= sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
leftu= sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
leftv= sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
encode_422_bitstream(s, 2, width-2);
if(s->predictor==MEDIAN){
int lefttopy, lefttopu, lefttopv;
cy=y=1;
if(s->interlaced){
lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
encode_422_bitstream(s, 0, width);
y++; cy++;
}
lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
encode_422_bitstream(s, 0, 4);
lefttopy= p->data[0][3];
lefttopu= p->data[1][1];
lefttopv= p->data[2][1];
s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
encode_422_bitstream(s, 0, width-4);
y++; cy++;
for(; y<height; y++,cy++){
uint8_t *ydst, *udst, *vdst;
if(s->bitstream_bpp==12){
while(2*cy > y){
ydst= p->data[0] + p->linesize[0]*y;
s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
encode_gray_bitstream(s, width);
y++;
}
if(y>=height) break;
}
ydst= p->data[0] + p->linesize[0]*y;
udst= p->data[1] + p->linesize[1]*cy;
vdst= p->data[2] + p->linesize[2]*cy;
s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
encode_422_bitstream(s, 0, width);
}
}else{
for(cy=y=1; y<height; y++,cy++){
uint8_t *ydst, *udst, *vdst;
/* encode a luma only line & y++ */
if(s->bitstream_bpp==12){
ydst= p->data[0] + p->linesize[0]*y;
if(s->predictor == PLANE && s->interlaced < y){
s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
}else{
lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
}
encode_gray_bitstream(s, width);
y++;
if(y>=height) break;
}
ydst= p->data[0] + p->linesize[0]*y;
udst= p->data[1] + p->linesize[1]*cy;
vdst= p->data[2] + p->linesize[2]*cy;
if(s->predictor == PLANE && s->interlaced < cy){
s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
}else{
lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
}
encode_422_bitstream(s, 0, width);
}
}
}else if(avctx->pix_fmt == PIX_FMT_RGB32){
uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
const int stride = -p->linesize[0];
const int fake_stride = -fake_ystride;
int y;
int leftr, leftg, leftb;
put_bits(&s->pb, 8, leftr= data[R]);
put_bits(&s->pb, 8, leftg= data[G]);
put_bits(&s->pb, 8, leftb= data[B]);
put_bits(&s->pb, 8, 0);
sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb);
encode_bgr_bitstream(s, width-1);
for(y=1; y<s->height; y++){
uint8_t *dst = data + y*stride;
if(s->predictor == PLANE && s->interlaced < y){
s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
}else{
sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
}
encode_bgr_bitstream(s, width);
}
}else{
av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
}
emms_c();
size+= (put_bits_count(&s->pb)+31)/8;
put_bits(&s->pb, 16, 0);
put_bits(&s->pb, 15, 0);
size/= 4;
if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
int j;
char *p= avctx->stats_out;
char *end= p + 1024*30;
for(i=0; i<3; i++){
for(j=0; j<256; j++){
snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
p+= strlen(p);
s->stats[i][j]= 0;
}
snprintf(p, end-p, "\n");
p++;
}
} else
avctx->stats_out[0] = '\0';
if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
flush_put_bits(&s->pb);
s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
}
s->picture_number++;
return size*4;
}
static av_cold int encode_end(AVCodecContext *avctx)
{
HYuvContext *s = avctx->priv_data;
common_end(s);
av_freep(&avctx->extradata);
av_freep(&avctx->stats_out);
return 0;
}
#endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
#if CONFIG_HUFFYUV_DECODER
AVCodec ff_huffyuv_decoder = {
"huffyuv",
AVMEDIA_TYPE_VIDEO,
CODEC_ID_HUFFYUV,
sizeof(HYuvContext),
decode_init,
NULL,
decode_end,
decode_frame,
CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
NULL,
.long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
};
#endif
#if CONFIG_FFVHUFF_DECODER
AVCodec ff_ffvhuff_decoder = {
"ffvhuff",
AVMEDIA_TYPE_VIDEO,
CODEC_ID_FFVHUFF,
sizeof(HYuvContext),
decode_init,
NULL,
decode_end,
decode_frame,
CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
NULL,
.long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
};
#endif
#if CONFIG_HUFFYUV_ENCODER
AVCodec ff_huffyuv_encoder = {
"huffyuv",
AVMEDIA_TYPE_VIDEO,
CODEC_ID_HUFFYUV,
sizeof(HYuvContext),
encode_init,
encode_frame,
encode_end,
.pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
.long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
};
#endif
#if CONFIG_FFVHUFF_ENCODER
AVCodec ff_ffvhuff_encoder = {
"ffvhuff",
AVMEDIA_TYPE_VIDEO,
CODEC_ID_FFVHUFF,
sizeof(HYuvContext),
encode_init,
encode_frame,
encode_end,
.pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
.long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
};
#endif