1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-03 05:10:03 +02:00
FFmpeg/libavcodec/h264_cavlc.c
Andreas Rheinhardt ab8a8246c8 avcodec/h264_cavlc: Remove code duplication
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2023-10-31 20:46:59 +01:00

1151 lines
43 KiB
C

/*
* H.26L/H.264/AVC/JVT/14496-10/... cavlc bitstream decoding
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* H.264 / AVC / MPEG-4 part10 cavlc bitstream decoding.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#define CABAC(h) 0
#define UNCHECKED_BITSTREAM_READER 1
#include "h264dec.h"
#include "h264_mvpred.h"
#include "h264data.h"
#include "golomb.h"
#include "mpegutils.h"
#include "libavutil/avassert.h"
static const uint8_t golomb_to_inter_cbp_gray[16]={
0, 1, 2, 4, 8, 3, 5,10,12,15, 7,11,13,14, 6, 9,
};
static const uint8_t golomb_to_intra4x4_cbp_gray[16]={
15, 0, 7,11,13,14, 3, 5,10,12, 1, 2, 4, 8, 6, 9,
};
static const uint8_t chroma_dc_coeff_token_len[4*5]={
2, 0, 0, 0,
6, 1, 0, 0,
6, 6, 3, 0,
6, 7, 7, 6,
6, 8, 8, 7,
};
static const uint8_t chroma_dc_coeff_token_bits[4*5]={
1, 0, 0, 0,
7, 1, 0, 0,
4, 6, 1, 0,
3, 3, 2, 5,
2, 3, 2, 0,
};
static const uint8_t chroma422_dc_coeff_token_len[4*9]={
1, 0, 0, 0,
7, 2, 0, 0,
7, 7, 3, 0,
9, 7, 7, 5,
9, 9, 7, 6,
10, 10, 9, 7,
11, 11, 10, 7,
12, 12, 11, 10,
13, 12, 12, 11,
};
static const uint8_t chroma422_dc_coeff_token_bits[4*9]={
1, 0, 0, 0,
15, 1, 0, 0,
14, 13, 1, 0,
7, 12, 11, 1,
6, 5, 10, 1,
7, 6, 4, 9,
7, 6, 5, 8,
7, 6, 5, 4,
7, 5, 4, 4,
};
static const uint8_t coeff_token_len[4][4*17]={
{
1, 0, 0, 0,
6, 2, 0, 0, 8, 6, 3, 0, 9, 8, 7, 5, 10, 9, 8, 6,
11,10, 9, 7, 13,11,10, 8, 13,13,11, 9, 13,13,13,10,
14,14,13,11, 14,14,14,13, 15,15,14,14, 15,15,15,14,
16,15,15,15, 16,16,16,15, 16,16,16,16, 16,16,16,16,
},
{
2, 0, 0, 0,
6, 2, 0, 0, 6, 5, 3, 0, 7, 6, 6, 4, 8, 6, 6, 4,
8, 7, 7, 5, 9, 8, 8, 6, 11, 9, 9, 6, 11,11,11, 7,
12,11,11, 9, 12,12,12,11, 12,12,12,11, 13,13,13,12,
13,13,13,13, 13,14,13,13, 14,14,14,13, 14,14,14,14,
},
{
4, 0, 0, 0,
6, 4, 0, 0, 6, 5, 4, 0, 6, 5, 5, 4, 7, 5, 5, 4,
7, 5, 5, 4, 7, 6, 6, 4, 7, 6, 6, 4, 8, 7, 7, 5,
8, 8, 7, 6, 9, 8, 8, 7, 9, 9, 8, 8, 9, 9, 9, 8,
10, 9, 9, 9, 10,10,10,10, 10,10,10,10, 10,10,10,10,
},
{
6, 0, 0, 0,
6, 6, 0, 0, 6, 6, 6, 0, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
}
};
static const uint8_t coeff_token_bits[4][4*17]={
{
1, 0, 0, 0,
5, 1, 0, 0, 7, 4, 1, 0, 7, 6, 5, 3, 7, 6, 5, 3,
7, 6, 5, 4, 15, 6, 5, 4, 11,14, 5, 4, 8,10,13, 4,
15,14, 9, 4, 11,10,13,12, 15,14, 9,12, 11,10,13, 8,
15, 1, 9,12, 11,14,13, 8, 7,10, 9,12, 4, 6, 5, 8,
},
{
3, 0, 0, 0,
11, 2, 0, 0, 7, 7, 3, 0, 7,10, 9, 5, 7, 6, 5, 4,
4, 6, 5, 6, 7, 6, 5, 8, 15, 6, 5, 4, 11,14,13, 4,
15,10, 9, 4, 11,14,13,12, 8,10, 9, 8, 15,14,13,12,
11,10, 9,12, 7,11, 6, 8, 9, 8,10, 1, 7, 6, 5, 4,
},
{
15, 0, 0, 0,
15,14, 0, 0, 11,15,13, 0, 8,12,14,12, 15,10,11,11,
11, 8, 9,10, 9,14,13, 9, 8,10, 9, 8, 15,14,13,13,
11,14,10,12, 15,10,13,12, 11,14, 9,12, 8,10,13, 8,
13, 7, 9,12, 9,12,11,10, 5, 8, 7, 6, 1, 4, 3, 2,
},
{
3, 0, 0, 0,
0, 1, 0, 0, 4, 5, 6, 0, 8, 9,10,11, 12,13,14,15,
16,17,18,19, 20,21,22,23, 24,25,26,27, 28,29,30,31,
32,33,34,35, 36,37,38,39, 40,41,42,43, 44,45,46,47,
48,49,50,51, 52,53,54,55, 56,57,58,59, 60,61,62,63,
}
};
static const uint8_t total_zeros_len[16][16]= {
{1,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9},
{3,3,3,3,3,4,4,4,4,5,5,6,6,6,6},
{4,3,3,3,4,4,3,3,4,5,5,6,5,6},
{5,3,4,4,3,3,3,4,3,4,5,5,5},
{4,4,4,3,3,3,3,3,4,5,4,5},
{6,5,3,3,3,3,3,3,4,3,6},
{6,5,3,3,3,2,3,4,3,6},
{6,4,5,3,2,2,3,3,6},
{6,6,4,2,2,3,2,5},
{5,5,3,2,2,2,4},
{4,4,3,3,1,3},
{4,4,2,1,3},
{3,3,1,2},
{2,2,1},
{1,1},
};
static const uint8_t total_zeros_bits[16][16]= {
{1,3,2,3,2,3,2,3,2,3,2,3,2,3,2,1},
{7,6,5,4,3,5,4,3,2,3,2,3,2,1,0},
{5,7,6,5,4,3,4,3,2,3,2,1,1,0},
{3,7,5,4,6,5,4,3,3,2,2,1,0},
{5,4,3,7,6,5,4,3,2,1,1,0},
{1,1,7,6,5,4,3,2,1,1,0},
{1,1,5,4,3,3,2,1,1,0},
{1,1,1,3,3,2,2,1,0},
{1,0,1,3,2,1,1,1},
{1,0,1,3,2,1,1},
{0,1,1,2,1,3},
{0,1,1,1,1},
{0,1,1,1},
{0,1,1},
{0,1},
};
static const uint8_t chroma_dc_total_zeros_len[3][4]= {
{ 1, 2, 3, 3,},
{ 1, 2, 2, 0,},
{ 1, 1, 0, 0,},
};
static const uint8_t chroma_dc_total_zeros_bits[3][4]= {
{ 1, 1, 1, 0,},
{ 1, 1, 0, 0,},
{ 1, 0, 0, 0,},
};
static const uint8_t chroma422_dc_total_zeros_len[7][8]= {
{ 1, 3, 3, 4, 4, 4, 5, 5 },
{ 3, 2, 3, 3, 3, 3, 3 },
{ 3, 3, 2, 2, 3, 3 },
{ 3, 2, 2, 2, 3 },
{ 2, 2, 2, 2 },
{ 2, 2, 1 },
{ 1, 1 },
};
static const uint8_t chroma422_dc_total_zeros_bits[7][8]= {
{ 1, 2, 3, 2, 3, 1, 1, 0 },
{ 0, 1, 1, 4, 5, 6, 7 },
{ 0, 1, 1, 2, 6, 7 },
{ 6, 0, 1, 2, 7 },
{ 0, 1, 2, 3 },
{ 0, 1, 1 },
{ 0, 1 },
};
static const uint8_t run_len[7][16]={
{1,1},
{1,2,2},
{2,2,2,2},
{2,2,2,3,3},
{2,2,3,3,3,3},
{2,3,3,3,3,3,3},
{3,3,3,3,3,3,3,4,5,6,7,8,9,10,11},
};
static const uint8_t run_bits[7][16]={
{1,0},
{1,1,0},
{3,2,1,0},
{3,2,1,1,0},
{3,2,3,2,1,0},
{3,0,1,3,2,5,4},
{7,6,5,4,3,2,1,1,1,1,1,1,1,1,1},
};
#define LEVEL_TAB_BITS 8
static int8_t cavlc_level_tab[7][1<<LEVEL_TAB_BITS][2];
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
#define CHROMA422_DC_COEFF_TOKEN_VLC_BITS 13
#define COEFF_TOKEN_VLC_BITS 8
#define TOTAL_ZEROS_VLC_BITS 9
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
#define CHROMA422_DC_TOTAL_ZEROS_VLC_BITS 5
#define RUN_VLC_BITS 3
#define RUN7_VLC_BITS 6
/// 17 pointers to only four different VLCs
static const VLCElem *coeff_token_vlc[17];
static VLCElem chroma_dc_coeff_token_vlc_table[256];
static VLCElem chroma422_dc_coeff_token_vlc_table[1 << CHROMA422_DC_COEFF_TOKEN_VLC_BITS];
static const VLCElem *total_zeros_vlc[15+1];
static const VLCElem *chroma_dc_total_zeros_vlc[3+1];
static const VLCElem *chroma422_dc_total_zeros_vlc[7+1];
static const VLCElem *run_vlc[6+1];
// The other pointers to VLCElem point into this array.
static VLCElem run7_vlc_table[96 + (6 << RUN_VLC_BITS)
+ (15 << TOTAL_ZEROS_VLC_BITS)
+ (3 << CHROMA_DC_TOTAL_ZEROS_VLC_BITS)
+ (7 << CHROMA422_DC_TOTAL_ZEROS_VLC_BITS)
+ (520 + 332 + 280 + 256) /* coeff token */];
/**
* Get the predicted number of non-zero coefficients.
* @param n block index
*/
static inline int pred_non_zero_count(const H264Context *h, const H264SliceContext *sl, int n)
{
const int index8= scan8[n];
const int left = sl->non_zero_count_cache[index8 - 1];
const int top = sl->non_zero_count_cache[index8 - 8];
int i= left + top;
if(i<64) i= (i+1)>>1;
ff_tlog(h->avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
return i&31;
}
static av_cold void init_cavlc_level_tab(void){
int suffix_length;
unsigned int i;
for(suffix_length=0; suffix_length<7; suffix_length++){
for(i=0; i<(1<<LEVEL_TAB_BITS); i++){
int prefix= LEVEL_TAB_BITS - av_log2(2*i);
if(prefix + 1 + suffix_length <= LEVEL_TAB_BITS){
int level_code = (prefix << suffix_length) +
(i >> (av_log2(i) - suffix_length)) - (1 << suffix_length);
int mask = -(level_code&1);
level_code = (((2 + level_code) >> 1) ^ mask) - mask;
cavlc_level_tab[suffix_length][i][0]= level_code;
cavlc_level_tab[suffix_length][i][1]= prefix + 1 + suffix_length;
}else if(prefix + 1 <= LEVEL_TAB_BITS){
cavlc_level_tab[suffix_length][i][0]= prefix+100;
cavlc_level_tab[suffix_length][i][1]= prefix + 1;
}else{
cavlc_level_tab[suffix_length][i][0]= LEVEL_TAB_BITS+100;
cavlc_level_tab[suffix_length][i][1]= LEVEL_TAB_BITS;
}
}
}
}
av_cold void ff_h264_decode_init_vlc(void)
{
const VLCElem *coeff_token_vlc_original[4];
VLCInitState state = VLC_INIT_STATE(run7_vlc_table);
VLC_INIT_STATIC_TABLE(chroma_dc_coeff_token_vlc_table,
CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4 * 5,
&chroma_dc_coeff_token_len [0], 1, 1,
&chroma_dc_coeff_token_bits[0], 1, 1, 0);
VLC_INIT_STATIC_TABLE(chroma422_dc_coeff_token_vlc_table,
CHROMA422_DC_COEFF_TOKEN_VLC_BITS, 4 * 9,
&chroma422_dc_coeff_token_len [0], 1, 1,
&chroma422_dc_coeff_token_bits[0], 1, 1, 0);
ff_vlc_init_tables(&state, RUN7_VLC_BITS, 16,
&run_len [6][0], 1, 1,
&run_bits[6][0], 1, 1, 0);
for (int i = 0; i < 6; i++) {
run_vlc[i + 1] = ff_vlc_init_tables(&state, RUN_VLC_BITS, 7,
&run_len [i][0], 1, 1,
&run_bits[i][0], 1, 1, 0);
}
for (int i = 0; i < 4; i++) {
coeff_token_vlc_original[i] =
ff_vlc_init_tables(&state, COEFF_TOKEN_VLC_BITS, 4*17,
&coeff_token_len [i][0], 1, 1,
&coeff_token_bits[i][0], 1, 1, 0);
}
for (int i = 0; i < FF_ARRAY_ELEMS(coeff_token_vlc); i++) {
static const uint8_t coeff_token_table_index[17] = {
0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3
};
coeff_token_vlc[i] = coeff_token_vlc_original[coeff_token_table_index[i]];
}
for (int i = 0; i < 3; i++) {
chroma_dc_total_zeros_vlc[i + 1] =
ff_vlc_init_tables(&state, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
&chroma_dc_total_zeros_len [i][0], 1, 1,
&chroma_dc_total_zeros_bits[i][0], 1, 1, 0);
}
for (int i = 0; i < 7; i++) {
chroma422_dc_total_zeros_vlc[i + 1] =
ff_vlc_init_tables(&state, CHROMA422_DC_TOTAL_ZEROS_VLC_BITS, 8,
&chroma422_dc_total_zeros_len [i][0], 1, 1,
&chroma422_dc_total_zeros_bits[i][0], 1, 1, 0);
}
for (int i = 0; i < 15; i++) {
total_zeros_vlc[i + 1] =
ff_vlc_init_tables(&state, TOTAL_ZEROS_VLC_BITS, 16,
&total_zeros_len [i][0], 1, 1,
&total_zeros_bits[i][0], 1, 1, 0);
}
/*
* This is a one time safety check to make sure that
* the vlc table sizes were initialized correctly.
*/
av_assert1(state.size == 0);
init_cavlc_level_tab();
}
static inline int get_level_prefix(GetBitContext *gb){
unsigned int buf;
int log;
OPEN_READER(re, gb);
UPDATE_CACHE(re, gb);
buf=GET_CACHE(re, gb);
log= 32 - av_log2(buf);
LAST_SKIP_BITS(re, gb, log);
CLOSE_READER(re, gb);
return log-1;
}
/**
* Decode a residual block.
* @param n block index
* @param scantable scantable
* @param max_coeff number of coefficients in the block
* @return <0 if an error occurred
*/
static int decode_residual(const H264Context *h, H264SliceContext *sl,
GetBitContext *gb, int16_t *block, int n,
const uint8_t *scantable, const uint32_t *qmul,
int max_coeff)
{
int level[16];
int zeros_left, coeff_token, total_coeff, i, trailing_ones, run_before;
//FIXME put trailing_onex into the context
if(max_coeff <= 8){
if (max_coeff == 4)
coeff_token = get_vlc2(gb, chroma_dc_coeff_token_vlc_table,
CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
else
coeff_token = get_vlc2(gb, chroma422_dc_coeff_token_vlc_table,
CHROMA422_DC_COEFF_TOKEN_VLC_BITS, 1);
}else{
total_coeff = pred_non_zero_count(h, sl, n >= LUMA_DC_BLOCK_INDEX ?
(n - LUMA_DC_BLOCK_INDEX) * 16 : n);
coeff_token = get_vlc2(gb, coeff_token_vlc[total_coeff],
COEFF_TOKEN_VLC_BITS, 2);
}
total_coeff = coeff_token >> 2;
sl->non_zero_count_cache[scan8[n]] = total_coeff;
//FIXME set last_non_zero?
if(total_coeff==0)
return 0;
if(total_coeff > (unsigned)max_coeff) {
av_log(h->avctx, AV_LOG_ERROR, "corrupted macroblock %d %d (total_coeff=%d)\n", sl->mb_x, sl->mb_y, total_coeff);
return -1;
}
trailing_ones= coeff_token&3;
ff_tlog(h->avctx, "trailing:%d, total:%d\n", trailing_ones, total_coeff);
av_assert2(total_coeff<=16);
i = show_bits(gb, 3);
skip_bits(gb, trailing_ones);
level[0] = 1-((i&4)>>1);
level[1] = 1-((i&2) );
level[2] = 1-((i&1)<<1);
if(trailing_ones<total_coeff) {
int mask, prefix;
int suffix_length = total_coeff > 10 & trailing_ones < 3;
int bitsi= show_bits(gb, LEVEL_TAB_BITS);
int level_code= cavlc_level_tab[suffix_length][bitsi][0];
skip_bits(gb, cavlc_level_tab[suffix_length][bitsi][1]);
if(level_code >= 100){
prefix= level_code - 100;
if(prefix == LEVEL_TAB_BITS)
prefix += get_level_prefix(gb);
//first coefficient has suffix_length equal to 0 or 1
if(prefix<14){ //FIXME try to build a large unified VLC table for all this
if(suffix_length)
level_code= (prefix<<1) + get_bits1(gb); //part
else
level_code= prefix; //part
}else if(prefix==14){
if(suffix_length)
level_code= (prefix<<1) + get_bits1(gb); //part
else
level_code= prefix + get_bits(gb, 4); //part
}else{
level_code= 30;
if(prefix>=16){
if(prefix > 25+3){
av_log(h->avctx, AV_LOG_ERROR, "Invalid level prefix\n");
return -1;
}
level_code += (1<<(prefix-3))-4096;
}
level_code += get_bits(gb, prefix-3); //part
}
if(trailing_ones < 3) level_code += 2;
suffix_length = 2;
mask= -(level_code&1);
level[trailing_ones]= (((2+level_code)>>1) ^ mask) - mask;
}else{
level_code += ((level_code>>31)|1) & -(trailing_ones < 3);
suffix_length = 1 + (level_code + 3U > 6U);
level[trailing_ones]= level_code;
}
//remaining coefficients have suffix_length > 0
for(i=trailing_ones+1;i<total_coeff;i++) {
static const unsigned int suffix_limit[7] = {0,3,6,12,24,48,INT_MAX };
int bitsi= show_bits(gb, LEVEL_TAB_BITS);
level_code= cavlc_level_tab[suffix_length][bitsi][0];
skip_bits(gb, cavlc_level_tab[suffix_length][bitsi][1]);
if(level_code >= 100){
prefix= level_code - 100;
if(prefix == LEVEL_TAB_BITS){
prefix += get_level_prefix(gb);
}
if(prefix<15){
level_code = (prefix<<suffix_length) + get_bits(gb, suffix_length);
}else{
level_code = 15<<suffix_length;
if (prefix>=16) {
if(prefix > 25+3){
av_log(h->avctx, AV_LOG_ERROR, "Invalid level prefix\n");
return AVERROR_INVALIDDATA;
}
level_code += (1<<(prefix-3))-4096;
}
level_code += get_bits(gb, prefix-3);
}
mask= -(level_code&1);
level_code= (((2+level_code)>>1) ^ mask) - mask;
}
level[i]= level_code;
suffix_length+= suffix_limit[suffix_length] + level_code > 2U*suffix_limit[suffix_length];
}
}
if(total_coeff == max_coeff)
zeros_left=0;
else{
if (max_coeff <= 8) {
if (max_coeff == 4)
zeros_left = get_vlc2(gb, chroma_dc_total_zeros_vlc[total_coeff],
CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
else
zeros_left = get_vlc2(gb, chroma422_dc_total_zeros_vlc[total_coeff],
CHROMA422_DC_TOTAL_ZEROS_VLC_BITS, 1);
} else {
zeros_left = get_vlc2(gb, total_zeros_vlc[total_coeff],
TOTAL_ZEROS_VLC_BITS, 1);
}
}
#define STORE_BLOCK(type) \
scantable += zeros_left + total_coeff - 1; \
if(n >= LUMA_DC_BLOCK_INDEX){ \
((type*)block)[*scantable] = level[0]; \
for(i=1;i<total_coeff && zeros_left > 0;i++) { \
if(zeros_left < 7) \
run_before = get_vlc2(gb, run_vlc[zeros_left], RUN_VLC_BITS, 1); \
else \
run_before = get_vlc2(gb, run7_vlc_table, RUN7_VLC_BITS, 2); \
zeros_left -= run_before; \
scantable -= 1 + run_before; \
((type*)block)[*scantable]= level[i]; \
} \
for(;i<total_coeff;i++) { \
scantable--; \
((type*)block)[*scantable]= level[i]; \
} \
}else{ \
((type*)block)[*scantable] = ((int)(level[0] * qmul[*scantable] + 32))>>6; \
for(i=1;i<total_coeff && zeros_left > 0;i++) { \
if(zeros_left < 7) \
run_before = get_vlc2(gb, run_vlc[zeros_left], RUN_VLC_BITS, 1); \
else \
run_before = get_vlc2(gb, run7_vlc_table, RUN7_VLC_BITS, 2); \
zeros_left -= run_before; \
scantable -= 1 + run_before; \
((type*)block)[*scantable]= ((int)(level[i] * qmul[*scantable] + 32))>>6; \
} \
for(;i<total_coeff;i++) { \
scantable--; \
((type*)block)[*scantable]= ((int)(level[i] * qmul[*scantable] + 32))>>6; \
} \
}
if (h->pixel_shift) {
STORE_BLOCK(int32_t)
} else {
STORE_BLOCK(int16_t)
}
if(zeros_left<0){
av_log(h->avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", sl->mb_x, sl->mb_y);
return -1;
}
return 0;
}
static av_always_inline
int decode_luma_residual(const H264Context *h, H264SliceContext *sl,
GetBitContext *gb, const uint8_t *scan,
const uint8_t *scan8x8, int pixel_shift,
int mb_type, int cbp, int p)
{
int i4x4, i8x8;
int qscale = p == 0 ? sl->qscale : sl->chroma_qp[p - 1];
if(IS_INTRA16x16(mb_type)){
AV_ZERO128(sl->mb_luma_dc[p]+0);
AV_ZERO128(sl->mb_luma_dc[p]+8);
AV_ZERO128(sl->mb_luma_dc[p]+16);
AV_ZERO128(sl->mb_luma_dc[p]+24);
if (decode_residual(h, sl, gb, sl->mb_luma_dc[p], LUMA_DC_BLOCK_INDEX + p, scan, NULL, 16) < 0) {
return -1; //FIXME continue if partitioned and other return -1 too
}
av_assert2((cbp&15) == 0 || (cbp&15) == 15);
if(cbp&15){
for(i8x8=0; i8x8<4; i8x8++){
for(i4x4=0; i4x4<4; i4x4++){
const int index= i4x4 + 4*i8x8 + p*16;
if( decode_residual(h, sl, gb, sl->mb + (16*index << pixel_shift),
index, scan + 1, h->ps.pps->dequant4_coeff[p][qscale], 15) < 0 ){
return -1;
}
}
}
return 0xf;
}else{
fill_rectangle(&sl->non_zero_count_cache[scan8[p*16]], 4, 4, 8, 0, 1);
return 0;
}
}else{
int cqm = (IS_INTRA( mb_type ) ? 0:3)+p;
/* For CAVLC 4:4:4, we need to keep track of the luma 8x8 CBP for deblocking nnz purposes. */
int new_cbp = 0;
for(i8x8=0; i8x8<4; i8x8++){
if(cbp & (1<<i8x8)){
if(IS_8x8DCT(mb_type)){
int16_t *buf = &sl->mb[64*i8x8+256*p << pixel_shift];
uint8_t *nnz;
for(i4x4=0; i4x4<4; i4x4++){
const int index= i4x4 + 4*i8x8 + p*16;
if( decode_residual(h, sl, gb, buf, index, scan8x8+16*i4x4,
h->ps.pps->dequant8_coeff[cqm][qscale], 16) < 0 )
return -1;
}
nnz = &sl->non_zero_count_cache[scan8[4 * i8x8 + p * 16]];
nnz[0] += nnz[1] + nnz[8] + nnz[9];
new_cbp |= !!nnz[0] << i8x8;
}else{
for(i4x4=0; i4x4<4; i4x4++){
const int index= i4x4 + 4*i8x8 + p*16;
if( decode_residual(h, sl, gb, sl->mb + (16*index << pixel_shift), index,
scan, h->ps.pps->dequant4_coeff[cqm][qscale], 16) < 0 ){
return -1;
}
new_cbp |= sl->non_zero_count_cache[scan8[index]] << i8x8;
}
}
}else{
uint8_t * const nnz = &sl->non_zero_count_cache[scan8[4 * i8x8 + p * 16]];
nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
}
}
return new_cbp;
}
}
int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl)
{
int mb_xy;
int partition_count;
unsigned int mb_type, cbp;
int dct8x8_allowed = h->ps.pps->transform_8x8_mode;
const int decode_chroma = h->ps.sps->chroma_format_idc == 1 || h->ps.sps->chroma_format_idc == 2;
const int pixel_shift = h->pixel_shift;
mb_xy = sl->mb_xy = sl->mb_x + sl->mb_y*h->mb_stride;
ff_tlog(h->avctx, "pic:%d mb:%d/%d\n", h->poc.frame_num, sl->mb_x, sl->mb_y);
cbp = 0; /* avoid warning. FIXME: find a solution without slowing
down the code */
if (sl->slice_type_nos != AV_PICTURE_TYPE_I) {
if (sl->mb_skip_run == -1) {
unsigned mb_skip_run = get_ue_golomb_long(&sl->gb);
if (mb_skip_run > h->mb_num) {
av_log(h->avctx, AV_LOG_ERROR, "mb_skip_run %d is invalid\n", mb_skip_run);
return AVERROR_INVALIDDATA;
}
sl->mb_skip_run = mb_skip_run;
}
if (sl->mb_skip_run--) {
if (FRAME_MBAFF(h) && (sl->mb_y & 1) == 0) {
if (sl->mb_skip_run == 0)
sl->mb_mbaff = sl->mb_field_decoding_flag = get_bits1(&sl->gb);
}
decode_mb_skip(h, sl);
return 0;
}
}
if (FRAME_MBAFF(h)) {
if ((sl->mb_y & 1) == 0)
sl->mb_mbaff = sl->mb_field_decoding_flag = get_bits1(&sl->gb);
}
sl->prev_mb_skipped = 0;
mb_type= get_ue_golomb(&sl->gb);
if (sl->slice_type_nos == AV_PICTURE_TYPE_B) {
if(mb_type < 23){
partition_count = ff_h264_b_mb_type_info[mb_type].partition_count;
mb_type = ff_h264_b_mb_type_info[mb_type].type;
}else{
mb_type -= 23;
goto decode_intra_mb;
}
} else if (sl->slice_type_nos == AV_PICTURE_TYPE_P) {
if(mb_type < 5){
partition_count = ff_h264_p_mb_type_info[mb_type].partition_count;
mb_type = ff_h264_p_mb_type_info[mb_type].type;
}else{
mb_type -= 5;
goto decode_intra_mb;
}
}else{
av_assert2(sl->slice_type_nos == AV_PICTURE_TYPE_I);
if (sl->slice_type == AV_PICTURE_TYPE_SI && mb_type)
mb_type--;
decode_intra_mb:
if(mb_type > 25){
av_log(h->avctx, AV_LOG_ERROR, "mb_type %d in %c slice too large at %d %d\n", mb_type, av_get_picture_type_char(sl->slice_type), sl->mb_x, sl->mb_y);
return -1;
}
partition_count=0;
cbp = ff_h264_i_mb_type_info[mb_type].cbp;
sl->intra16x16_pred_mode = ff_h264_i_mb_type_info[mb_type].pred_mode;
mb_type = ff_h264_i_mb_type_info[mb_type].type;
}
if (MB_FIELD(sl))
mb_type |= MB_TYPE_INTERLACED;
h->slice_table[mb_xy] = sl->slice_num;
if(IS_INTRA_PCM(mb_type)){
const int mb_size = ff_h264_mb_sizes[h->ps.sps->chroma_format_idc] *
h->ps.sps->bit_depth_luma;
// We assume these blocks are very rare so we do not optimize it.
sl->intra_pcm_ptr = align_get_bits(&sl->gb);
if (get_bits_left(&sl->gb) < mb_size) {
av_log(h->avctx, AV_LOG_ERROR, "Not enough data for an intra PCM block.\n");
return AVERROR_INVALIDDATA;
}
skip_bits_long(&sl->gb, mb_size);
// In deblocking, the quantizer is 0
h->cur_pic.qscale_table[mb_xy] = 0;
// All coeffs are present
memset(h->non_zero_count[mb_xy], 16, 48);
h->cur_pic.mb_type[mb_xy] = mb_type;
return 0;
}
fill_decode_neighbors(h, sl, mb_type);
fill_decode_caches(h, sl, mb_type);
//mb_pred
if(IS_INTRA(mb_type)){
int pred_mode;
// init_top_left_availability(h);
if(IS_INTRA4x4(mb_type)){
int i;
int di = 1;
if(dct8x8_allowed && get_bits1(&sl->gb)){
mb_type |= MB_TYPE_8x8DCT;
di = 4;
}
// fill_intra4x4_pred_table(h);
for(i=0; i<16; i+=di){
int mode = pred_intra_mode(h, sl, i);
if(!get_bits1(&sl->gb)){
const int rem_mode= get_bits(&sl->gb, 3);
mode = rem_mode + (rem_mode >= mode);
}
if(di==4)
fill_rectangle(&sl->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1);
else
sl->intra4x4_pred_mode_cache[scan8[i]] = mode;
}
write_back_intra_pred_mode(h, sl);
if (ff_h264_check_intra4x4_pred_mode(sl->intra4x4_pred_mode_cache, h->avctx,
sl->top_samples_available, sl->left_samples_available) < 0)
return -1;
}else{
sl->intra16x16_pred_mode = ff_h264_check_intra_pred_mode(h->avctx, sl->top_samples_available,
sl->left_samples_available, sl->intra16x16_pred_mode, 0);
if (sl->intra16x16_pred_mode < 0)
return -1;
}
if(decode_chroma){
pred_mode= ff_h264_check_intra_pred_mode(h->avctx, sl->top_samples_available,
sl->left_samples_available, get_ue_golomb_31(&sl->gb), 1);
if(pred_mode < 0)
return -1;
sl->chroma_pred_mode = pred_mode;
} else {
sl->chroma_pred_mode = DC_128_PRED8x8;
}
}else if(partition_count==4){
int i, j, sub_partition_count[4], list, ref[2][4];
if (sl->slice_type_nos == AV_PICTURE_TYPE_B) {
for(i=0; i<4; i++){
sl->sub_mb_type[i]= get_ue_golomb_31(&sl->gb);
if(sl->sub_mb_type[i] >=13){
av_log(h->avctx, AV_LOG_ERROR, "B sub_mb_type %u out of range at %d %d\n", sl->sub_mb_type[i], sl->mb_x, sl->mb_y);
return -1;
}
sub_partition_count[i] = ff_h264_b_sub_mb_type_info[sl->sub_mb_type[i]].partition_count;
sl->sub_mb_type[i] = ff_h264_b_sub_mb_type_info[sl->sub_mb_type[i]].type;
}
if( IS_DIRECT(sl->sub_mb_type[0]|sl->sub_mb_type[1]|sl->sub_mb_type[2]|sl->sub_mb_type[3])) {
ff_h264_pred_direct_motion(h, sl, &mb_type);
sl->ref_cache[0][scan8[4]] =
sl->ref_cache[1][scan8[4]] =
sl->ref_cache[0][scan8[12]] =
sl->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
}
}else{
av_assert2(sl->slice_type_nos == AV_PICTURE_TYPE_P); //FIXME SP correct ?
for(i=0; i<4; i++){
sl->sub_mb_type[i]= get_ue_golomb_31(&sl->gb);
if(sl->sub_mb_type[i] >=4){
av_log(h->avctx, AV_LOG_ERROR, "P sub_mb_type %u out of range at %d %d\n", sl->sub_mb_type[i], sl->mb_x, sl->mb_y);
return -1;
}
sub_partition_count[i] = ff_h264_p_sub_mb_type_info[sl->sub_mb_type[i]].partition_count;
sl->sub_mb_type[i] = ff_h264_p_sub_mb_type_info[sl->sub_mb_type[i]].type;
}
}
for (list = 0; list < sl->list_count; list++) {
int ref_count = IS_REF0(mb_type) ? 1 : sl->ref_count[list] << MB_MBAFF(sl);
for(i=0; i<4; i++){
if(IS_DIRECT(sl->sub_mb_type[i])) continue;
if(IS_DIR(sl->sub_mb_type[i], 0, list)){
unsigned int tmp;
if(ref_count == 1){
tmp= 0;
}else if(ref_count == 2){
tmp= get_bits1(&sl->gb)^1;
}else{
tmp= get_ue_golomb_31(&sl->gb);
if(tmp>=ref_count){
av_log(h->avctx, AV_LOG_ERROR, "ref %u overflow\n", tmp);
return -1;
}
}
ref[list][i]= tmp;
}else{
//FIXME
ref[list][i] = -1;
}
}
}
if(dct8x8_allowed)
dct8x8_allowed = get_dct8x8_allowed(h, sl);
for (list = 0; list < sl->list_count; list++) {
for(i=0; i<4; i++){
if(IS_DIRECT(sl->sub_mb_type[i])) {
sl->ref_cache[list][ scan8[4*i] ] = sl->ref_cache[list][ scan8[4*i]+1 ];
continue;
}
sl->ref_cache[list][ scan8[4*i] ]=sl->ref_cache[list][ scan8[4*i]+1 ]=
sl->ref_cache[list][ scan8[4*i]+8 ]=sl->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
if(IS_DIR(sl->sub_mb_type[i], 0, list)){
const int sub_mb_type= sl->sub_mb_type[i];
const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
for(j=0; j<sub_partition_count[i]; j++){
int mx, my;
const int index= 4*i + block_width*j;
int16_t (* mv_cache)[2]= &sl->mv_cache[list][ scan8[index] ];
pred_motion(h, sl, index, block_width, list, sl->ref_cache[list][ scan8[index] ], &mx, &my);
mx += (unsigned)get_se_golomb(&sl->gb);
my += (unsigned)get_se_golomb(&sl->gb);
ff_tlog(h->avctx, "final mv:%d %d\n", mx, my);
if(IS_SUB_8X8(sub_mb_type)){
mv_cache[ 1 ][0]=
mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
mv_cache[ 1 ][1]=
mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
}else if(IS_SUB_8X4(sub_mb_type)){
mv_cache[ 1 ][0]= mx;
mv_cache[ 1 ][1]= my;
}else if(IS_SUB_4X8(sub_mb_type)){
mv_cache[ 8 ][0]= mx;
mv_cache[ 8 ][1]= my;
}
mv_cache[ 0 ][0]= mx;
mv_cache[ 0 ][1]= my;
}
}else{
uint32_t *p= (uint32_t *)&sl->mv_cache[list][ scan8[4*i] ][0];
p[0] = p[1]=
p[8] = p[9]= 0;
}
}
}
}else if(IS_DIRECT(mb_type)){
ff_h264_pred_direct_motion(h, sl, &mb_type);
dct8x8_allowed &= h->ps.sps->direct_8x8_inference_flag;
}else{
int list, mx, my, i;
//FIXME we should set ref_idx_l? to 0 if we use that later ...
if(IS_16X16(mb_type)){
for (list = 0; list < sl->list_count; list++) {
unsigned int val;
if(IS_DIR(mb_type, 0, list)){
unsigned rc = sl->ref_count[list] << MB_MBAFF(sl);
if (rc == 1) {
val= 0;
} else if (rc == 2) {
val= get_bits1(&sl->gb)^1;
}else{
val= get_ue_golomb_31(&sl->gb);
if (val >= rc) {
av_log(h->avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
return -1;
}
}
fill_rectangle(&sl->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
}
}
for (list = 0; list < sl->list_count; list++) {
if(IS_DIR(mb_type, 0, list)){
pred_motion(h, sl, 0, 4, list, sl->ref_cache[list][ scan8[0] ], &mx, &my);
mx += (unsigned)get_se_golomb(&sl->gb);
my += (unsigned)get_se_golomb(&sl->gb);
ff_tlog(h->avctx, "final mv:%d %d\n", mx, my);
fill_rectangle(sl->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
}
}
}
else if(IS_16X8(mb_type)){
for (list = 0; list < sl->list_count; list++) {
for(i=0; i<2; i++){
unsigned int val;
if(IS_DIR(mb_type, i, list)){
unsigned rc = sl->ref_count[list] << MB_MBAFF(sl);
if (rc == 1) {
val= 0;
} else if (rc == 2) {
val= get_bits1(&sl->gb)^1;
}else{
val= get_ue_golomb_31(&sl->gb);
if (val >= rc) {
av_log(h->avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
return -1;
}
}
}else
val= LIST_NOT_USED&0xFF;
fill_rectangle(&sl->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
}
}
for (list = 0; list < sl->list_count; list++) {
for(i=0; i<2; i++){
unsigned int val;
if(IS_DIR(mb_type, i, list)){
pred_16x8_motion(h, sl, 8*i, list, sl->ref_cache[list][scan8[0] + 16*i], &mx, &my);
mx += (unsigned)get_se_golomb(&sl->gb);
my += (unsigned)get_se_golomb(&sl->gb);
ff_tlog(h->avctx, "final mv:%d %d\n", mx, my);
val= pack16to32(mx,my);
}else
val=0;
fill_rectangle(sl->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 4);
}
}
}else{
av_assert2(IS_8X16(mb_type));
for (list = 0; list < sl->list_count; list++) {
for(i=0; i<2; i++){
unsigned int val;
if(IS_DIR(mb_type, i, list)){ //FIXME optimize
unsigned rc = sl->ref_count[list] << MB_MBAFF(sl);
if (rc == 1) {
val= 0;
} else if (rc == 2) {
val= get_bits1(&sl->gb)^1;
}else{
val= get_ue_golomb_31(&sl->gb);
if (val >= rc) {
av_log(h->avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
return -1;
}
}
}else
val= LIST_NOT_USED&0xFF;
fill_rectangle(&sl->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
}
}
for (list = 0; list < sl->list_count; list++) {
for(i=0; i<2; i++){
unsigned int val;
if(IS_DIR(mb_type, i, list)){
pred_8x16_motion(h, sl, i*4, list, sl->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
mx += (unsigned)get_se_golomb(&sl->gb);
my += (unsigned)get_se_golomb(&sl->gb);
ff_tlog(h->avctx, "final mv:%d %d\n", mx, my);
val= pack16to32(mx,my);
}else
val=0;
fill_rectangle(sl->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 4);
}
}
}
}
if(IS_INTER(mb_type))
write_back_motion(h, sl, mb_type);
if(!IS_INTRA16x16(mb_type)){
cbp= get_ue_golomb(&sl->gb);
if(decode_chroma){
if(cbp > 47){
av_log(h->avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, sl->mb_x, sl->mb_y);
return -1;
}
if (IS_INTRA4x4(mb_type))
cbp = ff_h264_golomb_to_intra4x4_cbp[cbp];
else
cbp = ff_h264_golomb_to_inter_cbp[cbp];
}else{
if(cbp > 15){
av_log(h->avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, sl->mb_x, sl->mb_y);
return -1;
}
if(IS_INTRA4x4(mb_type)) cbp= golomb_to_intra4x4_cbp_gray[cbp];
else cbp= golomb_to_inter_cbp_gray[cbp];
}
} else {
if (!decode_chroma && cbp>15) {
av_log(h->avctx, AV_LOG_ERROR, "gray chroma\n");
return AVERROR_INVALIDDATA;
}
}
if(dct8x8_allowed && (cbp&15) && !IS_INTRA(mb_type)){
mb_type |= MB_TYPE_8x8DCT*get_bits1(&sl->gb);
}
sl->cbp=
h->cbp_table[mb_xy]= cbp;
h->cur_pic.mb_type[mb_xy] = mb_type;
if(cbp || IS_INTRA16x16(mb_type)){
int i4x4, i8x8, chroma_idx;
int dquant;
int ret;
GetBitContext *gb = &sl->gb;
const uint8_t *scan, *scan8x8;
const int max_qp = 51 + 6 * (h->ps.sps->bit_depth_luma - 8);
dquant= get_se_golomb(&sl->gb);
sl->qscale += (unsigned)dquant;
if (((unsigned)sl->qscale) > max_qp){
if (sl->qscale < 0) sl->qscale += max_qp + 1;
else sl->qscale -= max_qp+1;
if (((unsigned)sl->qscale) > max_qp){
av_log(h->avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, sl->mb_x, sl->mb_y);
sl->qscale = max_qp;
return -1;
}
}
sl->chroma_qp[0] = get_chroma_qp(h->ps.pps, 0, sl->qscale);
sl->chroma_qp[1] = get_chroma_qp(h->ps.pps, 1, sl->qscale);
if(IS_INTERLACED(mb_type)){
scan8x8 = sl->qscale ? h->field_scan8x8_cavlc : h->field_scan8x8_cavlc_q0;
scan = sl->qscale ? h->field_scan : h->field_scan_q0;
}else{
scan8x8 = sl->qscale ? h->zigzag_scan8x8_cavlc : h->zigzag_scan8x8_cavlc_q0;
scan = sl->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
}
if ((ret = decode_luma_residual(h, sl, gb, scan, scan8x8, pixel_shift, mb_type, cbp, 0)) < 0 ) {
return -1;
}
h->cbp_table[mb_xy] |= ret << 12;
if (CHROMA444(h)) {
if (decode_luma_residual(h, sl, gb, scan, scan8x8, pixel_shift, mb_type, cbp, 1) < 0 ) {
return -1;
}
if (decode_luma_residual(h, sl, gb, scan, scan8x8, pixel_shift, mb_type, cbp, 2) < 0 ) {
return -1;
}
} else {
const int num_c8x8 = h->ps.sps->chroma_format_idc;
if(cbp&0x30){
for(chroma_idx=0; chroma_idx<2; chroma_idx++)
if (decode_residual(h, sl, gb, sl->mb + ((256 + 16*16*chroma_idx) << pixel_shift),
CHROMA_DC_BLOCK_INDEX + chroma_idx,
CHROMA422(h) ? ff_h264_chroma422_dc_scan : ff_h264_chroma_dc_scan,
NULL, 4 * num_c8x8) < 0) {
return -1;
}
}
if(cbp&0x20){
for(chroma_idx=0; chroma_idx<2; chroma_idx++){
const uint32_t *qmul = h->ps.pps->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][sl->chroma_qp[chroma_idx]];
int16_t *mb = sl->mb + (16*(16 + 16*chroma_idx) << pixel_shift);
for (i8x8 = 0; i8x8<num_c8x8; i8x8++) {
for (i4x4 = 0; i4x4 < 4; i4x4++) {
const int index = 16 + 16*chroma_idx + 8*i8x8 + i4x4;
if (decode_residual(h, sl, gb, mb, index, scan + 1, qmul, 15) < 0)
return -1;
mb += 16 << pixel_shift;
}
}
}
}else{
fill_rectangle(&sl->non_zero_count_cache[scan8[16]], 4, 4, 8, 0, 1);
fill_rectangle(&sl->non_zero_count_cache[scan8[32]], 4, 4, 8, 0, 1);
}
}
}else{
fill_rectangle(&sl->non_zero_count_cache[scan8[ 0]], 4, 4, 8, 0, 1);
fill_rectangle(&sl->non_zero_count_cache[scan8[16]], 4, 4, 8, 0, 1);
fill_rectangle(&sl->non_zero_count_cache[scan8[32]], 4, 4, 8, 0, 1);
}
h->cur_pic.qscale_table[mb_xy] = sl->qscale;
write_back_non_zero_count(h, sl);
return 0;
}