mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-03 05:10:03 +02:00
16bb8247b4
These arrays are used by the Musepack decoders, the MPEG audio decoders as well as qdm2 and up until now, these arrays might be initialized more than once, leading to potential data races as well as unnecessary initializations. Therefore this commit ensures that each array will only be initialized once. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
372 lines
11 KiB
C
372 lines
11 KiB
C
/*
|
|
* Copyright (c) 2001, 2002 Fabrice Bellard
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#include "libavutil/attributes.h"
|
|
#include "libavutil/mem.h"
|
|
#include "libavutil/thread.h"
|
|
#include "dct32.h"
|
|
#include "mathops.h"
|
|
#include "mpegaudiodsp.h"
|
|
#include "mpegaudio.h"
|
|
|
|
#if USE_FLOATS
|
|
#define RENAME(n) n##_float
|
|
|
|
static inline float round_sample(float *sum)
|
|
{
|
|
float sum1=*sum;
|
|
*sum = 0;
|
|
return sum1;
|
|
}
|
|
|
|
#define MACS(rt, ra, rb) rt+=(ra)*(rb)
|
|
#define MULS(ra, rb) ((ra)*(rb))
|
|
#define MULH3(x, y, s) ((s)*(y)*(x))
|
|
#define MLSS(rt, ra, rb) rt-=(ra)*(rb)
|
|
#define MULLx(x, y, s) ((y)*(x))
|
|
#define FIXHR(x) ((float)(x))
|
|
#define FIXR(x) ((float)(x))
|
|
#define SHR(a,b) ((a)*(1.0f/(1<<(b))))
|
|
|
|
#else
|
|
|
|
#define RENAME(n) n##_fixed
|
|
#define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
|
|
|
|
static inline int round_sample(int64_t *sum)
|
|
{
|
|
int sum1;
|
|
sum1 = (int)((*sum) >> OUT_SHIFT);
|
|
*sum &= (1<<OUT_SHIFT)-1;
|
|
return av_clip_int16(sum1);
|
|
}
|
|
|
|
# define MULS(ra, rb) MUL64(ra, rb)
|
|
# define MACS(rt, ra, rb) MAC64(rt, ra, rb)
|
|
# define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
|
|
# define MULH3(x, y, s) MULH((s)*(x), y)
|
|
# define MULLx(x, y, s) MULL((int)(x),(y),s)
|
|
# define SHR(a,b) (((int)(a))>>(b))
|
|
# define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
|
|
# define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
|
|
#endif
|
|
|
|
/** Window for MDCT. Actually only the elements in [0,17] and
|
|
[MDCT_BUF_SIZE/2, MDCT_BUF_SIZE/2 + 17] are actually used. The rest
|
|
is just to preserve alignment for SIMD implementations.
|
|
*/
|
|
DECLARE_ALIGNED(16, INTFLOAT, RENAME(ff_mdct_win))[8][MDCT_BUF_SIZE];
|
|
|
|
DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256];
|
|
|
|
#define SUM8(op, sum, w, p) \
|
|
{ \
|
|
op(sum, (w)[0 * 64], (p)[0 * 64]); \
|
|
op(sum, (w)[1 * 64], (p)[1 * 64]); \
|
|
op(sum, (w)[2 * 64], (p)[2 * 64]); \
|
|
op(sum, (w)[3 * 64], (p)[3 * 64]); \
|
|
op(sum, (w)[4 * 64], (p)[4 * 64]); \
|
|
op(sum, (w)[5 * 64], (p)[5 * 64]); \
|
|
op(sum, (w)[6 * 64], (p)[6 * 64]); \
|
|
op(sum, (w)[7 * 64], (p)[7 * 64]); \
|
|
}
|
|
|
|
#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
|
|
{ \
|
|
INTFLOAT tmp;\
|
|
tmp = p[0 * 64];\
|
|
op1(sum1, (w1)[0 * 64], tmp);\
|
|
op2(sum2, (w2)[0 * 64], tmp);\
|
|
tmp = p[1 * 64];\
|
|
op1(sum1, (w1)[1 * 64], tmp);\
|
|
op2(sum2, (w2)[1 * 64], tmp);\
|
|
tmp = p[2 * 64];\
|
|
op1(sum1, (w1)[2 * 64], tmp);\
|
|
op2(sum2, (w2)[2 * 64], tmp);\
|
|
tmp = p[3 * 64];\
|
|
op1(sum1, (w1)[3 * 64], tmp);\
|
|
op2(sum2, (w2)[3 * 64], tmp);\
|
|
tmp = p[4 * 64];\
|
|
op1(sum1, (w1)[4 * 64], tmp);\
|
|
op2(sum2, (w2)[4 * 64], tmp);\
|
|
tmp = p[5 * 64];\
|
|
op1(sum1, (w1)[5 * 64], tmp);\
|
|
op2(sum2, (w2)[5 * 64], tmp);\
|
|
tmp = p[6 * 64];\
|
|
op1(sum1, (w1)[6 * 64], tmp);\
|
|
op2(sum2, (w2)[6 * 64], tmp);\
|
|
tmp = p[7 * 64];\
|
|
op1(sum1, (w1)[7 * 64], tmp);\
|
|
op2(sum2, (w2)[7 * 64], tmp);\
|
|
}
|
|
|
|
void RENAME(ff_mpadsp_apply_window)(MPA_INT *synth_buf, MPA_INT *window,
|
|
int *dither_state, OUT_INT *samples,
|
|
ptrdiff_t incr)
|
|
{
|
|
register const MPA_INT *w, *w2, *p;
|
|
int j;
|
|
OUT_INT *samples2;
|
|
#if USE_FLOATS
|
|
float sum, sum2;
|
|
#else
|
|
int64_t sum, sum2;
|
|
#endif
|
|
|
|
/* copy to avoid wrap */
|
|
memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf));
|
|
|
|
samples2 = samples + 31 * incr;
|
|
w = window;
|
|
w2 = window + 31;
|
|
|
|
sum = *dither_state;
|
|
p = synth_buf + 16;
|
|
SUM8(MACS, sum, w, p);
|
|
p = synth_buf + 48;
|
|
SUM8(MLSS, sum, w + 32, p);
|
|
*samples = round_sample(&sum);
|
|
samples += incr;
|
|
w++;
|
|
|
|
/* we calculate two samples at the same time to avoid one memory
|
|
access per two sample */
|
|
for(j=1;j<16;j++) {
|
|
sum2 = 0;
|
|
p = synth_buf + 16 + j;
|
|
SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
|
|
p = synth_buf + 48 - j;
|
|
SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
|
|
|
|
*samples = round_sample(&sum);
|
|
samples += incr;
|
|
sum += sum2;
|
|
*samples2 = round_sample(&sum);
|
|
samples2 -= incr;
|
|
w++;
|
|
w2--;
|
|
}
|
|
|
|
p = synth_buf + 32;
|
|
SUM8(MLSS, sum, w + 32, p);
|
|
*samples = round_sample(&sum);
|
|
*dither_state= sum;
|
|
}
|
|
|
|
/* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
|
|
32 samples. */
|
|
void RENAME(ff_mpa_synth_filter)(MPADSPContext *s, MPA_INT *synth_buf_ptr,
|
|
int *synth_buf_offset,
|
|
MPA_INT *window, int *dither_state,
|
|
OUT_INT *samples, ptrdiff_t incr,
|
|
MPA_INT *sb_samples)
|
|
{
|
|
MPA_INT *synth_buf;
|
|
int offset;
|
|
|
|
offset = *synth_buf_offset;
|
|
synth_buf = synth_buf_ptr + offset;
|
|
|
|
s->RENAME(dct32)(synth_buf, sb_samples);
|
|
s->RENAME(apply_window)(synth_buf, window, dither_state, samples, incr);
|
|
|
|
offset = (offset - 32) & 511;
|
|
*synth_buf_offset = offset;
|
|
}
|
|
|
|
static av_cold void mpa_synth_init(MPA_INT *window)
|
|
{
|
|
int i, j;
|
|
|
|
/* max = 18760, max sum over all 16 coefs : 44736 */
|
|
for(i=0;i<257;i++) {
|
|
INTFLOAT v;
|
|
v = ff_mpa_enwindow[i];
|
|
#if USE_FLOATS
|
|
v *= 1.0 / (1LL<<(16 + FRAC_BITS));
|
|
#endif
|
|
window[i] = v;
|
|
if ((i & 63) != 0)
|
|
v = -v;
|
|
if (i != 0)
|
|
window[512 - i] = v;
|
|
}
|
|
|
|
|
|
// Needed for avoiding shuffles in ASM implementations
|
|
for(i=0; i < 8; i++)
|
|
for(j=0; j < 16; j++)
|
|
window[512+16*i+j] = window[64*i+32-j];
|
|
|
|
for(i=0; i < 8; i++)
|
|
for(j=0; j < 16; j++)
|
|
window[512+128+16*i+j] = window[64*i+48-j];
|
|
}
|
|
|
|
static av_cold void mpa_synth_window_init(void)
|
|
{
|
|
mpa_synth_init(RENAME(ff_mpa_synth_window));
|
|
}
|
|
|
|
av_cold void RENAME(ff_mpa_synth_init)(void)
|
|
{
|
|
static AVOnce init_static_once = AV_ONCE_INIT;
|
|
ff_thread_once(&init_static_once, mpa_synth_window_init);
|
|
}
|
|
|
|
/* cos(pi*i/18) */
|
|
#define C1 FIXHR(0.98480775301220805936/2)
|
|
#define C2 FIXHR(0.93969262078590838405/2)
|
|
#define C3 FIXHR(0.86602540378443864676/2)
|
|
#define C4 FIXHR(0.76604444311897803520/2)
|
|
#define C5 FIXHR(0.64278760968653932632/2)
|
|
#define C6 FIXHR(0.5/2)
|
|
#define C7 FIXHR(0.34202014332566873304/2)
|
|
#define C8 FIXHR(0.17364817766693034885/2)
|
|
|
|
/* 0.5 / cos(pi*(2*i+1)/36) */
|
|
static const INTFLOAT icos36[9] = {
|
|
FIXR(0.50190991877167369479),
|
|
FIXR(0.51763809020504152469), //0
|
|
FIXR(0.55168895948124587824),
|
|
FIXR(0.61038729438072803416),
|
|
FIXR(0.70710678118654752439), //1
|
|
FIXR(0.87172339781054900991),
|
|
FIXR(1.18310079157624925896),
|
|
FIXR(1.93185165257813657349), //2
|
|
FIXR(5.73685662283492756461),
|
|
};
|
|
|
|
/* 0.5 / cos(pi*(2*i+1)/36) */
|
|
static const INTFLOAT icos36h[9] = {
|
|
FIXHR(0.50190991877167369479/2),
|
|
FIXHR(0.51763809020504152469/2), //0
|
|
FIXHR(0.55168895948124587824/2),
|
|
FIXHR(0.61038729438072803416/2),
|
|
FIXHR(0.70710678118654752439/2), //1
|
|
FIXHR(0.87172339781054900991/2),
|
|
FIXHR(1.18310079157624925896/4),
|
|
FIXHR(1.93185165257813657349/4), //2
|
|
// FIXHR(5.73685662283492756461),
|
|
};
|
|
|
|
/* using Lee like decomposition followed by hand coded 9 points DCT */
|
|
static void imdct36(INTFLOAT *out, INTFLOAT *buf, SUINTFLOAT *in, INTFLOAT *win)
|
|
{
|
|
int i, j;
|
|
SUINTFLOAT t0, t1, t2, t3, s0, s1, s2, s3;
|
|
SUINTFLOAT tmp[18], *tmp1, *in1;
|
|
|
|
for (i = 17; i >= 1; i--)
|
|
in[i] += in[i-1];
|
|
for (i = 17; i >= 3; i -= 2)
|
|
in[i] += in[i-2];
|
|
|
|
for (j = 0; j < 2; j++) {
|
|
tmp1 = tmp + j;
|
|
in1 = in + j;
|
|
|
|
t2 = in1[2*4] + in1[2*8] - in1[2*2];
|
|
|
|
t3 = in1[2*0] + SHR(in1[2*6],1);
|
|
t1 = in1[2*0] - in1[2*6];
|
|
tmp1[ 6] = t1 - SHR(t2,1);
|
|
tmp1[16] = t1 + t2;
|
|
|
|
t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2);
|
|
t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1);
|
|
t2 = MULH3(in1[2*2] + in1[2*8] , -C4, 2);
|
|
|
|
tmp1[10] = t3 - t0 - t2;
|
|
tmp1[ 2] = t3 + t0 + t1;
|
|
tmp1[14] = t3 + t2 - t1;
|
|
|
|
tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2);
|
|
t2 = MULH3(in1[2*1] + in1[2*5], C1, 2);
|
|
t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1);
|
|
t0 = MULH3(in1[2*3], C3, 2);
|
|
|
|
t1 = MULH3(in1[2*1] + in1[2*7], -C5, 2);
|
|
|
|
tmp1[ 0] = t2 + t3 + t0;
|
|
tmp1[12] = t2 + t1 - t0;
|
|
tmp1[ 8] = t3 - t1 - t0;
|
|
}
|
|
|
|
i = 0;
|
|
for (j = 0; j < 4; j++) {
|
|
t0 = tmp[i];
|
|
t1 = tmp[i + 2];
|
|
s0 = t1 + t0;
|
|
s2 = t1 - t0;
|
|
|
|
t2 = tmp[i + 1];
|
|
t3 = tmp[i + 3];
|
|
s1 = MULH3(t3 + t2, icos36h[ j], 2);
|
|
s3 = MULLx(t3 - t2, icos36 [8 - j], FRAC_BITS);
|
|
|
|
t0 = s0 + s1;
|
|
t1 = s0 - s1;
|
|
out[(9 + j) * SBLIMIT] = MULH3(t1, win[ 9 + j], 1) + buf[4*(9 + j)];
|
|
out[(8 - j) * SBLIMIT] = MULH3(t1, win[ 8 - j], 1) + buf[4*(8 - j)];
|
|
buf[4 * ( 9 + j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + j], 1);
|
|
buf[4 * ( 8 - j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - j], 1);
|
|
|
|
t0 = s2 + s3;
|
|
t1 = s2 - s3;
|
|
out[(9 + 8 - j) * SBLIMIT] = MULH3(t1, win[ 9 + 8 - j], 1) + buf[4*(9 + 8 - j)];
|
|
out[ j * SBLIMIT] = MULH3(t1, win[ j], 1) + buf[4*( j)];
|
|
buf[4 * ( 9 + 8 - j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 8 - j], 1);
|
|
buf[4 * ( j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + j], 1);
|
|
i += 4;
|
|
}
|
|
|
|
s0 = tmp[16];
|
|
s1 = MULH3(tmp[17], icos36h[4], 2);
|
|
t0 = s0 + s1;
|
|
t1 = s0 - s1;
|
|
out[(9 + 4) * SBLIMIT] = MULH3(t1, win[ 9 + 4], 1) + buf[4*(9 + 4)];
|
|
out[(8 - 4) * SBLIMIT] = MULH3(t1, win[ 8 - 4], 1) + buf[4*(8 - 4)];
|
|
buf[4 * ( 9 + 4 )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 4], 1);
|
|
buf[4 * ( 8 - 4 )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - 4], 1);
|
|
}
|
|
|
|
void RENAME(ff_imdct36_blocks)(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in,
|
|
int count, int switch_point, int block_type)
|
|
{
|
|
int j;
|
|
for (j=0 ; j < count; j++) {
|
|
/* apply window & overlap with previous buffer */
|
|
|
|
/* select window */
|
|
int win_idx = (switch_point && j < 2) ? 0 : block_type;
|
|
INTFLOAT *win = RENAME(ff_mdct_win)[win_idx + (4 & -(j & 1))];
|
|
|
|
imdct36(out, buf, in, win);
|
|
|
|
in += 18;
|
|
buf += ((j&3) != 3 ? 1 : (72-3));
|
|
out++;
|
|
}
|
|
}
|
|
|