1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-08 13:22:53 +02:00
FFmpeg/libavcodec/aom_film_grain_template.c
Niklas Haas 1535d33818 avcodec/aom_film_grain: add AOM film grain synthesis
Implementation copied wholesale from dav1d, sans SIMD, under permissive
license. This implementation was extensively verified to be bit-exact,
so it serves as a much better starting point than trying to re-engineer
this from scratch for no reason. (I also authored the original
implementation in dav1d, so any "clean room" implementation would end up
looking much the same, anyway)

The notable changes I had to make while adapting this from the dav1d
code-base to the FFmpeg codebase include:

- reordering variable declarations to avoid triggering warnings
- replacing several inline helpers by avutil equivalents
- changing code that accesses frame metadata
- replacing raw plane copying logic by av_image_copy_plane

Apart from this, the implementation is basically unmodified.
2024-03-23 18:55:21 +01:00

578 lines
24 KiB
C

/*
* AOM film grain synthesis
* Copyright (c) 2023 Niklas Haas <ffmpeg@haasn.xyz>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* Copyright © 2018, Niklas Haas
* Copyright © 2018, VideoLAN and dav1d authors
* Copyright © 2018, Two Orioles, LLC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "bit_depth_template.c"
#undef entry
#undef bitdepth
#undef bitdepth_max
#undef HBD_DECL
#undef HBD_CALL
#undef SCALING_SIZE
#if BIT_DEPTH > 8
# define entry int16_t
# define bitdepth_max ((1 << bitdepth) - 1)
# define HBD_DECL , const int bitdepth
# define HBD_CALL , bitdepth
# define SCALING_SIZE 4096
#else
# define entry int8_t
# define bitdepth 8
# define bitdepth_max UINT8_MAX
# define HBD_DECL
# define HBD_CALL
# define SCALING_SIZE 256
#endif
static void FUNC(generate_grain_y_c)(entry buf[][GRAIN_WIDTH],
const AVFilmGrainParams *const params
HBD_DECL)
{
const AVFilmGrainAOMParams *const data = &params->codec.aom;
const int bitdepth_min_8 = bitdepth - 8;
unsigned seed = params->seed;
const int shift = 4 - bitdepth_min_8 + data->grain_scale_shift;
const int grain_ctr = 128 << bitdepth_min_8;
const int grain_min = -grain_ctr, grain_max = grain_ctr - 1;
const int ar_pad = 3;
const int ar_lag = data->ar_coeff_lag;
for (int y = 0; y < GRAIN_HEIGHT; y++) {
for (int x = 0; x < GRAIN_WIDTH; x++) {
const int value = get_random_number(11, &seed);
buf[y][x] = round2(gaussian_sequence[ value ], shift);
}
}
for (int y = ar_pad; y < GRAIN_HEIGHT; y++) {
for (int x = ar_pad; x < GRAIN_WIDTH - ar_pad; x++) {
const int8_t *coeff = data->ar_coeffs_y;
int sum = 0, grain;
for (int dy = -ar_lag; dy <= 0; dy++) {
for (int dx = -ar_lag; dx <= ar_lag; dx++) {
if (!dx && !dy)
break;
sum += *(coeff++) * buf[y + dy][x + dx];
}
}
grain = buf[y][x] + round2(sum, data->ar_coeff_shift);
buf[y][x] = av_clip(grain, grain_min, grain_max);
}
}
}
static void
FUNC(generate_grain_uv_c)(entry buf[][GRAIN_WIDTH],
const entry buf_y[][GRAIN_WIDTH],
const AVFilmGrainParams *const params, const intptr_t uv,
const int subx, const int suby HBD_DECL)
{
const AVFilmGrainAOMParams *const data = &params->codec.aom;
const int bitdepth_min_8 = bitdepth - 8;
unsigned seed = params->seed ^ (uv ? 0x49d8 : 0xb524);
const int shift = 4 - bitdepth_min_8 + data->grain_scale_shift;
const int grain_ctr = 128 << bitdepth_min_8;
const int grain_min = -grain_ctr, grain_max = grain_ctr - 1;
const int chromaW = subx ? SUB_GRAIN_WIDTH : GRAIN_WIDTH;
const int chromaH = suby ? SUB_GRAIN_HEIGHT : GRAIN_HEIGHT;
const int ar_pad = 3;
const int ar_lag = data->ar_coeff_lag;
for (int y = 0; y < chromaH; y++) {
for (int x = 0; x < chromaW; x++) {
const int value = get_random_number(11, &seed);
buf[y][x] = round2(gaussian_sequence[ value ], shift);
}
}
for (int y = ar_pad; y < chromaH; y++) {
for (int x = ar_pad; x < chromaW - ar_pad; x++) {
const int8_t *coeff = data->ar_coeffs_uv[uv];
int sum = 0, grain;
for (int dy = -ar_lag; dy <= 0; dy++) {
for (int dx = -ar_lag; dx <= ar_lag; dx++) {
// For the final (current) pixel, we need to add in the
// contribution from the luma grain texture
if (!dx && !dy) {
const int lumaX = ((x - ar_pad) << subx) + ar_pad;
const int lumaY = ((y - ar_pad) << suby) + ar_pad;
int luma = 0;
if (!data->num_y_points)
break;
for (int i = 0; i <= suby; i++) {
for (int j = 0; j <= subx; j++) {
luma += buf_y[lumaY + i][lumaX + j];
}
}
luma = round2(luma, subx + suby);
sum += luma * (*coeff);
break;
}
sum += *(coeff++) * buf[y + dy][x + dx];
}
}
grain = buf[y][x] + round2(sum, data->ar_coeff_shift);
buf[y][x] = av_clip(grain, grain_min, grain_max);
}
}
}
// samples from the correct block of a grain LUT, while taking into account the
// offsets provided by the offsets cache
static inline entry FUNC(sample_lut)(const entry grain_lut[][GRAIN_WIDTH],
const int offsets[2][2],
const int subx, const int suby,
const int bx, const int by,
const int x, const int y)
{
const int randval = offsets[bx][by];
const int offx = 3 + (2 >> subx) * (3 + (randval >> 4));
const int offy = 3 + (2 >> suby) * (3 + (randval & 0xF));
return grain_lut[offy + y + (FG_BLOCK_SIZE >> suby) * by]
[offx + x + (FG_BLOCK_SIZE >> subx) * bx];
}
static void FUNC(fgy_32x32xn_c)(pixel *const dst_row, const pixel *const src_row,
const ptrdiff_t stride,
const AVFilmGrainParams *const params, const size_t pw,
const uint8_t scaling[SCALING_SIZE],
const entry grain_lut[][GRAIN_WIDTH],
const int bh, const int row_num HBD_DECL)
{
const AVFilmGrainAOMParams *const data = &params->codec.aom;
const int rows = 1 + (data->overlap_flag && row_num > 0);
const int bitdepth_min_8 = bitdepth - 8;
const int grain_ctr = 128 << bitdepth_min_8;
const int grain_min = -grain_ctr, grain_max = grain_ctr - 1;
unsigned seed[2];
int offsets[2 /* col offset */][2 /* row offset */];
int min_value, max_value;
if (data->limit_output_range) {
min_value = 16 << bitdepth_min_8;
max_value = 235 << bitdepth_min_8;
} else {
min_value = 0;
max_value = bitdepth_max;
}
// seed[0] contains the current row, seed[1] contains the previous
for (int i = 0; i < rows; i++) {
seed[i] = params->seed;
seed[i] ^= (((row_num - i) * 37 + 178) & 0xFF) << 8;
seed[i] ^= (((row_num - i) * 173 + 105) & 0xFF);
}
av_assert1(stride % (FG_BLOCK_SIZE * sizeof(pixel)) == 0);
// process this row in FG_BLOCK_SIZE^2 blocks
for (unsigned bx = 0; bx < pw; bx += FG_BLOCK_SIZE) {
const int bw = FFMIN(FG_BLOCK_SIZE, (int) pw - bx);
const pixel *src;
pixel *dst;
int noise;
// x/y block offsets to compensate for overlapped regions
const int ystart = data->overlap_flag && row_num ? FFMIN(2, bh) : 0;
const int xstart = data->overlap_flag && bx ? FFMIN(2, bw) : 0;
static const int w[2][2] = { { 27, 17 }, { 17, 27 } };
if (data->overlap_flag && bx) {
// shift previous offsets left
for (int i = 0; i < rows; i++)
offsets[1][i] = offsets[0][i];
}
// update current offsets
for (int i = 0; i < rows; i++)
offsets[0][i] = get_random_number(8, &seed[i]);
#define add_noise_y(x, y, grain) \
src = (const pixel*)((const char*)src_row + (y) * stride) + (x) + bx; \
dst = (pixel*)((char*)dst_row + (y) * stride) + (x) + bx; \
noise = round2(scaling[ *src ] * (grain), data->scaling_shift); \
*dst = av_clip(*src + noise, min_value, max_value);
for (int y = ystart; y < bh; y++) {
// Non-overlapped image region (straightforward)
for (int x = xstart; x < bw; x++) {
int grain = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 0, 0, x, y);
add_noise_y(x, y, grain);
}
// Special case for overlapped column
for (int x = 0; x < xstart; x++) {
int grain = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 0, 0, x, y);
int old = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 1, 0, x, y);
grain = round2(old * w[x][0] + grain * w[x][1], 5);
grain = av_clip(grain, grain_min, grain_max);
add_noise_y(x, y, grain);
}
}
for (int y = 0; y < ystart; y++) {
// Special case for overlapped row (sans corner)
for (int x = xstart; x < bw; x++) {
int grain = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 0, 0, x, y);
int old = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 0, 1, x, y);
grain = round2(old * w[y][0] + grain * w[y][1], 5);
grain = av_clip(grain, grain_min, grain_max);
add_noise_y(x, y, grain);
}
// Special case for doubly-overlapped corner
for (int x = 0; x < xstart; x++) {
int grain = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 0, 0, x, y);
int top = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 0, 1, x, y);
int old = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 1, 1, x, y);
// Blend the top pixel with the top left block
top = round2(old * w[x][0] + top * w[x][1], 5);
top = av_clip(top, grain_min, grain_max);
// Blend the current pixel with the left block
old = FUNC(sample_lut)(grain_lut, offsets, 0, 0, 1, 0, x, y);
grain = round2(old * w[x][0] + grain * w[x][1], 5);
grain = av_clip(grain, grain_min, grain_max);
// Mix the row rows together and apply grain
grain = round2(top * w[y][0] + grain * w[y][1], 5);
grain = av_clip(grain, grain_min, grain_max);
add_noise_y(x, y, grain);
}
}
}
}
static void
FUNC(fguv_32x32xn_c)(pixel *const dst_row, const pixel *const src_row,
const ptrdiff_t stride, const AVFilmGrainParams *const params,
const size_t pw, const uint8_t scaling[SCALING_SIZE],
const entry grain_lut[][GRAIN_WIDTH], const int bh,
const int row_num, const pixel *const luma_row,
const ptrdiff_t luma_stride, const int uv, const int is_id,
const int sx, const int sy HBD_DECL)
{
const AVFilmGrainAOMParams *const data = &params->codec.aom;
const int rows = 1 + (data->overlap_flag && row_num > 0);
const int bitdepth_min_8 = bitdepth - 8;
const int grain_ctr = 128 << bitdepth_min_8;
const int grain_min = -grain_ctr, grain_max = grain_ctr - 1;
unsigned seed[2];
int offsets[2 /* col offset */][2 /* row offset */];
int min_value, max_value;
if (data->limit_output_range) {
min_value = 16 << bitdepth_min_8;
max_value = (is_id ? 235 : 240) << bitdepth_min_8;
} else {
min_value = 0;
max_value = bitdepth_max;
}
// seed[0] contains the current row, seed[1] contains the previous
for (int i = 0; i < rows; i++) {
seed[i] = params->seed;
seed[i] ^= (((row_num - i) * 37 + 178) & 0xFF) << 8;
seed[i] ^= (((row_num - i) * 173 + 105) & 0xFF);
}
av_assert1(stride % (FG_BLOCK_SIZE * sizeof(pixel)) == 0);
// process this row in FG_BLOCK_SIZE^2 blocks (subsampled)
for (unsigned bx = 0; bx < pw; bx += FG_BLOCK_SIZE >> sx) {
const int bw = FFMIN(FG_BLOCK_SIZE >> sx, (int)(pw - bx));
int val, lx, ly, noise;
const pixel *src, *luma;
pixel *dst, avg;
// x/y block offsets to compensate for overlapped regions
const int ystart = data->overlap_flag && row_num ? FFMIN(2 >> sy, bh) : 0;
const int xstart = data->overlap_flag && bx ? FFMIN(2 >> sx, bw) : 0;
static const int w[2 /* sub */][2 /* off */][2] = {
{ { 27, 17 }, { 17, 27 } },
{ { 23, 22 } },
};
if (data->overlap_flag && bx) {
// shift previous offsets left
for (int i = 0; i < rows; i++)
offsets[1][i] = offsets[0][i];
}
// update current offsets
for (int i = 0; i < rows; i++)
offsets[0][i] = get_random_number(8, &seed[i]);
#define add_noise_uv(x, y, grain) \
lx = (bx + x) << sx; \
ly = y << sy; \
luma = (const pixel*)((const char*)luma_row + ly * luma_stride) + lx;\
avg = luma[0]; \
if (sx) \
avg = (avg + luma[1] + 1) >> 1; \
src = (const pixel*)((const char *)src_row + (y) * stride) + bx + (x);\
dst = (pixel *) ((char *) dst_row + (y) * stride) + bx + (x); \
val = avg; \
if (!data->chroma_scaling_from_luma) { \
const int combined = avg * data->uv_mult_luma[uv] + \
*src * data->uv_mult[uv]; \
val = av_clip( (combined >> 6) + \
(data->uv_offset[uv] * (1 << bitdepth_min_8)), \
0, bitdepth_max ); \
} \
noise = round2(scaling[ val ] * (grain), data->scaling_shift); \
*dst = av_clip(*src + noise, min_value, max_value);
for (int y = ystart; y < bh; y++) {
// Non-overlapped image region (straightforward)
for (int x = xstart; x < bw; x++) {
int grain = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 0, 0, x, y);
add_noise_uv(x, y, grain);
}
// Special case for overlapped column
for (int x = 0; x < xstart; x++) {
int grain = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 0, 0, x, y);
int old = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 1, 0, x, y);
grain = round2(old * w[sx][x][0] + grain * w[sx][x][1], 5);
grain = av_clip(grain, grain_min, grain_max);
add_noise_uv(x, y, grain);
}
}
for (int y = 0; y < ystart; y++) {
// Special case for overlapped row (sans corner)
for (int x = xstart; x < bw; x++) {
int grain = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 0, 0, x, y);
int old = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 0, 1, x, y);
grain = round2(old * w[sy][y][0] + grain * w[sy][y][1], 5);
grain = av_clip(grain, grain_min, grain_max);
add_noise_uv(x, y, grain);
}
// Special case for doubly-overlapped corner
for (int x = 0; x < xstart; x++) {
int top = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 0, 1, x, y);
int old = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 1, 1, x, y);
int grain = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 0, 0, x, y);
// Blend the top pixel with the top left block
top = round2(old * w[sx][x][0] + top * w[sx][x][1], 5);
top = av_clip(top, grain_min, grain_max);
// Blend the current pixel with the left block
old = FUNC(sample_lut)(grain_lut, offsets, sx, sy, 1, 0, x, y);
grain = round2(old * w[sx][x][0] + grain * w[sx][x][1], 5);
grain = av_clip(grain, grain_min, grain_max);
// Mix the row rows together and apply to image
grain = round2(top * w[sy][y][0] + grain * w[sy][y][1], 5);
grain = av_clip(grain, grain_min, grain_max);
add_noise_uv(x, y, grain);
}
}
}
}
static void FUNC(generate_scaling)(const uint8_t points[][2], const int num,
uint8_t scaling[SCALING_SIZE] HBD_DECL)
{
const int shift_x = bitdepth - 8;
const int scaling_size = 1 << bitdepth;
const int max_value = points[num - 1][0] << shift_x;
av_assert0(scaling_size <= SCALING_SIZE);
if (num == 0) {
memset(scaling, 0, scaling_size);
return;
}
// Fill up the preceding entries with the initial value
memset(scaling, points[0][1], points[0][0] << shift_x);
// Linearly interpolate the values in the middle
for (int i = 0; i < num - 1; i++) {
const int bx = points[i][0];
const int by = points[i][1];
const int ex = points[i+1][0];
const int ey = points[i+1][1];
const int dx = ex - bx;
const int dy = ey - by;
const int delta = dy * ((0x10000 + (dx >> 1)) / dx);
av_assert1(dx > 0);
for (int x = 0, d = 0x8000; x < dx; x++) {
scaling[(bx + x) << shift_x] = by + (d >> 16);
d += delta;
}
}
// Fill up the remaining entries with the final value
memset(&scaling[max_value], points[num - 1][1], scaling_size - max_value);
#if BIT_DEPTH != 8
for (int i = 0; i < num - 1; i++) {
const int pad = 1 << shift_x, rnd = pad >> 1;
const int bx = points[i][0] << shift_x;
const int ex = points[i+1][0] << shift_x;
const int dx = ex - bx;
for (int x = 0; x < dx; x += pad) {
const int range = scaling[bx + x + pad] - scaling[bx + x];
for (int n = 1, r = rnd; n < pad; n++) {
r += range;
scaling[bx + x + n] = scaling[bx + x] + (r >> shift_x);
}
}
}
#endif
}
static av_always_inline void
FUNC(apply_grain_row)(AVFrame *out, const AVFrame *in,
const int ss_x, const int ss_y,
const uint8_t scaling[3][SCALING_SIZE],
const entry grain_lut[3][GRAIN_HEIGHT+1][GRAIN_WIDTH],
const AVFilmGrainParams *params,
const int row HBD_DECL)
{
// Synthesize grain for the affected planes
const AVFilmGrainAOMParams *const data = &params->codec.aom;
const int cpw = (out->width + ss_x) >> ss_x;
const int is_id = out->colorspace == AVCOL_SPC_RGB;
const int bh = (FFMIN(out->height - row * FG_BLOCK_SIZE, FG_BLOCK_SIZE) + ss_y) >> ss_y;
const ptrdiff_t uv_off = row * FG_BLOCK_SIZE * out->linesize[1] >> ss_y;
pixel *const luma_src = (pixel *)
((char *) in->data[0] + row * FG_BLOCK_SIZE * in->linesize[0]);
if (data->num_y_points) {
const int bh = FFMIN(out->height - row * FG_BLOCK_SIZE, FG_BLOCK_SIZE);
const ptrdiff_t off = row * FG_BLOCK_SIZE * out->linesize[0];
FUNC(fgy_32x32xn_c)((pixel *) ((char *) out->data[0] + off), luma_src,
out->linesize[0], params, out->width, scaling[0],
grain_lut[0], bh, row HBD_CALL);
}
if (!data->num_uv_points[0] && !data->num_uv_points[1] &&
!data->chroma_scaling_from_luma)
{
return;
}
// extend padding pixels
if (out->width & ss_x) {
pixel *ptr = luma_src;
for (int y = 0; y < bh; y++) {
ptr[out->width] = ptr[out->width - 1];
ptr = (pixel *) ((char *) ptr + (in->linesize[0] << ss_y));
}
}
if (data->chroma_scaling_from_luma) {
for (int pl = 0; pl < 2; pl++)
FUNC(fguv_32x32xn_c)((pixel *) ((char *) out->data[1 + pl] + uv_off),
(const pixel *) ((const char *) in->data[1 + pl] + uv_off),
in->linesize[1], params, cpw, scaling[0],
grain_lut[1 + pl], bh, row, luma_src,
in->linesize[0], pl, is_id, ss_x, ss_y HBD_CALL);
} else {
for (int pl = 0; pl < 2; pl++) {
if (data->num_uv_points[pl]) {
FUNC(fguv_32x32xn_c)((pixel *) ((char *) out->data[1 + pl] + uv_off),
(const pixel *) ((const char *) in->data[1 + pl] + uv_off),
in->linesize[1], params, cpw, scaling[1 + pl],
grain_lut[1 + pl], bh, row, luma_src,
in->linesize[0], pl, is_id, ss_x, ss_y HBD_CALL);
}
}
}
}
static int FUNC(apply_film_grain)(AVFrame *out_frame, const AVFrame *in_frame,
const AVFilmGrainParams *params HBD_DECL)
{
entry grain_lut[3][GRAIN_HEIGHT + 1][GRAIN_WIDTH];
uint8_t scaling[3][SCALING_SIZE];
const AVFilmGrainAOMParams *const data = &params->codec.aom;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(out_frame->format);
const int rows = AV_CEIL_RSHIFT(out_frame->height, 5); /* log2(FG_BLOCK_SIZE) */
const int subx = desc->log2_chroma_w, suby = desc->log2_chroma_h;
// Generate grain LUTs as needed
FUNC(generate_grain_y_c)(grain_lut[0], params HBD_CALL);
if (data->num_uv_points[0] || data->chroma_scaling_from_luma)
FUNC(generate_grain_uv_c)(grain_lut[1], grain_lut[0], params, 0, subx, suby HBD_CALL);
if (data->num_uv_points[1] || data->chroma_scaling_from_luma)
FUNC(generate_grain_uv_c)(grain_lut[2], grain_lut[0], params, 1, subx, suby HBD_CALL);
// Generate scaling LUTs as needed
if (data->num_y_points || data->chroma_scaling_from_luma)
FUNC(generate_scaling)(data->y_points, data->num_y_points, scaling[0] HBD_CALL);
if (data->num_uv_points[0])
FUNC(generate_scaling)(data->uv_points[0], data->num_uv_points[0], scaling[1] HBD_CALL);
if (data->num_uv_points[1])
FUNC(generate_scaling)(data->uv_points[1], data->num_uv_points[1], scaling[2] HBD_CALL);
for (int row = 0; row < rows; row++) {
FUNC(apply_grain_row)(out_frame, in_frame, subx, suby, scaling, grain_lut,
params, row HBD_CALL);
}
return 0;
}