1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavfilter/vf_srcnn.c
Sergey Lavrushkin d8c0bbb0aa Adds TensorFlow backend for dnn inference module.
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
2018-06-05 10:16:50 -03:00

254 lines
8.2 KiB
C

/*
* Copyright (c) 2018 Sergey Lavrushkin
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Filter implementing image super-resolution using deep convolutional networks.
* https://arxiv.org/abs/1501.00092
*/
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "libavutil/opt.h"
#include "libavformat/avio.h"
#include "dnn_interface.h"
typedef struct SRCNNContext {
const AVClass *class;
char* model_filename;
float* input_output_buf;
DNNModule* dnn_module;
DNNModel* model;
DNNData input_output;
} SRCNNContext;
#define OFFSET(x) offsetof(SRCNNContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
static const AVOption srcnn_options[] = {
{ "model_filename", "path to model file specifying network architecture and its parameters", OFFSET(model_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(srcnn);
static av_cold int init(AVFilterContext* context)
{
SRCNNContext* srcnn_context = context->priv;
srcnn_context->dnn_module = ff_get_dnn_module(DNN_TF);
if (!srcnn_context->dnn_module){
srcnn_context->dnn_module = ff_get_dnn_module(DNN_NATIVE);
if (!srcnn_context->dnn_module){
av_log(context, AV_LOG_ERROR, "could not create dnn module\n");
return AVERROR(ENOMEM);
}
else{
av_log(context, AV_LOG_INFO, "using native backend for DNN inference\n");
}
}
else{
av_log(context, AV_LOG_INFO, "using tensorflow backend for DNN inference\n");
}
if (!srcnn_context->model_filename){
av_log(context, AV_LOG_INFO, "model file for network was not specified, using default network for x2 upsampling\n");
srcnn_context->model = (srcnn_context->dnn_module->load_default_model)(DNN_SRCNN);
}
else{
srcnn_context->model = (srcnn_context->dnn_module->load_model)(srcnn_context->model_filename);
}
if (!srcnn_context->model){
av_log(context, AV_LOG_ERROR, "could not load dnn model\n");
return AVERROR(EIO);
}
return 0;
}
static int query_formats(AVFilterContext* context)
{
const enum AVPixelFormat pixel_formats[] = {AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_GRAY8,
AV_PIX_FMT_NONE};
AVFilterFormats* formats_list;
formats_list = ff_make_format_list(pixel_formats);
if (!formats_list){
av_log(context, AV_LOG_ERROR, "could not create formats list\n");
return AVERROR(ENOMEM);
}
return ff_set_common_formats(context, formats_list);
}
static int config_props(AVFilterLink* inlink)
{
AVFilterContext* context = inlink->dst;
SRCNNContext* srcnn_context = context->priv;
DNNReturnType result;
srcnn_context->input_output_buf = av_malloc(inlink->h * inlink->w * sizeof(float));
if (!srcnn_context->input_output_buf){
av_log(context, AV_LOG_ERROR, "could not allocate memory for input/output buffer\n");
return AVERROR(ENOMEM);
}
srcnn_context->input_output.data = srcnn_context->input_output_buf;
srcnn_context->input_output.width = inlink->w;
srcnn_context->input_output.height = inlink->h;
srcnn_context->input_output.channels = 1;
result = (srcnn_context->model->set_input_output)(srcnn_context->model->model, &srcnn_context->input_output, &srcnn_context->input_output);
if (result != DNN_SUCCESS){
av_log(context, AV_LOG_ERROR, "could not set input and output for the model\n");
return AVERROR(EIO);
}
else{
return 0;
}
}
typedef struct ThreadData{
uint8_t* out;
int out_linesize, height, width;
} ThreadData;
static int uint8_to_float(AVFilterContext* context, void* arg, int jobnr, int nb_jobs)
{
SRCNNContext* srcnn_context = context->priv;
const ThreadData* td = arg;
const int slice_start = (td->height * jobnr ) / nb_jobs;
const int slice_end = (td->height * (jobnr + 1)) / nb_jobs;
const uint8_t* src = td->out + slice_start * td->out_linesize;
float* dst = srcnn_context->input_output_buf + slice_start * td->width;
int y, x;
for (y = slice_start; y < slice_end; ++y){
for (x = 0; x < td->width; ++x){
dst[x] = (float)src[x] / 255.0f;
}
src += td->out_linesize;
dst += td->width;
}
return 0;
}
static int float_to_uint8(AVFilterContext* context, void* arg, int jobnr, int nb_jobs)
{
SRCNNContext* srcnn_context = context->priv;
const ThreadData* td = arg;
const int slice_start = (td->height * jobnr ) / nb_jobs;
const int slice_end = (td->height * (jobnr + 1)) / nb_jobs;
const float* src = srcnn_context->input_output_buf + slice_start * td->width;
uint8_t* dst = td->out + slice_start * td->out_linesize;
int y, x;
for (y = slice_start; y < slice_end; ++y){
for (x = 0; x < td->width; ++x){
dst[x] = (uint8_t)(255.0f * FFMIN(src[x], 1.0f));
}
src += td->width;
dst += td->out_linesize;
}
return 0;
}
static int filter_frame(AVFilterLink* inlink, AVFrame* in)
{
AVFilterContext* context = inlink->dst;
SRCNNContext* srcnn_context = context->priv;
AVFilterLink* outlink = context->outputs[0];
AVFrame* out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
ThreadData td;
int nb_threads;
DNNReturnType dnn_result;
if (!out){
av_log(context, AV_LOG_ERROR, "could not allocate memory for output frame\n");
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
av_frame_copy(out, in);
av_frame_free(&in);
td.out = out->data[0];
td.out_linesize = out->linesize[0];
td.height = out->height;
td.width = out->width;
nb_threads = ff_filter_get_nb_threads(context);
context->internal->execute(context, uint8_to_float, &td, NULL, FFMIN(td.height, nb_threads));
dnn_result = (srcnn_context->dnn_module->execute_model)(srcnn_context->model);
if (dnn_result != DNN_SUCCESS){
av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n");
return AVERROR(EIO);
}
context->internal->execute(context, float_to_uint8, &td, NULL, FFMIN(td.height, nb_threads));
return ff_filter_frame(outlink, out);
}
static av_cold void uninit(AVFilterContext* context)
{
SRCNNContext* srcnn_context = context->priv;
if (srcnn_context->dnn_module){
(srcnn_context->dnn_module->free_model)(&srcnn_context->model);
av_freep(&srcnn_context->dnn_module);
}
av_freep(&srcnn_context->input_output_buf);
}
static const AVFilterPad srcnn_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_props,
.filter_frame = filter_frame,
},
{ NULL }
};
static const AVFilterPad srcnn_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
AVFilter ff_vf_srcnn = {
.name = "srcnn",
.description = NULL_IF_CONFIG_SMALL("Apply super resolution convolutional neural network to the input. Use bicubic upsamping with corresponding scaling factor before."),
.priv_size = sizeof(SRCNNContext),
.init = init,
.uninit = uninit,
.query_formats = query_formats,
.inputs = srcnn_inputs,
.outputs = srcnn_outputs,
.priv_class = &srcnn_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
};