1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-07 11:13:41 +02:00
FFmpeg/libavcodec/alacenc.c
Michael Niedermayer 59eb12faff Merge remote branch 'qatar/master'
* qatar/master: (30 commits)
  AVOptions: make default_val a union, as proposed in AVOption2.
  arm/h264pred: add missing argument type.
  h264dsp_mmx: place bracket outside #if/#endif block.
  lavf/utils: fix ff_interleave_compare_dts corner case.
  fate: add 10-bit H264 tests.
  h264: do not print "too many references" warning for intra-only.
  Enable decoding of high bit depth h264.
  Adds 8-, 9- and 10-bit versions of some of the functions used by the h264 decoder.
  Add support for higher QP values in h264.
  Add the notion of pixel size in h264 related functions.
  Make the h264 loop filter bit depth aware.
  Template dsputil_template.c with respect to pixel size, etc.
  Template h264idct_template.c with respect to pixel size, etc.
  Preparatory patch for high bit depth h264 decoding support.
  Move some functions in dsputil.c into a new file dsputil_template.c.
  Move the functions in h264idct into a new file h264idct_template.c.
  Move the functions in h264pred.c into a new file h264pred_template.c.
  Preparatory patch for high bit depth h264 decoding support.
  Add pixel formats for 9- and 10-bit yuv420p.
  Choose h264 chroma dc dequant function dynamically.
  ...

Conflicts:
	doc/APIchanges
	ffmpeg.c
	ffplay.c
	libavcodec/alpha/dsputil_alpha.c
	libavcodec/arm/dsputil_init_arm.c
	libavcodec/arm/dsputil_init_armv6.c
	libavcodec/arm/dsputil_init_neon.c
	libavcodec/arm/dsputil_iwmmxt.c
	libavcodec/arm/h264pred_init_arm.c
	libavcodec/bfin/dsputil_bfin.c
	libavcodec/dsputil.c
	libavcodec/h264.c
	libavcodec/h264.h
	libavcodec/h264_cabac.c
	libavcodec/h264_cavlc.c
	libavcodec/h264_loopfilter.c
	libavcodec/h264_ps.c
	libavcodec/h264_refs.c
	libavcodec/h264dsp.c
	libavcodec/h264idct.c
	libavcodec/h264pred.c
	libavcodec/mlib/dsputil_mlib.c
	libavcodec/options.c
	libavcodec/ppc/dsputil_altivec.c
	libavcodec/ppc/dsputil_ppc.c
	libavcodec/ppc/h264_altivec.c
	libavcodec/ps2/dsputil_mmi.c
	libavcodec/sh4/dsputil_align.c
	libavcodec/sh4/dsputil_sh4.c
	libavcodec/sparc/dsputil_vis.c
	libavcodec/utils.c
	libavcodec/version.h
	libavcodec/x86/dsputil_mmx.c
	libavformat/options.c
	libavformat/utils.c
	libavutil/pixfmt.h
	libswscale/swscale.c
	libswscale/swscale_internal.h
	libswscale/swscale_template.c
	tests/ref/seek/lavf_avi

Merged-by: Michael Niedermayer <michaelni@gmx.at>
2011-05-11 05:47:02 +02:00

538 lines
16 KiB
C

/**
* ALAC audio encoder
* Copyright (c) 2008 Jaikrishnan Menon <realityman@gmx.net>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "avcodec.h"
#include "put_bits.h"
#include "dsputil.h"
#include "lpc.h"
#include "mathops.h"
#define DEFAULT_FRAME_SIZE 4096
#define DEFAULT_SAMPLE_SIZE 16
#define MAX_CHANNELS 8
#define ALAC_EXTRADATA_SIZE 36
#define ALAC_FRAME_HEADER_SIZE 55
#define ALAC_FRAME_FOOTER_SIZE 3
#define ALAC_ESCAPE_CODE 0x1FF
#define ALAC_MAX_LPC_ORDER 30
#define DEFAULT_MAX_PRED_ORDER 6
#define DEFAULT_MIN_PRED_ORDER 4
#define ALAC_MAX_LPC_PRECISION 9
#define ALAC_MAX_LPC_SHIFT 9
#define ALAC_CHMODE_LEFT_RIGHT 0
#define ALAC_CHMODE_LEFT_SIDE 1
#define ALAC_CHMODE_RIGHT_SIDE 2
#define ALAC_CHMODE_MID_SIDE 3
typedef struct RiceContext {
int history_mult;
int initial_history;
int k_modifier;
int rice_modifier;
} RiceContext;
typedef struct AlacLPCContext {
int lpc_order;
int lpc_coeff[ALAC_MAX_LPC_ORDER+1];
int lpc_quant;
} AlacLPCContext;
typedef struct AlacEncodeContext {
int compression_level;
int min_prediction_order;
int max_prediction_order;
int max_coded_frame_size;
int write_sample_size;
int32_t sample_buf[MAX_CHANNELS][DEFAULT_FRAME_SIZE];
int32_t predictor_buf[DEFAULT_FRAME_SIZE];
int interlacing_shift;
int interlacing_leftweight;
PutBitContext pbctx;
RiceContext rc;
AlacLPCContext lpc[MAX_CHANNELS];
LPCContext lpc_ctx;
AVCodecContext *avctx;
} AlacEncodeContext;
static void init_sample_buffers(AlacEncodeContext *s, const int16_t *input_samples)
{
int ch, i;
for(ch=0;ch<s->avctx->channels;ch++) {
const int16_t *sptr = input_samples + ch;
for(i=0;i<s->avctx->frame_size;i++) {
s->sample_buf[ch][i] = *sptr;
sptr += s->avctx->channels;
}
}
}
static void encode_scalar(AlacEncodeContext *s, int x, int k, int write_sample_size)
{
int divisor, q, r;
k = FFMIN(k, s->rc.k_modifier);
divisor = (1<<k) - 1;
q = x / divisor;
r = x % divisor;
if(q > 8) {
// write escape code and sample value directly
put_bits(&s->pbctx, 9, ALAC_ESCAPE_CODE);
put_bits(&s->pbctx, write_sample_size, x);
} else {
if(q)
put_bits(&s->pbctx, q, (1<<q) - 1);
put_bits(&s->pbctx, 1, 0);
if(k != 1) {
if(r > 0)
put_bits(&s->pbctx, k, r+1);
else
put_bits(&s->pbctx, k-1, 0);
}
}
}
static void write_frame_header(AlacEncodeContext *s, int is_verbatim)
{
put_bits(&s->pbctx, 3, s->avctx->channels-1); // No. of channels -1
put_bits(&s->pbctx, 16, 0); // Seems to be zero
put_bits(&s->pbctx, 1, 1); // Sample count is in the header
put_bits(&s->pbctx, 2, 0); // FIXME: Wasted bytes field
put_bits(&s->pbctx, 1, is_verbatim); // Audio block is verbatim
put_bits32(&s->pbctx, s->avctx->frame_size); // No. of samples in the frame
}
static void calc_predictor_params(AlacEncodeContext *s, int ch)
{
int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
int shift[MAX_LPC_ORDER];
int opt_order;
if (s->compression_level == 1) {
s->lpc[ch].lpc_order = 6;
s->lpc[ch].lpc_quant = 6;
s->lpc[ch].lpc_coeff[0] = 160;
s->lpc[ch].lpc_coeff[1] = -190;
s->lpc[ch].lpc_coeff[2] = 170;
s->lpc[ch].lpc_coeff[3] = -130;
s->lpc[ch].lpc_coeff[4] = 80;
s->lpc[ch].lpc_coeff[5] = -25;
} else {
opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, s->sample_buf[ch],
s->avctx->frame_size,
s->min_prediction_order,
s->max_prediction_order,
ALAC_MAX_LPC_PRECISION, coefs, shift,
FF_LPC_TYPE_LEVINSON, 0,
ORDER_METHOD_EST, ALAC_MAX_LPC_SHIFT, 1);
s->lpc[ch].lpc_order = opt_order;
s->lpc[ch].lpc_quant = shift[opt_order-1];
memcpy(s->lpc[ch].lpc_coeff, coefs[opt_order-1], opt_order*sizeof(int));
}
}
static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
{
int i, best;
int32_t lt, rt;
uint64_t sum[4];
uint64_t score[4];
/* calculate sum of 2nd order residual for each channel */
sum[0] = sum[1] = sum[2] = sum[3] = 0;
for(i=2; i<n; i++) {
lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
sum[2] += FFABS((lt + rt) >> 1);
sum[3] += FFABS(lt - rt);
sum[0] += FFABS(lt);
sum[1] += FFABS(rt);
}
/* calculate score for each mode */
score[0] = sum[0] + sum[1];
score[1] = sum[0] + sum[3];
score[2] = sum[1] + sum[3];
score[3] = sum[2] + sum[3];
/* return mode with lowest score */
best = 0;
for(i=1; i<4; i++) {
if(score[i] < score[best]) {
best = i;
}
}
return best;
}
static void alac_stereo_decorrelation(AlacEncodeContext *s)
{
int32_t *left = s->sample_buf[0], *right = s->sample_buf[1];
int i, mode, n = s->avctx->frame_size;
int32_t tmp;
mode = estimate_stereo_mode(left, right, n);
switch(mode)
{
case ALAC_CHMODE_LEFT_RIGHT:
s->interlacing_leftweight = 0;
s->interlacing_shift = 0;
break;
case ALAC_CHMODE_LEFT_SIDE:
for(i=0; i<n; i++) {
right[i] = left[i] - right[i];
}
s->interlacing_leftweight = 1;
s->interlacing_shift = 0;
break;
case ALAC_CHMODE_RIGHT_SIDE:
for(i=0; i<n; i++) {
tmp = right[i];
right[i] = left[i] - right[i];
left[i] = tmp + (right[i] >> 31);
}
s->interlacing_leftweight = 1;
s->interlacing_shift = 31;
break;
default:
for(i=0; i<n; i++) {
tmp = left[i];
left[i] = (tmp + right[i]) >> 1;
right[i] = tmp - right[i];
}
s->interlacing_leftweight = 1;
s->interlacing_shift = 1;
break;
}
}
static void alac_linear_predictor(AlacEncodeContext *s, int ch)
{
int i;
AlacLPCContext lpc = s->lpc[ch];
if(lpc.lpc_order == 31) {
s->predictor_buf[0] = s->sample_buf[ch][0];
for(i=1; i<s->avctx->frame_size; i++)
s->predictor_buf[i] = s->sample_buf[ch][i] - s->sample_buf[ch][i-1];
return;
}
// generalised linear predictor
if(lpc.lpc_order > 0) {
int32_t *samples = s->sample_buf[ch];
int32_t *residual = s->predictor_buf;
// generate warm-up samples
residual[0] = samples[0];
for(i=1;i<=lpc.lpc_order;i++)
residual[i] = samples[i] - samples[i-1];
// perform lpc on remaining samples
for(i = lpc.lpc_order + 1; i < s->avctx->frame_size; i++) {
int sum = 1 << (lpc.lpc_quant - 1), res_val, j;
for (j = 0; j < lpc.lpc_order; j++) {
sum += (samples[lpc.lpc_order-j] - samples[0]) *
lpc.lpc_coeff[j];
}
sum >>= lpc.lpc_quant;
sum += samples[0];
residual[i] = sign_extend(samples[lpc.lpc_order+1] - sum,
s->write_sample_size);
res_val = residual[i];
if(res_val) {
int index = lpc.lpc_order - 1;
int neg = (res_val < 0);
while(index >= 0 && (neg ? (res_val < 0):(res_val > 0))) {
int val = samples[0] - samples[lpc.lpc_order - index];
int sign = (val ? FFSIGN(val) : 0);
if(neg)
sign*=-1;
lpc.lpc_coeff[index] -= sign;
val *= sign;
res_val -= ((val >> lpc.lpc_quant) *
(lpc.lpc_order - index));
index--;
}
}
samples++;
}
}
}
static void alac_entropy_coder(AlacEncodeContext *s)
{
unsigned int history = s->rc.initial_history;
int sign_modifier = 0, i, k;
int32_t *samples = s->predictor_buf;
for(i=0;i < s->avctx->frame_size;) {
int x;
k = av_log2((history >> 9) + 3);
x = -2*(*samples)-1;
x ^= (x>>31);
samples++;
i++;
encode_scalar(s, x - sign_modifier, k, s->write_sample_size);
history += x * s->rc.history_mult
- ((history * s->rc.history_mult) >> 9);
sign_modifier = 0;
if(x > 0xFFFF)
history = 0xFFFF;
if((history < 128) && (i < s->avctx->frame_size)) {
unsigned int block_size = 0;
k = 7 - av_log2(history) + ((history + 16) >> 6);
while((*samples == 0) && (i < s->avctx->frame_size)) {
samples++;
i++;
block_size++;
}
encode_scalar(s, block_size, k, 16);
sign_modifier = (block_size <= 0xFFFF);
history = 0;
}
}
}
static void write_compressed_frame(AlacEncodeContext *s)
{
int i, j;
if(s->avctx->channels == 2)
alac_stereo_decorrelation(s);
put_bits(&s->pbctx, 8, s->interlacing_shift);
put_bits(&s->pbctx, 8, s->interlacing_leftweight);
for(i=0;i<s->avctx->channels;i++) {
calc_predictor_params(s, i);
put_bits(&s->pbctx, 4, 0); // prediction type : currently only type 0 has been RE'd
put_bits(&s->pbctx, 4, s->lpc[i].lpc_quant);
put_bits(&s->pbctx, 3, s->rc.rice_modifier);
put_bits(&s->pbctx, 5, s->lpc[i].lpc_order);
// predictor coeff. table
for(j=0;j<s->lpc[i].lpc_order;j++) {
put_sbits(&s->pbctx, 16, s->lpc[i].lpc_coeff[j]);
}
}
// apply lpc and entropy coding to audio samples
for(i=0;i<s->avctx->channels;i++) {
alac_linear_predictor(s, i);
alac_entropy_coder(s);
}
}
static av_cold int alac_encode_init(AVCodecContext *avctx)
{
AlacEncodeContext *s = avctx->priv_data;
int ret;
uint8_t *alac_extradata = av_mallocz(ALAC_EXTRADATA_SIZE+1);
avctx->frame_size = DEFAULT_FRAME_SIZE;
avctx->bits_per_coded_sample = DEFAULT_SAMPLE_SIZE;
if(avctx->sample_fmt != AV_SAMPLE_FMT_S16) {
av_log(avctx, AV_LOG_ERROR, "only pcm_s16 input samples are supported\n");
return -1;
}
// Set default compression level
if(avctx->compression_level == FF_COMPRESSION_DEFAULT)
s->compression_level = 2;
else
s->compression_level = av_clip(avctx->compression_level, 0, 2);
// Initialize default Rice parameters
s->rc.history_mult = 40;
s->rc.initial_history = 10;
s->rc.k_modifier = 14;
s->rc.rice_modifier = 4;
s->max_coded_frame_size = 8 + (avctx->frame_size*avctx->channels*avctx->bits_per_coded_sample>>3);
s->write_sample_size = avctx->bits_per_coded_sample + avctx->channels - 1; // FIXME: consider wasted_bytes
AV_WB32(alac_extradata, ALAC_EXTRADATA_SIZE);
AV_WB32(alac_extradata+4, MKBETAG('a','l','a','c'));
AV_WB32(alac_extradata+12, avctx->frame_size);
AV_WB8 (alac_extradata+17, avctx->bits_per_coded_sample);
AV_WB8 (alac_extradata+21, avctx->channels);
AV_WB32(alac_extradata+24, s->max_coded_frame_size);
AV_WB32(alac_extradata+28, avctx->sample_rate*avctx->channels*avctx->bits_per_coded_sample); // average bitrate
AV_WB32(alac_extradata+32, avctx->sample_rate);
// Set relevant extradata fields
if(s->compression_level > 0) {
AV_WB8(alac_extradata+18, s->rc.history_mult);
AV_WB8(alac_extradata+19, s->rc.initial_history);
AV_WB8(alac_extradata+20, s->rc.k_modifier);
}
s->min_prediction_order = DEFAULT_MIN_PRED_ORDER;
if(avctx->min_prediction_order >= 0) {
if(avctx->min_prediction_order < MIN_LPC_ORDER ||
avctx->min_prediction_order > ALAC_MAX_LPC_ORDER) {
av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n", avctx->min_prediction_order);
return -1;
}
s->min_prediction_order = avctx->min_prediction_order;
}
s->max_prediction_order = DEFAULT_MAX_PRED_ORDER;
if(avctx->max_prediction_order >= 0) {
if(avctx->max_prediction_order < MIN_LPC_ORDER ||
avctx->max_prediction_order > ALAC_MAX_LPC_ORDER) {
av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n", avctx->max_prediction_order);
return -1;
}
s->max_prediction_order = avctx->max_prediction_order;
}
if(s->max_prediction_order < s->min_prediction_order) {
av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
s->min_prediction_order, s->max_prediction_order);
return -1;
}
avctx->extradata = alac_extradata;
avctx->extradata_size = ALAC_EXTRADATA_SIZE;
avctx->coded_frame = avcodec_alloc_frame();
avctx->coded_frame->key_frame = 1;
s->avctx = avctx;
ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size, s->max_prediction_order,
FF_LPC_TYPE_LEVINSON);
return ret;
}
static int alac_encode_frame(AVCodecContext *avctx, uint8_t *frame,
int buf_size, void *data)
{
AlacEncodeContext *s = avctx->priv_data;
PutBitContext *pb = &s->pbctx;
int i, out_bytes, verbatim_flag = 0;
if(avctx->frame_size > DEFAULT_FRAME_SIZE) {
av_log(avctx, AV_LOG_ERROR, "input frame size exceeded\n");
return -1;
}
if(buf_size < 2*s->max_coded_frame_size) {
av_log(avctx, AV_LOG_ERROR, "buffer size is too small\n");
return -1;
}
verbatim:
init_put_bits(pb, frame, buf_size);
if((s->compression_level == 0) || verbatim_flag) {
// Verbatim mode
const int16_t *samples = data;
write_frame_header(s, 1);
for(i=0; i<avctx->frame_size*avctx->channels; i++) {
put_sbits(pb, 16, *samples++);
}
} else {
init_sample_buffers(s, data);
write_frame_header(s, 0);
write_compressed_frame(s);
}
put_bits(pb, 3, 7);
flush_put_bits(pb);
out_bytes = put_bits_count(pb) >> 3;
if(out_bytes > s->max_coded_frame_size) {
/* frame too large. use verbatim mode */
if(verbatim_flag || (s->compression_level == 0)) {
/* still too large. must be an error. */
av_log(avctx, AV_LOG_ERROR, "error encoding frame\n");
return -1;
}
verbatim_flag = 1;
goto verbatim;
}
return out_bytes;
}
static av_cold int alac_encode_close(AVCodecContext *avctx)
{
AlacEncodeContext *s = avctx->priv_data;
ff_lpc_end(&s->lpc_ctx);
av_freep(&avctx->extradata);
avctx->extradata_size = 0;
av_freep(&avctx->coded_frame);
return 0;
}
AVCodec ff_alac_encoder = {
"alac",
AVMEDIA_TYPE_AUDIO,
CODEC_ID_ALAC,
sizeof(AlacEncodeContext),
alac_encode_init,
alac_encode_frame,
alac_encode_close,
.capabilities = CODEC_CAP_SMALL_LAST_FRAME,
.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE},
.long_name = NULL_IF_CONFIG_SMALL("ALAC (Apple Lossless Audio Codec)"),
};