1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-03 05:10:03 +02:00
FFmpeg/libavfilter/vf_atadenoise.c
Andreas Rheinhardt 8be701d9f7 avfilter/avfilter: Add numbers of (in|out)pads directly to AVFilter
Up until now, an AVFilter's lists of input and output AVFilterPads
were terminated by a sentinel and the only way to get the length
of these lists was by using avfilter_pad_count(). This has two
drawbacks: first, sizeof(AVFilterPad) is not negligible
(i.e. 64B on 64bit systems); second, getting the size involves
a function call instead of just reading the data.

This commit therefore changes this. The sentinels are removed and new
private fields nb_inputs and nb_outputs are added to AVFilter that
contain the number of elements of the respective AVFilterPad array.

Given that AVFilter.(in|out)puts are the only arrays of zero-terminated
AVFilterPads an API user has access to (AVFilterContext.(in|out)put_pads
are not zero-terminated and they already have a size field) the argument
to avfilter_pad_count() is always one of these lists, so it just has to
find the filter the list belongs to and read said number. This is slower
than before, but a replacement function that just reads the internal numbers
that users are expected to switch to will be added soon; and furthermore,
avfilter_pad_count() is probably never called in hot loops anyway.

This saves about 49KiB from the binary; notice that these sentinels are
not in .bss despite being zeroed: they are in .data.rel.ro due to the
non-sentinels.

Reviewed-by: Nicolas George <george@nsup.org>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-08-20 12:53:58 +02:00

583 lines
27 KiB
C

/*
* Copyright (c) 2015 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Adaptive Temporal Averaging Denoiser,
* based on paper "Video Denoising Based on Adaptive Temporal Averaging" by
* David Bartovčak and Miroslav Vrankić
*/
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#define FF_BUFQUEUE_SIZE 129
#include "bufferqueue.h"
#include "atadenoise.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#define SIZE FF_BUFQUEUE_SIZE
typedef struct ATADenoiseContext {
const AVClass *class;
float fthra[4], fthrb[4];
float sigma[4];
int thra[4], thrb[4];
int algorithm;
int planes;
int nb_planes;
int planewidth[4];
int planeheight[4];
struct FFBufQueue q;
void *data[4][SIZE];
int linesize[4][SIZE];
float weights[4][SIZE];
int size, mid, radius;
int available;
int (*filter_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
ATADenoiseDSPContext dsp;
} ATADenoiseContext;
#define OFFSET(x) offsetof(ATADenoiseContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
#define VF AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
static const AVOption atadenoise_options[] = {
{ "0a", "set threshold A for 1st plane", OFFSET(fthra[0]), AV_OPT_TYPE_FLOAT, {.dbl=0.02}, 0, 0.3, FLAGS },
{ "0b", "set threshold B for 1st plane", OFFSET(fthrb[0]), AV_OPT_TYPE_FLOAT, {.dbl=0.04}, 0, 5.0, FLAGS },
{ "1a", "set threshold A for 2nd plane", OFFSET(fthra[1]), AV_OPT_TYPE_FLOAT, {.dbl=0.02}, 0, 0.3, FLAGS },
{ "1b", "set threshold B for 2nd plane", OFFSET(fthrb[1]), AV_OPT_TYPE_FLOAT, {.dbl=0.04}, 0, 5.0, FLAGS },
{ "2a", "set threshold A for 3rd plane", OFFSET(fthra[2]), AV_OPT_TYPE_FLOAT, {.dbl=0.02}, 0, 0.3, FLAGS },
{ "2b", "set threshold B for 3rd plane", OFFSET(fthrb[2]), AV_OPT_TYPE_FLOAT, {.dbl=0.04}, 0, 5.0, FLAGS },
{ "s", "set how many frames to use", OFFSET(size), AV_OPT_TYPE_INT, {.i64=9}, 5, SIZE, VF },
{ "p", "set what planes to filter", OFFSET(planes), AV_OPT_TYPE_FLAGS, {.i64=7}, 0, 15, FLAGS },
{ "a", "set variant of algorithm", OFFSET(algorithm),AV_OPT_TYPE_INT, {.i64=PARALLEL}, 0, NB_ATAA-1, FLAGS, "a" },
{ "p", "parallel", 0, AV_OPT_TYPE_CONST, {.i64=PARALLEL}, 0, 0, FLAGS, "a" },
{ "s", "serial", 0, AV_OPT_TYPE_CONST, {.i64=SERIAL}, 0, 0, FLAGS, "a" },
{ "0s", "set sigma for 1st plane", OFFSET(sigma[0]), AV_OPT_TYPE_FLOAT, {.dbl=INT16_MAX}, 0, INT16_MAX, FLAGS },
{ "1s", "set sigma for 2nd plane", OFFSET(sigma[1]), AV_OPT_TYPE_FLOAT, {.dbl=INT16_MAX}, 0, INT16_MAX, FLAGS },
{ "2s", "set sigma for 3rd plane", OFFSET(sigma[2]), AV_OPT_TYPE_FLOAT, {.dbl=INT16_MAX}, 0, INT16_MAX, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(atadenoise);
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pixel_fmts[] = {
AV_PIX_FMT_GRAY8,
AV_PIX_FMT_GRAY9,
AV_PIX_FMT_GRAY10,
AV_PIX_FMT_GRAY12,
AV_PIX_FMT_GRAY14,
AV_PIX_FMT_GRAY16,
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_YUVJ411P,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV440P10,
AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12,
AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14,
AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16,
AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_NONE
};
return ff_set_common_formats_from_list(ctx, pixel_fmts);
}
static av_cold int init(AVFilterContext *ctx)
{
ATADenoiseContext *s = ctx->priv;
if (!(s->size & 1)) {
av_log(ctx, AV_LOG_WARNING, "size %d is invalid. Must be an odd value, setting it to %d.\n", s->size, s->size|1);
s->size |= 1;
}
s->radius = s->size / 2;
s->mid = s->radius;
return 0;
}
typedef struct ThreadData {
AVFrame *in, *out;
} ThreadData;
#define WFILTER_ROW(type, name) \
static void fweight_row##name(const uint8_t *ssrc, uint8_t *ddst, \
const uint8_t *ssrcf[SIZE], \
int w, int mid, int size, \
int thra, int thrb, const float *weights) \
{ \
const type *src = (const type *)ssrc; \
const type **srcf = (const type **)ssrcf; \
type *dst = (type *)ddst; \
\
for (int x = 0; x < w; x++) { \
const int srcx = src[x]; \
unsigned lsumdiff = 0, rsumdiff = 0; \
unsigned ldiff, rdiff; \
float sum = srcx; \
float wsum = 1.f; \
int l = 0, r = 0; \
int srcjx, srcix; \
\
for (int j = mid - 1, i = mid + 1; j >= 0 && i < size; j--, i++) { \
srcjx = srcf[j][x]; \
\
ldiff = FFABS(srcx - srcjx); \
lsumdiff += ldiff; \
if (ldiff > thra || \
lsumdiff > thrb) \
break; \
l++; \
sum += srcjx * weights[j]; \
wsum += weights[j]; \
\
srcix = srcf[i][x]; \
\
rdiff = FFABS(srcx - srcix); \
rsumdiff += rdiff; \
if (rdiff > thra || \
rsumdiff > thrb) \
break; \
r++; \
sum += srcix * weights[i]; \
wsum += weights[i]; \
} \
\
dst[x] = lrintf(sum / wsum); \
} \
}
WFILTER_ROW(uint8_t, 8)
WFILTER_ROW(uint16_t, 16)
#define WFILTER_ROW_SERIAL(type, name) \
static void fweight_row##name##_serial(const uint8_t *ssrc, uint8_t *ddst, \
const uint8_t *ssrcf[SIZE], \
int w, int mid, int size, \
int thra, int thrb, \
const float *weights) \
{ \
const type *src = (const type *)ssrc; \
const type **srcf = (const type **)ssrcf; \
type *dst = (type *)ddst; \
\
for (int x = 0; x < w; x++) { \
const int srcx = src[x]; \
unsigned lsumdiff = 0, rsumdiff = 0; \
unsigned ldiff, rdiff; \
float sum = srcx; \
float wsum = 1.f; \
int l = 0, r = 0; \
int srcjx, srcix; \
\
for (int j = mid - 1; j >= 0; j--) { \
srcjx = srcf[j][x]; \
\
ldiff = FFABS(srcx - srcjx); \
lsumdiff += ldiff; \
if (ldiff > thra || \
lsumdiff > thrb) \
break; \
l++; \
sum += srcjx * weights[j]; \
wsum += weights[j]; \
} \
\
for (int i = mid + 1; i < size; i++) { \
srcix = srcf[i][x]; \
\
rdiff = FFABS(srcx - srcix); \
rsumdiff += rdiff; \
if (rdiff > thra || \
rsumdiff > thrb) \
break; \
r++; \
sum += srcix * weights[i]; \
wsum += weights[i]; \
} \
\
dst[x] = lrintf(sum / wsum); \
} \
}
WFILTER_ROW_SERIAL(uint8_t, 8)
WFILTER_ROW_SERIAL(uint16_t, 16)
#define FILTER_ROW(type, name) \
static void filter_row##name(const uint8_t *ssrc, uint8_t *ddst, \
const uint8_t *ssrcf[SIZE], \
int w, int mid, int size, \
int thra, int thrb, const float *weights) \
{ \
const type *src = (const type *)ssrc; \
const type **srcf = (const type **)ssrcf; \
type *dst = (type *)ddst; \
\
for (int x = 0; x < w; x++) { \
const int srcx = src[x]; \
unsigned lsumdiff = 0, rsumdiff = 0; \
unsigned ldiff, rdiff; \
unsigned sum = srcx; \
int l = 0, r = 0; \
int srcjx, srcix; \
\
for (int j = mid - 1, i = mid + 1; j >= 0 && i < size; j--, i++) { \
srcjx = srcf[j][x]; \
\
ldiff = FFABS(srcx - srcjx); \
lsumdiff += ldiff; \
if (ldiff > thra || \
lsumdiff > thrb) \
break; \
l++; \
sum += srcjx; \
\
srcix = srcf[i][x]; \
\
rdiff = FFABS(srcx - srcix); \
rsumdiff += rdiff; \
if (rdiff > thra || \
rsumdiff > thrb) \
break; \
r++; \
sum += srcix; \
} \
\
dst[x] = (sum + ((r + l + 1) >> 1)) / (r + l + 1); \
} \
}
FILTER_ROW(uint8_t, 8)
FILTER_ROW(uint16_t, 16)
#define FILTER_ROW_SERIAL(type, name) \
static void filter_row##name##_serial(const uint8_t *ssrc, uint8_t *ddst, \
const uint8_t *ssrcf[SIZE], \
int w, int mid, int size, \
int thra, int thrb, \
const float *weights) \
{ \
const type *src = (const type *)ssrc; \
const type **srcf = (const type **)ssrcf; \
type *dst = (type *)ddst; \
\
for (int x = 0; x < w; x++) { \
const int srcx = src[x]; \
unsigned lsumdiff = 0, rsumdiff = 0; \
unsigned ldiff, rdiff; \
unsigned sum = srcx; \
int l = 0, r = 0; \
int srcjx, srcix; \
\
for (int j = mid - 1; j >= 0; j--) { \
srcjx = srcf[j][x]; \
\
ldiff = FFABS(srcx - srcjx); \
lsumdiff += ldiff; \
if (ldiff > thra || \
lsumdiff > thrb) \
break; \
l++; \
sum += srcjx; \
} \
\
for (int i = mid + 1; i < size; i++) { \
srcix = srcf[i][x]; \
\
rdiff = FFABS(srcx - srcix); \
rsumdiff += rdiff; \
if (rdiff > thra || \
rsumdiff > thrb) \
break; \
r++; \
sum += srcix; \
} \
\
dst[x] = (sum + ((r + l + 1) >> 1)) / (r + l + 1); \
} \
}
FILTER_ROW_SERIAL(uint8_t, 8)
FILTER_ROW_SERIAL(uint16_t, 16)
static int filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ATADenoiseContext *s = ctx->priv;
ThreadData *td = arg;
AVFrame *in = td->in;
AVFrame *out = td->out;
const int size = s->size;
const int mid = s->mid;
int p, y, i;
for (p = 0; p < s->nb_planes; p++) {
const float *weights = s->weights[p];
const int h = s->planeheight[p];
const int w = s->planewidth[p];
const int slice_start = (h * jobnr) / nb_jobs;
const int slice_end = (h * (jobnr+1)) / nb_jobs;
const uint8_t *src = in->data[p] + slice_start * in->linesize[p];
uint8_t *dst = out->data[p] + slice_start * out->linesize[p];
const int thra = s->thra[p];
const int thrb = s->thrb[p];
const uint8_t **data = (const uint8_t **)s->data[p];
const int *linesize = (const int *)s->linesize[p];
const uint8_t *srcf[SIZE];
if (!((1 << p) & s->planes)) {
av_image_copy_plane(dst, out->linesize[p], src, in->linesize[p],
w, slice_end - slice_start);
continue;
}
for (i = 0; i < size; i++)
srcf[i] = data[i] + slice_start * linesize[i];
for (y = slice_start; y < slice_end; y++) {
s->dsp.filter_row[p](src, dst, srcf, w, mid, size, thra, thrb, weights);
dst += out->linesize[p];
src += in->linesize[p];
for (i = 0; i < size; i++)
srcf[i] += linesize[i];
}
}
return 0;
}
static int config_input(AVFilterLink *inlink)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
AVFilterContext *ctx = inlink->dst;
ATADenoiseContext *s = ctx->priv;
int depth;
s->nb_planes = desc->nb_components;
s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
s->planeheight[0] = s->planeheight[3] = inlink->h;
s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
s->planewidth[0] = s->planewidth[3] = inlink->w;
depth = desc->comp[0].depth;
s->filter_slice = filter_slice;
for (int p = 0; p < s->nb_planes; p++) {
if (depth == 8 && s->sigma[p] == INT16_MAX)
s->dsp.filter_row[p] = s->algorithm == PARALLEL ? filter_row8 : filter_row8_serial;
else if (s->sigma[p] == INT16_MAX)
s->dsp.filter_row[p] = s->algorithm == PARALLEL ? filter_row16 : filter_row16_serial;
else if (depth == 8 && s->sigma[p] < INT16_MAX)
s->dsp.filter_row[p] = s->algorithm == PARALLEL ? fweight_row8 : fweight_row8_serial;
else if (s->sigma[p] < INT16_MAX)
s->dsp.filter_row[p] = s->algorithm == PARALLEL ? fweight_row16 : fweight_row16_serial;
}
s->thra[0] = s->fthra[0] * (1 << depth) - 1;
s->thra[1] = s->fthra[1] * (1 << depth) - 1;
s->thra[2] = s->fthra[2] * (1 << depth) - 1;
s->thrb[0] = s->fthrb[0] * (1 << depth) - 1;
s->thrb[1] = s->fthrb[1] * (1 << depth) - 1;
s->thrb[2] = s->fthrb[2] * (1 << depth) - 1;
for (int p = 0; p < s->nb_planes; p++) {
float sigma = s->radius * s->sigma[p];
s->weights[p][s->radius] = 1.f;
for (int n = 1; n <= s->radius; n++) {
s->weights[p][s->radius + n] =
s->weights[p][s->radius - n] = expf(-0.5 * (n + 1) * (n + 1) / (sigma * sigma));
}
}
if (ARCH_X86)
ff_atadenoise_init_x86(&s->dsp, depth, s->algorithm, s->sigma);
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
{
AVFilterContext *ctx = inlink->dst;
AVFilterLink *outlink = ctx->outputs[0];
ATADenoiseContext *s = ctx->priv;
AVFrame *out, *in;
int i;
if (s->q.available != s->size) {
if (s->q.available < s->mid) {
for (i = 0; i < s->mid; i++) {
out = av_frame_clone(buf);
if (!out) {
av_frame_free(&buf);
return AVERROR(ENOMEM);
}
ff_bufqueue_add(ctx, &s->q, out);
}
}
if (s->q.available < s->size) {
ff_bufqueue_add(ctx, &s->q, buf);
s->available++;
}
return 0;
}
in = ff_bufqueue_peek(&s->q, s->mid);
if (!ctx->is_disabled) {
ThreadData td;
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&buf);
return AVERROR(ENOMEM);
}
for (i = 0; i < s->size; i++) {
AVFrame *frame = ff_bufqueue_peek(&s->q, i);
s->data[0][i] = frame->data[0];
s->data[1][i] = frame->data[1];
s->data[2][i] = frame->data[2];
s->linesize[0][i] = frame->linesize[0];
s->linesize[1][i] = frame->linesize[1];
s->linesize[2][i] = frame->linesize[2];
}
td.in = in; td.out = out;
ff_filter_execute(ctx, s->filter_slice, &td, NULL,
FFMIN3(s->planeheight[1],
s->planeheight[2],
ff_filter_get_nb_threads(ctx)));
av_frame_copy_props(out, in);
} else {
out = av_frame_clone(in);
if (!out) {
av_frame_free(&buf);
return AVERROR(ENOMEM);
}
}
in = ff_bufqueue_get(&s->q);
av_frame_free(&in);
ff_bufqueue_add(ctx, &s->q, buf);
return ff_filter_frame(outlink, out);
}
static int request_frame(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
ATADenoiseContext *s = ctx->priv;
int ret = 0;
ret = ff_request_frame(ctx->inputs[0]);
if (ret == AVERROR_EOF && !ctx->is_disabled && s->available) {
AVFrame *buf = av_frame_clone(ff_bufqueue_peek(&s->q, s->available));
if (!buf)
return AVERROR(ENOMEM);
ret = filter_frame(ctx->inputs[0], buf);
s->available--;
}
return ret;
}
static av_cold void uninit(AVFilterContext *ctx)
{
ATADenoiseContext *s = ctx->priv;
ff_bufqueue_discard_all(&s->q);
}
static int process_command(AVFilterContext *ctx,
const char *cmd,
const char *arg,
char *res,
int res_len,
int flags)
{
int ret = ff_filter_process_command(ctx, cmd, arg, res, res_len, flags);
if (ret < 0)
return ret;
return config_input(ctx->inputs[0]);
}
static const AVFilterPad inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
};
static const AVFilterPad outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.request_frame = request_frame,
},
};
const AVFilter ff_vf_atadenoise = {
.name = "atadenoise",
.description = NULL_IF_CONFIG_SMALL("Apply an Adaptive Temporal Averaging Denoiser."),
.priv_size = sizeof(ATADenoiseContext),
.priv_class = &atadenoise_class,
.init = init,
.uninit = uninit,
.query_formats = query_formats,
FILTER_INPUTS(inputs),
FILTER_OUTPUTS(outputs),
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS,
.process_command = process_command,
};