1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
FFmpeg/libavfilter/vf_lensfun.c
Daniel Playfair Cal 6e42021128 avfilter/vf_lensfun: add scale parameter
The lensfun filter wraps the lensfun library which performs
transformations on videos to correct for lens distortion. Often this
results in areas in the input being mapped to areas that fall outside
the boundaries of the output. The library has a parameter called scale
which is a scale factor applied to the output video. By decreasing it it
is possible to regain the areas of the video which would otherwise have
been lost. There is a special value of 0 which indicates that the
library should automatically determine a scale factor that results in
the output frame being filled (i.e. little or no black/unmapped areas).

This patch adds a corresponding scale option to the lensfun filter which
is passed through to the library. The existing behaviour of using the
automatic value of 0 is retained as the default behaviour, while other
values will be passed through to the library.

Signed-off-by: Daniel Playfair Cal <daniel.playfair.cal@gmail.com>
2019-03-25 22:50:54 +01:00

549 lines
26 KiB
C

/*
* Copyright (C) 2007 by Andrew Zabolotny (author of lensfun, from which this filter derives from)
* Copyright (C) 2018 Stephen Seo
*
* This file is part of FFmpeg.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
/**
* @file
* Lensfun filter, applies lens correction with parameters from the lensfun database
*
* @see https://lensfun.sourceforge.net/
*/
#include <float.h>
#include <math.h>
#include "libavutil/avassert.h"
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "libswscale/swscale.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#include <lensfun.h>
#define LANCZOS_RESOLUTION 256
enum Mode {
VIGNETTING = 0x1,
GEOMETRY_DISTORTION = 0x2,
SUBPIXEL_DISTORTION = 0x4
};
enum InterpolationType {
NEAREST,
LINEAR,
LANCZOS
};
typedef struct VignettingThreadData {
int width, height;
uint8_t *data_in;
int linesize_in;
int pixel_composition;
lfModifier *modifier;
} VignettingThreadData;
typedef struct DistortionCorrectionThreadData {
int width, height;
const float *distortion_coords;
const uint8_t *data_in;
uint8_t *data_out;
int linesize_in, linesize_out;
const float *interpolation;
int mode;
int interpolation_type;
} DistortionCorrectionThreadData;
typedef struct LensfunContext {
const AVClass *class;
const char *make, *model, *lens_model;
int mode;
float focal_length;
float aperture;
float focus_distance;
float scale;
int target_geometry;
int reverse;
int interpolation_type;
float *distortion_coords;
float *interpolation;
lfLens *lens;
lfCamera *camera;
lfModifier *modifier;
} LensfunContext;
#define OFFSET(x) offsetof(LensfunContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption lensfun_options[] = {
{ "make", "set camera maker", OFFSET(make), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ "model", "set camera model", OFFSET(model), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ "lens_model", "set lens model", OFFSET(lens_model), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ "mode", "set mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=GEOMETRY_DISTORTION}, 0, VIGNETTING | GEOMETRY_DISTORTION | SUBPIXEL_DISTORTION, FLAGS, "mode" },
{ "vignetting", "fix lens vignetting", 0, AV_OPT_TYPE_CONST, {.i64=VIGNETTING}, 0, 0, FLAGS, "mode" },
{ "geometry", "correct geometry distortion", 0, AV_OPT_TYPE_CONST, {.i64=GEOMETRY_DISTORTION}, 0, 0, FLAGS, "mode" },
{ "subpixel", "fix chromatic aberrations", 0, AV_OPT_TYPE_CONST, {.i64=SUBPIXEL_DISTORTION}, 0, 0, FLAGS, "mode" },
{ "vig_geo", "fix lens vignetting and correct geometry distortion", 0, AV_OPT_TYPE_CONST, {.i64=VIGNETTING | GEOMETRY_DISTORTION}, 0, 0, FLAGS, "mode" },
{ "vig_subpixel", "fix lens vignetting and chromatic aberrations", 0, AV_OPT_TYPE_CONST, {.i64=VIGNETTING | SUBPIXEL_DISTORTION}, 0, 0, FLAGS, "mode" },
{ "distortion", "correct geometry distortion and chromatic aberrations", 0, AV_OPT_TYPE_CONST, {.i64=GEOMETRY_DISTORTION | SUBPIXEL_DISTORTION}, 0, 0, FLAGS, "mode" },
{ "all", NULL, 0, AV_OPT_TYPE_CONST, {.i64=VIGNETTING | GEOMETRY_DISTORTION | SUBPIXEL_DISTORTION}, 0, 0, FLAGS, "mode" },
{ "focal_length", "focal length of video (zoom; constant for the duration of the use of this filter)", OFFSET(focal_length), AV_OPT_TYPE_FLOAT, {.dbl=18}, 0.0, DBL_MAX, FLAGS },
{ "aperture", "aperture (constant for the duration of the use of this filter)", OFFSET(aperture), AV_OPT_TYPE_FLOAT, {.dbl=3.5}, 0.0, DBL_MAX, FLAGS },
{ "focus_distance", "focus distance (constant for the duration of the use of this filter)", OFFSET(focus_distance), AV_OPT_TYPE_FLOAT, {.dbl=1000.0f}, 0.0, DBL_MAX, FLAGS },
{ "scale", "scale factor applied after corrections (0.0 means automatic scaling)", OFFSET(scale), AV_OPT_TYPE_FLOAT, {.dbl=0.0}, 0.0, DBL_MAX, FLAGS },
{ "target_geometry", "target geometry of the lens correction (only when geometry correction is enabled)", OFFSET(target_geometry), AV_OPT_TYPE_INT, {.i64=LF_RECTILINEAR}, 0, INT_MAX, FLAGS, "lens_geometry" },
{ "rectilinear", "rectilinear lens (default)", 0, AV_OPT_TYPE_CONST, {.i64=LF_RECTILINEAR}, 0, 0, FLAGS, "lens_geometry" },
{ "fisheye", "fisheye lens", 0, AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE}, 0, 0, FLAGS, "lens_geometry" },
{ "panoramic", "panoramic (cylindrical)", 0, AV_OPT_TYPE_CONST, {.i64=LF_PANORAMIC}, 0, 0, FLAGS, "lens_geometry" },
{ "equirectangular", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=LF_EQUIRECTANGULAR}, 0, 0, FLAGS, "lens_geometry" },
{ "fisheye_orthographic", "orthographic fisheye", 0, AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE_ORTHOGRAPHIC}, 0, 0, FLAGS, "lens_geometry" },
{ "fisheye_stereographic", "stereographic fisheye", 0, AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE_STEREOGRAPHIC}, 0, 0, FLAGS, "lens_geometry" },
{ "fisheye_equisolid", "equisolid fisheye", 0, AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE_EQUISOLID}, 0, 0, FLAGS, "lens_geometry" },
{ "fisheye_thoby", "fisheye as measured by thoby", 0, AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE_THOBY}, 0, 0, FLAGS, "lens_geometry" },
{ "reverse", "Does reverse correction (regular image to lens distorted)", OFFSET(reverse), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
{ "interpolation", "Type of interpolation", OFFSET(interpolation_type), AV_OPT_TYPE_INT, {.i64=LINEAR}, 0, LANCZOS, FLAGS, "interpolation" },
{ "nearest", NULL, 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, "interpolation" },
{ "linear", NULL, 0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, "interpolation" },
{ "lanczos", NULL, 0, AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0, 0, FLAGS, "interpolation" },
{ NULL }
};
AVFILTER_DEFINE_CLASS(lensfun);
static av_cold int init(AVFilterContext *ctx)
{
LensfunContext *lensfun = ctx->priv;
lfDatabase *db;
const lfCamera **cameras;
const lfLens **lenses;
if (!lensfun->make) {
av_log(ctx, AV_LOG_FATAL, "Option \"make\" not specified\n");
return AVERROR(EINVAL);
} else if (!lensfun->model) {
av_log(ctx, AV_LOG_FATAL, "Option \"model\" not specified\n");
return AVERROR(EINVAL);
} else if (!lensfun->lens_model) {
av_log(ctx, AV_LOG_FATAL, "Option \"lens_model\" not specified\n");
return AVERROR(EINVAL);
}
lensfun->lens = lf_lens_new();
lensfun->camera = lf_camera_new();
db = lf_db_new();
if (lf_db_load(db) != LF_NO_ERROR) {
lf_db_destroy(db);
av_log(ctx, AV_LOG_FATAL, "Failed to load lensfun database\n");
return AVERROR_INVALIDDATA;
}
cameras = lf_db_find_cameras(db, lensfun->make, lensfun->model);
if (cameras && *cameras) {
lf_camera_copy(lensfun->camera, *cameras);
av_log(ctx, AV_LOG_INFO, "Using camera %s\n", lensfun->camera->Model);
} else {
lf_free(cameras);
lf_db_destroy(db);
av_log(ctx, AV_LOG_FATAL, "Failed to find camera in lensfun database\n");
return AVERROR_INVALIDDATA;
}
lf_free(cameras);
lenses = lf_db_find_lenses_hd(db, lensfun->camera, NULL, lensfun->lens_model, 0);
if (lenses && *lenses) {
lf_lens_copy(lensfun->lens, *lenses);
av_log(ctx, AV_LOG_INFO, "Using lens %s\n", lensfun->lens->Model);
} else {
lf_free(lenses);
lf_db_destroy(db);
av_log(ctx, AV_LOG_FATAL, "Failed to find lens in lensfun database\n");
return AVERROR_INVALIDDATA;
}
lf_free(lenses);
lf_db_destroy(db);
return 0;
}
static int query_formats(AVFilterContext *ctx)
{
// Some of the functions provided by lensfun require pixels in RGB format
static const enum AVPixelFormat fmts[] = {AV_PIX_FMT_RGB24, AV_PIX_FMT_NONE};
AVFilterFormats *fmts_list = ff_make_format_list(fmts);
return ff_set_common_formats(ctx, fmts_list);
}
static float lanczos_kernel(float x)
{
if (x == 0.0f) {
return 1.0f;
} else if (x > -2.0f && x < 2.0f) {
return (2.0f * sin(M_PI * x) * sin(M_PI / 2.0f * x)) / (M_PI * M_PI * x * x);
} else {
return 0.0f;
}
}
static int config_props(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
LensfunContext *lensfun = ctx->priv;
int index;
float a;
int lensfun_mode = 0;
if (!lensfun->modifier) {
if (lensfun->camera && lensfun->lens) {
lensfun->modifier = lf_modifier_new(lensfun->lens,
lensfun->camera->CropFactor,
inlink->w,
inlink->h);
if (lensfun->mode & VIGNETTING)
lensfun_mode |= LF_MODIFY_VIGNETTING;
if (lensfun->mode & GEOMETRY_DISTORTION)
lensfun_mode |= LF_MODIFY_DISTORTION | LF_MODIFY_GEOMETRY | LF_MODIFY_SCALE;
if (lensfun->mode & SUBPIXEL_DISTORTION)
lensfun_mode |= LF_MODIFY_TCA;
lf_modifier_initialize(lensfun->modifier,
lensfun->lens,
LF_PF_U8,
lensfun->focal_length,
lensfun->aperture,
lensfun->focus_distance,
lensfun->scale,
lensfun->target_geometry,
lensfun_mode,
lensfun->reverse);
} else {
// lensfun->camera and lensfun->lens should have been initialized
return AVERROR_BUG;
}
}
if (!lensfun->distortion_coords) {
if (lensfun->mode & SUBPIXEL_DISTORTION) {
lensfun->distortion_coords = av_malloc_array(inlink->w * inlink->h, sizeof(float) * 2 * 3);
if (!lensfun->distortion_coords)
return AVERROR(ENOMEM);
if (lensfun->mode & GEOMETRY_DISTORTION) {
// apply both geometry and subpixel distortion
lf_modifier_apply_subpixel_geometry_distortion(lensfun->modifier,
0, 0,
inlink->w, inlink->h,
lensfun->distortion_coords);
} else {
// apply only subpixel distortion
lf_modifier_apply_subpixel_distortion(lensfun->modifier,
0, 0,
inlink->w, inlink->h,
lensfun->distortion_coords);
}
} else if (lensfun->mode & GEOMETRY_DISTORTION) {
lensfun->distortion_coords = av_malloc_array(inlink->w * inlink->h, sizeof(float) * 2);
if (!lensfun->distortion_coords)
return AVERROR(ENOMEM);
// apply only geometry distortion
lf_modifier_apply_geometry_distortion(lensfun->modifier,
0, 0,
inlink->w, inlink->h,
lensfun->distortion_coords);
}
}
if (!lensfun->interpolation)
if (lensfun->interpolation_type == LANCZOS) {
lensfun->interpolation = av_malloc_array(LANCZOS_RESOLUTION, sizeof(float) * 4);
if (!lensfun->interpolation)
return AVERROR(ENOMEM);
for (index = 0; index < 4 * LANCZOS_RESOLUTION; ++index) {
if (index == 0) {
lensfun->interpolation[index] = 1.0f;
} else {
a = sqrtf((float)index / LANCZOS_RESOLUTION);
lensfun->interpolation[index] = lanczos_kernel(a);
}
}
}
return 0;
}
static int vignetting_filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
const VignettingThreadData *thread_data = arg;
const int slice_start = thread_data->height * jobnr / nb_jobs;
const int slice_end = thread_data->height * (jobnr + 1) / nb_jobs;
lf_modifier_apply_color_modification(thread_data->modifier,
thread_data->data_in + slice_start * thread_data->linesize_in,
0,
slice_start,
thread_data->width,
slice_end - slice_start,
thread_data->pixel_composition,
thread_data->linesize_in);
return 0;
}
static float square(float x)
{
return x * x;
}
static int distortion_correction_filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
const DistortionCorrectionThreadData *thread_data = arg;
const int slice_start = thread_data->height * jobnr / nb_jobs;
const int slice_end = thread_data->height * (jobnr + 1) / nb_jobs;
int x, y, i, j, rgb_index;
float interpolated, new_x, new_y, d, norm;
int new_x_int, new_y_int;
for (y = slice_start; y < slice_end; ++y)
for (x = 0; x < thread_data->width; ++x)
for (rgb_index = 0; rgb_index < 3; ++rgb_index) {
if (thread_data->mode & SUBPIXEL_DISTORTION) {
// subpixel (and possibly geometry) distortion correction was applied, correct distortion
switch(thread_data->interpolation_type) {
case NEAREST:
new_x_int = thread_data->distortion_coords[x * 2 * 3 + y * thread_data->width * 2 * 3 + rgb_index * 2] + 0.5f;
new_y_int = thread_data->distortion_coords[x * 2 * 3 + y * thread_data->width * 2 * 3 + rgb_index * 2 + 1] + 0.5f;
if (new_x_int < 0 || new_x_int >= thread_data->width || new_y_int < 0 || new_y_int >= thread_data->height) {
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = 0;
} else {
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = thread_data->data_in[new_x_int * 3 + rgb_index + new_y_int * thread_data->linesize_in];
}
break;
case LINEAR:
interpolated = 0.0f;
new_x = thread_data->distortion_coords[x * 2 * 3 + y * thread_data->width * 2 * 3 + rgb_index * 2];
new_x_int = new_x;
new_y = thread_data->distortion_coords[x * 2 * 3 + y * thread_data->width * 2 * 3 + rgb_index * 2 + 1];
new_y_int = new_y;
if (new_x_int < 0 || new_x_int + 1 >= thread_data->width || new_y_int < 0 || new_y_int + 1 >= thread_data->height) {
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = 0;
} else {
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] =
thread_data->data_in[ new_x_int * 3 + rgb_index + new_y_int * thread_data->linesize_in] * (new_x_int + 1 - new_x) * (new_y_int + 1 - new_y)
+ thread_data->data_in[(new_x_int + 1) * 3 + rgb_index + new_y_int * thread_data->linesize_in] * (new_x - new_x_int) * (new_y_int + 1 - new_y)
+ thread_data->data_in[ new_x_int * 3 + rgb_index + (new_y_int + 1) * thread_data->linesize_in] * (new_x_int + 1 - new_x) * (new_y - new_y_int)
+ thread_data->data_in[(new_x_int + 1) * 3 + rgb_index + (new_y_int + 1) * thread_data->linesize_in] * (new_x - new_x_int) * (new_y - new_y_int);
}
break;
case LANCZOS:
interpolated = 0.0f;
norm = 0.0f;
new_x = thread_data->distortion_coords[x * 2 * 3 + y * thread_data->width * 2 * 3 + rgb_index * 2];
new_x_int = new_x;
new_y = thread_data->distortion_coords[x * 2 * 3 + y * thread_data->width * 2 * 3 + rgb_index * 2 + 1];
new_y_int = new_y;
for (j = 0; j < 4; ++j)
for (i = 0; i < 4; ++i) {
if (new_x_int + i - 2 < 0 || new_x_int + i - 2 >= thread_data->width || new_y_int + j - 2 < 0 || new_y_int + j - 2 >= thread_data->height)
continue;
d = square(new_x - (new_x_int + i - 2)) * square(new_y - (new_y_int + j - 2));
if (d >= 4.0f)
continue;
d = thread_data->interpolation[(int)(d * LANCZOS_RESOLUTION)];
norm += d;
interpolated += thread_data->data_in[(new_x_int + i - 2) * 3 + rgb_index + (new_y_int + j - 2) * thread_data->linesize_in] * d;
}
if (norm == 0.0f) {
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = 0;
} else {
interpolated /= norm;
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = interpolated < 0.0f ? 0.0f : interpolated > 255.0f ? 255.0f : interpolated;
}
break;
}
} else if (thread_data->mode & GEOMETRY_DISTORTION) {
// geometry distortion correction was applied, correct distortion
switch(thread_data->interpolation_type) {
case NEAREST:
new_x_int = thread_data->distortion_coords[x * 2 + y * thread_data->width * 2] + 0.5f;
new_y_int = thread_data->distortion_coords[x * 2 + y * thread_data->width * 2 + 1] + 0.5f;
if (new_x_int < 0 || new_x_int >= thread_data->width || new_y_int < 0 || new_y_int >= thread_data->height) {
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = 0;
} else {
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = thread_data->data_in[new_x_int * 3 + rgb_index + new_y_int * thread_data->linesize_in];
}
break;
case LINEAR:
interpolated = 0.0f;
new_x = thread_data->distortion_coords[x * 2 + y * thread_data->width * 2];
new_x_int = new_x;
new_y = thread_data->distortion_coords[x * 2 + y * thread_data->width * 2 + 1];
new_y_int = new_y;
if (new_x_int < 0 || new_x_int + 1 >= thread_data->width || new_y_int < 0 || new_y_int + 1 >= thread_data->height) {
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = 0;
} else {
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] =
thread_data->data_in[ new_x_int * 3 + rgb_index + new_y_int * thread_data->linesize_in] * (new_x_int + 1 - new_x) * (new_y_int + 1 - new_y)
+ thread_data->data_in[(new_x_int + 1) * 3 + rgb_index + new_y_int * thread_data->linesize_in] * (new_x - new_x_int) * (new_y_int + 1 - new_y)
+ thread_data->data_in[ new_x_int * 3 + rgb_index + (new_y_int + 1) * thread_data->linesize_in] * (new_x_int + 1 - new_x) * (new_y - new_y_int)
+ thread_data->data_in[(new_x_int + 1) * 3 + rgb_index + (new_y_int + 1) * thread_data->linesize_in] * (new_x - new_x_int) * (new_y - new_y_int);
}
break;
case LANCZOS:
interpolated = 0.0f;
norm = 0.0f;
new_x = thread_data->distortion_coords[x * 2 + y * thread_data->width * 2];
new_x_int = new_x;
new_y = thread_data->distortion_coords[x * 2 + 1 + y * thread_data->width * 2];
new_y_int = new_y;
for (j = 0; j < 4; ++j)
for (i = 0; i < 4; ++i) {
if (new_x_int + i - 2 < 0 || new_x_int + i - 2 >= thread_data->width || new_y_int + j - 2 < 0 || new_y_int + j - 2 >= thread_data->height)
continue;
d = square(new_x - (new_x_int + i - 2)) * square(new_y - (new_y_int + j - 2));
if (d >= 4.0f)
continue;
d = thread_data->interpolation[(int)(d * LANCZOS_RESOLUTION)];
norm += d;
interpolated += thread_data->data_in[(new_x_int + i - 2) * 3 + rgb_index + (new_y_int + j - 2) * thread_data->linesize_in] * d;
}
if (norm == 0.0f) {
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = 0;
} else {
interpolated /= norm;
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = interpolated < 0.0f ? 0.0f : interpolated > 255.0f ? 255.0f : interpolated;
}
break;
}
} else {
// no distortion correction was applied
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = thread_data->data_in[x * 3 + rgb_index + y * thread_data->linesize_in];
}
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
LensfunContext *lensfun = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out;
VignettingThreadData vignetting_thread_data;
DistortionCorrectionThreadData distortion_correction_thread_data;
if (lensfun->mode & VIGNETTING) {
av_frame_make_writable(in);
vignetting_thread_data = (VignettingThreadData) {
.width = inlink->w,
.height = inlink->h,
.data_in = in->data[0],
.linesize_in = in->linesize[0],
.pixel_composition = LF_CR_3(RED, GREEN, BLUE),
.modifier = lensfun->modifier
};
ctx->internal->execute(ctx,
vignetting_filter_slice,
&vignetting_thread_data,
NULL,
FFMIN(outlink->h, ctx->graph->nb_threads));
}
if (lensfun->mode & (GEOMETRY_DISTORTION | SUBPIXEL_DISTORTION)) {
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
distortion_correction_thread_data = (DistortionCorrectionThreadData) {
.width = inlink->w,
.height = inlink->h,
.distortion_coords = lensfun->distortion_coords,
.data_in = in->data[0],
.data_out = out->data[0],
.linesize_in = in->linesize[0],
.linesize_out = out->linesize[0],
.interpolation = lensfun->interpolation,
.mode = lensfun->mode,
.interpolation_type = lensfun->interpolation_type
};
ctx->internal->execute(ctx,
distortion_correction_filter_slice,
&distortion_correction_thread_data,
NULL,
FFMIN(outlink->h, ctx->graph->nb_threads));
av_frame_free(&in);
return ff_filter_frame(outlink, out);
} else {
return ff_filter_frame(outlink, in);
}
}
static av_cold void uninit(AVFilterContext *ctx)
{
LensfunContext *lensfun = ctx->priv;
if (lensfun->camera)
lf_camera_destroy(lensfun->camera);
if (lensfun->lens)
lf_lens_destroy(lensfun->lens);
if (lensfun->modifier)
lf_modifier_destroy(lensfun->modifier);
av_freep(&lensfun->distortion_coords);
av_freep(&lensfun->interpolation);
}
static const AVFilterPad lensfun_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_props,
.filter_frame = filter_frame,
},
{ NULL }
};
static const AVFilterPad lensfun_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
AVFilter ff_vf_lensfun = {
.name = "lensfun",
.description = NULL_IF_CONFIG_SMALL("Apply correction to an image based on info derived from the lensfun database."),
.priv_size = sizeof(LensfunContext),
.init = init,
.uninit = uninit,
.query_formats = query_formats,
.inputs = lensfun_inputs,
.outputs = lensfun_outputs,
.priv_class = &lensfun_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
};