You've already forked FFmpeg
							
							
				mirror of
				https://github.com/FFmpeg/FFmpeg.git
				synced 2025-10-30 23:18:11 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			411 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			411 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Atrac 1 compatible decoder
 | |
|  * Copyright (c) 2009 Maxim Poliakovski
 | |
|  * Copyright (c) 2009 Benjamin Larsson
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file libavcodec/atrac1.c
 | |
|  * Atrac 1 compatible decoder.
 | |
|  * This decoder handles raw ATRAC1 data.
 | |
|  */
 | |
| 
 | |
| /* Many thanks to Tim Craig for all the help! */
 | |
| 
 | |
| #include <math.h>
 | |
| #include <stddef.h>
 | |
| #include <stdio.h>
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "get_bits.h"
 | |
| #include "dsputil.h"
 | |
| 
 | |
| #include "atrac.h"
 | |
| #include "atrac1data.h"
 | |
| 
 | |
| #define AT1_MAX_BFU      52                 ///< max number of block floating units in a sound unit
 | |
| #define AT1_SU_SIZE      212                ///< number of bytes in a sound unit
 | |
| #define AT1_SU_SAMPLES   512                ///< number of samples in a sound unit
 | |
| #define AT1_FRAME_SIZE   AT1_SU_SIZE * 2
 | |
| #define AT1_SU_MAX_BITS  AT1_SU_SIZE * 8
 | |
| #define AT1_MAX_CHANNELS 2
 | |
| 
 | |
| #define AT1_QMF_BANDS    3
 | |
| #define IDX_LOW_BAND     0
 | |
| #define IDX_MID_BAND     1
 | |
| #define IDX_HIGH_BAND    2
 | |
| 
 | |
| /**
 | |
|  * Sound unit struct, one unit is used per channel
 | |
|  */
 | |
| typedef struct {
 | |
|     int                 log2_block_count[AT1_QMF_BANDS];    ///< log2 number of blocks in a band
 | |
|     int                 num_bfus;                           ///< number of Block Floating Units
 | |
|     int                 idwls[AT1_MAX_BFU];                 ///< the word length indexes for each BFU
 | |
|     int                 idsfs[AT1_MAX_BFU];                 ///< the scalefactor indexes for each BFU
 | |
|     float*              spectrum[2];
 | |
|     DECLARE_ALIGNED_16(float,spec1[AT1_SU_SAMPLES]);        ///< mdct buffer
 | |
|     DECLARE_ALIGNED_16(float,spec2[AT1_SU_SAMPLES]);        ///< mdct buffer
 | |
|     DECLARE_ALIGNED_16(float,fst_qmf_delay[46]);            ///< delay line for the 1st stacked QMF filter
 | |
|     DECLARE_ALIGNED_16(float,snd_qmf_delay[46]);            ///< delay line for the 2nd stacked QMF filter
 | |
|     DECLARE_ALIGNED_16(float,last_qmf_delay[256+23]);       ///< delay line for the last stacked QMF filter
 | |
| } AT1SUCtx;
 | |
| 
 | |
| /**
 | |
|  * The atrac1 context, holds all needed parameters for decoding
 | |
|  */
 | |
| typedef struct {
 | |
|     AT1SUCtx            SUs[AT1_MAX_CHANNELS];              ///< channel sound unit
 | |
|     DECLARE_ALIGNED_16(float,spec[AT1_SU_SAMPLES]);         ///< the mdct spectrum buffer
 | |
|     DECLARE_ALIGNED_16(float,short_buf[64]);                ///< buffer for the short mode
 | |
|     DECLARE_ALIGNED_16(float, low[256]);
 | |
|     DECLARE_ALIGNED_16(float, mid[256]);
 | |
|     DECLARE_ALIGNED_16(float,high[512]);
 | |
|     float*              bands[3];
 | |
|     float               out_samples[AT1_MAX_CHANNELS][AT1_SU_SAMPLES];
 | |
|     MDCTContext         mdct_ctx[3];
 | |
|     int                 channels;
 | |
|     DSPContext          dsp;
 | |
| } AT1Ctx;
 | |
| 
 | |
| static float *short_window;
 | |
| static float *mid_window;
 | |
| DECLARE_ALIGNED_16(static float, long_window[256]);
 | |
| static float *window_per_band[3];
 | |
| 
 | |
| /** size of the transform in samples in the long mode for each QMF band */
 | |
| static const uint16_t samples_per_band[3] = {128, 128, 256};
 | |
| static const uint8_t   mdct_long_nbits[3] = {7, 7, 8};
 | |
| 
 | |
| 
 | |
| static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits,
 | |
|                       int rev_spec)
 | |
| {
 | |
|     MDCTContext* mdct_context;
 | |
|     int transf_size = 1 << nbits;
 | |
| 
 | |
|     mdct_context = &q->mdct_ctx[nbits - 5 - (nbits>6)];
 | |
| 
 | |
|     if (rev_spec) {
 | |
|         int i;
 | |
|         for (i=0 ; i<transf_size/2 ; i++)
 | |
|             FFSWAP(float, spec[i], spec[transf_size - 1 - i]);
 | |
|     }
 | |
|     ff_imdct_half(mdct_context, out, spec);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q)
 | |
| {
 | |
|     int             band_num, band_samples, log2_block_count, nbits, num_blocks, block_size;
 | |
|     unsigned int    start_pos, ref_pos=0, pos = 0;
 | |
| 
 | |
|     for (band_num=0 ; band_num<AT1_QMF_BANDS ; band_num++) {
 | |
|         band_samples = samples_per_band[band_num];
 | |
|         log2_block_count = su->log2_block_count[band_num];
 | |
| 
 | |
|         /* number of mdct blocks in the current QMF band: 1 - for long mode */
 | |
|         /* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/
 | |
|         num_blocks = 1 << log2_block_count;
 | |
| 
 | |
|         /* mdct block size in samples: 128 (long mode, low & mid bands), */
 | |
|         /* 256 (long mode, high band) and 32 (short mode, all bands) */
 | |
|         block_size = band_samples >> log2_block_count;
 | |
| 
 | |
|         /* calc transform size in bits according to the block_size_mode */
 | |
|         nbits = mdct_long_nbits[band_num] - log2_block_count;
 | |
| 
 | |
|         if (nbits!=5 && nbits!=7 && nbits!=8)
 | |
|             return -1;
 | |
| 
 | |
|         if (num_blocks == 1) {
 | |
|             at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos], nbits, band_num);
 | |
|             pos += block_size; // move to the next mdct block in the spectrum
 | |
|         } else {
 | |
|             /* calc start position for the 1st short block: 96(128) or 112(256) */
 | |
|             start_pos = (band_samples * (num_blocks - 1)) >> (log2_block_count + 1);
 | |
|             memset(&su->spectrum[0][ref_pos], 0, sizeof(float) * (band_samples * 2));
 | |
| 
 | |
|             for (; num_blocks!=0 ; num_blocks--) {
 | |
|                 /* use hardcoded nbits for the short mode */
 | |
|                 at1_imdct(q, &q->spec[pos], q->short_buf, 5, band_num);
 | |
| 
 | |
|                 /* overlap and window between short blocks */
 | |
|                 q->dsp.vector_fmul_window(&su->spectrum[0][ref_pos+start_pos],
 | |
|                                           &su->spectrum[0][ref_pos+start_pos],
 | |
|                                           q->short_buf,short_window, 0, 16);
 | |
|                 start_pos += 32; // use hardcoded block_size
 | |
|                 pos += 32;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* overlap and window with the previous frame and output the result */
 | |
|         q->dsp.vector_fmul_window(q->bands[band_num], &su->spectrum[1][ref_pos+band_samples/2],
 | |
|             &su->spectrum[0][ref_pos], window_per_band[band_num], 0, band_samples/2);
 | |
| 
 | |
|         ref_pos += band_samples;
 | |
|     }
 | |
| 
 | |
|     /* Swap buffers so the mdct overlap works */
 | |
|     FFSWAP(float*, su->spectrum[0], su->spectrum[1]);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Parse the block size mode byte
 | |
|  */
 | |
| 
 | |
| static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS])
 | |
| {
 | |
|     int log2_block_count_tmp, i;
 | |
| 
 | |
|     for(i=0 ; i<2 ; i++) {
 | |
|         /* low and mid band */
 | |
|         log2_block_count_tmp = get_bits(gb, 2);
 | |
|         if (log2_block_count_tmp & 1)
 | |
|             return -1;
 | |
|         log2_block_cnt[i] = 2 - log2_block_count_tmp;
 | |
|     }
 | |
| 
 | |
|     /* high band */
 | |
|     log2_block_count_tmp = get_bits(gb, 2);
 | |
|     if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3)
 | |
|         return -1;
 | |
|     log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp;
 | |
| 
 | |
|     skip_bits(gb, 2);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su,
 | |
|                               float spec[AT1_SU_SAMPLES])
 | |
| {
 | |
|     int bits_used, band_num, bfu_num, i;
 | |
| 
 | |
|     /* parse the info byte (2nd byte) telling how much BFUs were coded */
 | |
|     su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)];
 | |
| 
 | |
|     /* calc number of consumed bits:
 | |
|         num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits)
 | |
|         + info_byte_copy(8bits) + log2_block_count_copy(8bits) */
 | |
|     bits_used = su->num_bfus * 10 + 32 +
 | |
|                 bfu_amount_tab2[get_bits(gb, 2)] +
 | |
|                 (bfu_amount_tab3[get_bits(gb, 3)] << 1);
 | |
| 
 | |
|     /* get word length index (idwl) for each BFU */
 | |
|     for (i=0 ; i<su->num_bfus ; i++)
 | |
|         su->idwls[i] = get_bits(gb, 4);
 | |
| 
 | |
|     /* get scalefactor index (idsf) for each BFU */
 | |
|     for (i=0 ; i<su->num_bfus ; i++)
 | |
|         su->idsfs[i] = get_bits(gb, 6);
 | |
| 
 | |
|     /* zero idwl/idsf for empty BFUs */
 | |
|     for (i = su->num_bfus; i < AT1_MAX_BFU; i++)
 | |
|         su->idwls[i] = su->idsfs[i] = 0;
 | |
| 
 | |
|     /* read in the spectral data and reconstruct MDCT spectrum of this channel */
 | |
|     for (band_num=0 ; band_num<AT1_QMF_BANDS ; band_num++) {
 | |
|         for (bfu_num=bfu_bands_t[band_num] ; bfu_num<bfu_bands_t[band_num+1] ; bfu_num++) {
 | |
|             int pos;
 | |
| 
 | |
|             int num_specs = specs_per_bfu[bfu_num];
 | |
|             int word_len  = !!su->idwls[bfu_num] + su->idwls[bfu_num];
 | |
|             float scale_factor = sf_table[su->idsfs[bfu_num]];
 | |
|             bits_used    += word_len * num_specs; /* add number of bits consumed by current BFU */
 | |
| 
 | |
|             /* check for bitstream overflow */
 | |
|             if (bits_used > AT1_SU_MAX_BITS)
 | |
|                 return -1;
 | |
| 
 | |
|             /* get the position of the 1st spec according to the block size mode */
 | |
|             pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num];
 | |
| 
 | |
|             if (word_len) {
 | |
|                 float   max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1);
 | |
| 
 | |
|                 for (i=0 ; i<num_specs ; i++) {
 | |
|                     /* read in a quantized spec and convert it to
 | |
|                      * signed int and then inverse quantization
 | |
|                      */
 | |
|                     spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant;
 | |
|                 }
 | |
|             } else { /* word_len = 0 -> empty BFU, zero all specs in the emty BFU */
 | |
|                 memset(&spec[pos], 0, num_specs*sizeof(float));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut)
 | |
| {
 | |
|     float   temp[256];
 | |
|     float   iqmf_temp[512 + 46];
 | |
| 
 | |
|     /* combine low and middle bands */
 | |
|     atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp);
 | |
| 
 | |
|     /* delay the signal of the high band by 23 samples */
 | |
|     memcpy( su->last_qmf_delay,    &su->last_qmf_delay[256], sizeof(float)*23);
 | |
|     memcpy(&su->last_qmf_delay[23], q->bands[2],             sizeof(float)*256);
 | |
| 
 | |
|     /* combine (low + middle) and high bands */
 | |
|     atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int atrac1_decode_frame(AVCodecContext *avctx, void *data,
 | |
|                                int *data_size, AVPacket *avpkt)
 | |
| {
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size       = avpkt->size;
 | |
|     AT1Ctx *q          = avctx->priv_data;
 | |
|     int ch, ret, i;
 | |
|     GetBitContext gb;
 | |
|     float* samples = data;
 | |
| 
 | |
| 
 | |
|     if (buf_size < 212 * q->channels) {
 | |
|         av_log(q,AV_LOG_ERROR,"Not enought data to decode!\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     for (ch=0 ; ch<q->channels ; ch++) {
 | |
|         AT1SUCtx* su = &q->SUs[ch];
 | |
| 
 | |
|         init_get_bits(&gb, &buf[212*ch], 212*8);
 | |
| 
 | |
|         /* parse block_size_mode, 1st byte */
 | |
|         ret = at1_parse_bsm(&gb, su->log2_block_count);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
| 
 | |
|         ret = at1_unpack_dequant(&gb, su, q->spec);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
| 
 | |
|         ret = at1_imdct_block(su, q);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|         at1_subband_synthesis(q, su, q->out_samples[ch]);
 | |
|     }
 | |
| 
 | |
|     /* round, convert to 16bit and interleave */
 | |
|     if (q->channels == 1) {
 | |
|         /* mono */
 | |
|         q->dsp.vector_clipf(samples, q->out_samples[0], -32700.0 / (1<<15),
 | |
|                             32700.0 / (1<<15), AT1_SU_SAMPLES);
 | |
|     } else {
 | |
|         /* stereo */
 | |
|         for (i = 0; i < AT1_SU_SAMPLES; i++) {
 | |
|             samples[i*2]   = av_clipf(q->out_samples[0][i], -32700.0 / (1<<15),
 | |
|                                       32700.0 / (1<<15));
 | |
|             samples[i*2+1] = av_clipf(q->out_samples[1][i], -32700.0 / (1<<15),
 | |
|                                       32700.0 / (1<<15));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     *data_size = q->channels * AT1_SU_SAMPLES * sizeof(*samples);
 | |
|     return avctx->block_align;
 | |
| }
 | |
| 
 | |
| 
 | |
| static av_cold void init_mdct_windows(void)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     /** The mid and long windows uses the same sine window splitted
 | |
|      *  in the middle and wrapped into zero/one regions as follows:
 | |
|      *
 | |
|      *                   region of "ones"
 | |
|      *               -------------
 | |
|      *              /
 | |
|      *             / 1st half
 | |
|      *            / of the sine
 | |
|      *           /  window
 | |
|      * ---------/
 | |
|      * zero region
 | |
|      *
 | |
|      * The mid and short windows are subsets of the long window.
 | |
|      */
 | |
| 
 | |
|     /* Build "zero" region */
 | |
|     memset(long_window, 0, sizeof(long_window));
 | |
|     /* Build sine window region */
 | |
|     short_window = &long_window[112];
 | |
|     ff_sine_window_init(short_window,32);
 | |
|     /* Build "ones" region */
 | |
|     for (i = 0; i < 112; i++)
 | |
|         long_window[144 + i] = 1.0f;
 | |
|     /* Save the mid window subset start */
 | |
|     mid_window = &long_window[64];
 | |
| 
 | |
|     /* Prepare the window table */
 | |
|     window_per_band[0] = mid_window;
 | |
|     window_per_band[1] = mid_window;
 | |
|     window_per_band[2] = long_window;
 | |
| }
 | |
| 
 | |
| static av_cold int atrac1_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     AT1Ctx *q = avctx->priv_data;
 | |
| 
 | |
|     avctx->sample_fmt = SAMPLE_FMT_FLT;
 | |
| 
 | |
|     q->channels = avctx->channels;
 | |
| 
 | |
|     /* Init the mdct transforms */
 | |
|     ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1<<15));
 | |
|     ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1<<15));
 | |
|     ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1<<15));
 | |
|     init_mdct_windows();
 | |
| 
 | |
|     atrac_generate_tables();
 | |
| 
 | |
|     dsputil_init(&q->dsp, avctx);
 | |
| 
 | |
|     q->bands[0] = q->low;
 | |
|     q->bands[1] = q->mid;
 | |
|     q->bands[2] = q->high;
 | |
| 
 | |
|     /* Prepare the mdct overlap buffers */
 | |
|     q->SUs[0].spectrum[0] = q->SUs[0].spec1;
 | |
|     q->SUs[0].spectrum[1] = q->SUs[0].spec2;
 | |
|     q->SUs[1].spectrum[0] = q->SUs[1].spec1;
 | |
|     q->SUs[1].spectrum[1] = q->SUs[1].spec2;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| AVCodec atrac1_decoder = {
 | |
|     .name = "atrac1",
 | |
|     .type = CODEC_TYPE_AUDIO,
 | |
|     .id = CODEC_ID_ATRAC1,
 | |
|     .priv_data_size = sizeof(AT1Ctx),
 | |
|     .init = atrac1_decode_init,
 | |
|     .close = NULL,
 | |
|     .decode = atrac1_decode_frame,
 | |
|     .long_name = NULL_IF_CONFIG_SMALL("Atrac 1 (Adaptive TRansform Acoustic Coding)"),
 | |
| };
 |