1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00
FFmpeg/libavfilter/vf_fftdnoiz.c
Andreas Rheinhardt 790f793844 avutil/common: Don't auto-include mem.h
There are lots of files that don't need it: The number of object
files that actually need it went down from 2011 to 884 here.

Keep it for external users in order to not cause breakages.

Also improve the other headers a bit while just at it.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2024-03-31 00:08:43 +01:00

762 lines
25 KiB
C

/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <float.h>
#include "libavutil/common.h"
#include "libavutil/imgutils.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/tx.h"
#include "internal.h"
#include "video.h"
#include "window_func.h"
#define MAX_BLOCK 256
#define MAX_THREADS 32
enum BufferTypes {
CURRENT,
PREV,
NEXT,
BSIZE
};
typedef struct PlaneContext {
int planewidth, planeheight;
int nox, noy;
int b;
int o;
float n;
float *buffer[MAX_THREADS][BSIZE];
AVComplexFloat *hdata[MAX_THREADS], *vdata[MAX_THREADS];
AVComplexFloat *hdata_out[MAX_THREADS], *vdata_out[MAX_THREADS];
int data_linesize;
int buffer_linesize;
} PlaneContext;
typedef struct FFTdnoizContext {
const AVClass *class;
float sigma;
float amount;
int block_size;
float overlap;
int method;
int window;
int nb_prev;
int nb_next;
int planesf;
AVFrame *prev, *cur, *next;
int depth;
int nb_planes;
int nb_threads;
PlaneContext planes[4];
float win[MAX_BLOCK][MAX_BLOCK];
AVTXContext *fft[MAX_THREADS], *ifft[MAX_THREADS];
AVTXContext *fft_r[MAX_THREADS], *ifft_r[MAX_THREADS];
av_tx_fn tx_fn, itx_fn;
av_tx_fn tx_r_fn, itx_r_fn;
void (*import_row)(AVComplexFloat *dst, uint8_t *src, int rw, float scale, float *win, int off);
void (*export_row)(AVComplexFloat *src, uint8_t *dst, int rw, int depth, float *win);
} FFTdnoizContext;
#define OFFSET(x) offsetof(FFTdnoizContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
#define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption fftdnoiz_options[] = {
{ "sigma", "set denoise strength",
OFFSET(sigma), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 100, .flags = TFLAGS },
{ "amount", "set amount of denoising",
OFFSET(amount), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0.01, 1, .flags = TFLAGS },
{ "block", "set block size",
OFFSET(block_size), AV_OPT_TYPE_INT, {.i64=32}, 8, MAX_BLOCK, .flags = FLAGS },
{ "overlap", "set block overlap",
OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl=0.5}, 0.2, 0.8, .flags = FLAGS },
{ "method", "set method of denoising",
OFFSET(method), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, .flags = TFLAGS, .unit = "method" },
{ "wiener", "wiener method",
0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, .flags = TFLAGS, .unit = "method" },
{ "hard", "hard thresholding",
0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, .flags = TFLAGS, .unit = "method" },
{ "prev", "set number of previous frames for temporal denoising",
OFFSET(nb_prev), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, .flags = FLAGS },
{ "next", "set number of next frames for temporal denoising",
OFFSET(nb_next), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, .flags = FLAGS },
{ "planes", "set planes to filter",
OFFSET(planesf), AV_OPT_TYPE_INT, {.i64=7}, 0, 15, .flags = TFLAGS },
WIN_FUNC_OPTION("window", OFFSET(window), FLAGS, WFUNC_HANNING),
{ NULL }
};
AVFILTER_DEFINE_CLASS(fftdnoiz);
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9,
AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_YUVJ411P,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV440P10,
AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12,
AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14,
AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16,
AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_NONE
};
typedef struct ThreadData {
float *src, *dst;
} ThreadData;
static void import_row8(AVComplexFloat *dst, uint8_t *src, int rw,
float scale, float *win, int off)
{
for (int j = 0; j < rw; j++) {
const int i = abs(j + off);
dst[j].re = src[i] * scale * win[j];
dst[j].im = 0.f;
}
}
static void export_row8(AVComplexFloat *src, uint8_t *dst, int rw, int depth, float *win)
{
for (int j = 0; j < rw; j++)
dst[j] = av_clip_uint8(lrintf(src[j].re / win[j]));
}
static void import_row16(AVComplexFloat *dst, uint8_t *srcp, int rw,
float scale, float *win, int off)
{
uint16_t *src = (uint16_t *)srcp;
for (int j = 0; j < rw; j++) {
const int i = abs(j + off);
dst[j].re = src[i] * scale * win[j];
dst[j].im = 0;
}
}
static void export_row16(AVComplexFloat *src, uint8_t *dstp, int rw, int depth, float *win)
{
uint16_t *dst = (uint16_t *)dstp;
for (int j = 0; j < rw; j++)
dst[j] = av_clip_uintp2_c(lrintf(src[j].re / win[j]), depth);
}
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
const AVPixFmtDescriptor *desc;
FFTdnoizContext *s = ctx->priv;
float lut[MAX_BLOCK + 1];
float overlap;
int i;
desc = av_pix_fmt_desc_get(inlink->format);
s->depth = desc->comp[0].depth;
if (s->depth <= 8) {
s->import_row = import_row8;
s->export_row = export_row8;
} else {
s->import_row = import_row16;
s->export_row = export_row16;
}
s->planes[1].planewidth = s->planes[2].planewidth = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
s->planes[0].planewidth = s->planes[3].planewidth = inlink->w;
s->planes[1].planeheight = s->planes[2].planeheight = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
s->planes[0].planeheight = s->planes[3].planeheight = inlink->h;
s->nb_planes = av_pix_fmt_count_planes(inlink->format);
s->nb_threads = FFMIN(ff_filter_get_nb_threads(ctx), MAX_THREADS);
for (int i = 0; i < s->nb_threads; i++) {
float scale = 1.f, iscale = 1.f;
int ret;
if ((ret = av_tx_init(&s->fft[i], &s->tx_fn, AV_TX_FLOAT_FFT,
0, s->block_size, &scale, 0)) < 0 ||
(ret = av_tx_init(&s->ifft[i], &s->itx_fn, AV_TX_FLOAT_FFT,
1, s->block_size, &iscale, 0)) < 0 ||
(ret = av_tx_init(&s->fft_r[i], &s->tx_r_fn, AV_TX_FLOAT_FFT,
0, 1 + s->nb_prev + s->nb_next, &scale, 0)) < 0 ||
(ret = av_tx_init(&s->ifft_r[i], &s->itx_r_fn, AV_TX_FLOAT_FFT,
1, 1 + s->nb_prev + s->nb_next, &iscale, 0)) < 0)
return ret;
}
for (i = 0; i < s->nb_planes; i++) {
PlaneContext *p = &s->planes[i];
int size;
p->b = s->block_size;
p->n = 1.f / (p->b * p->b);
p->o = lrintf(p->b * s->overlap);
size = p->b - p->o;
p->nox = (p->planewidth + (size - 1)) / size;
p->noy = (p->planeheight + (size - 1)) / size;
av_log(ctx, AV_LOG_DEBUG, "nox:%d noy:%d size:%d\n", p->nox, p->noy, size);
p->buffer_linesize = p->b * sizeof(AVComplexFloat);
p->data_linesize = 2 * p->b * sizeof(float);
for (int j = 0; j < s->nb_threads; j++) {
p->hdata[j] = av_calloc(p->b, p->data_linesize);
p->hdata_out[j] = av_calloc(p->b, p->data_linesize);
p->vdata[j] = av_calloc(p->b, p->data_linesize);
p->vdata_out[j] = av_calloc(p->b, p->data_linesize);
p->buffer[j][CURRENT] = av_calloc(p->b, p->buffer_linesize);
if (!p->buffer[j][CURRENT])
return AVERROR(ENOMEM);
if (s->nb_prev > 0) {
p->buffer[j][PREV] = av_calloc(p->b, p->buffer_linesize);
if (!p->buffer[j][PREV])
return AVERROR(ENOMEM);
}
if (s->nb_next > 0) {
p->buffer[j][NEXT] = av_calloc(p->b, p->buffer_linesize);
if (!p->buffer[j][NEXT])
return AVERROR(ENOMEM);
}
if (!p->hdata[j] || !p->vdata[j] ||
!p->hdata_out[j] || !p->vdata_out[j])
return AVERROR(ENOMEM);
}
}
generate_window_func(lut, s->block_size + 1, s->window, &overlap);
for (int y = 0; y < s->block_size; y++) {
for (int x = 0; x < s->block_size; x++)
s->win[y][x] = lut[y] * lut[x];
}
return 0;
}
static void import_block(FFTdnoizContext *s,
uint8_t *srcp, int src_linesize,
float *buffer, int buffer_linesize, int plane,
int jobnr, int y, int x)
{
PlaneContext *p = &s->planes[plane];
const int width = p->planewidth;
const int height = p->planeheight;
const int block = p->b;
const int overlap = p->o;
const int hoverlap = overlap / 2;
const int size = block - overlap;
const int bpp = (s->depth + 7) / 8;
const int data_linesize = p->data_linesize / sizeof(AVComplexFloat);
const float scale = 1.f / ((1.f + s->nb_prev + s->nb_next) * s->block_size * s->block_size);
AVComplexFloat *hdata = p->hdata[jobnr];
AVComplexFloat *hdata_out = p->hdata_out[jobnr];
AVComplexFloat *vdata_out = p->vdata_out[jobnr];
const int woff = -hoverlap;
const int hoff = -hoverlap;
const int rh = FFMIN(block, height - y * size + hoverlap);
const int rw = FFMIN(block, width - x * size + hoverlap);
AVComplexFloat *ssrc, *ddst, *dst = hdata, *dst_out = hdata_out;
float *bdst = buffer;
buffer_linesize /= sizeof(float);
for (int i = 0; i < rh; i++) {
uint8_t *src = srcp + src_linesize * abs(y * size + i + hoff) + x * size * bpp;
s->import_row(dst, src, rw, scale, s->win[i], woff);
for (int j = rw; j < block; j++) {
dst[j].re = dst[rw - 1].re;
dst[j].im = 0.f;
}
s->tx_fn(s->fft[jobnr], dst_out, dst, sizeof(AVComplexFloat));
ddst = dst_out;
dst += data_linesize;
dst_out += data_linesize;
}
dst = dst_out;
for (int i = rh; i < block; i++) {
for (int j = 0; j < block; j++) {
dst[j].re = ddst[j].re;
dst[j].im = ddst[j].im;
}
dst += data_linesize;
}
ssrc = hdata_out;
dst = vdata_out;
for (int i = 0; i < block; i++) {
for (int j = 0; j < block; j++)
dst[j] = ssrc[j * data_linesize + i];
s->tx_fn(s->fft[jobnr], bdst, dst, sizeof(AVComplexFloat));
dst += data_linesize;
bdst += buffer_linesize;
}
}
static void export_block(FFTdnoizContext *s,
uint8_t *dstp, int dst_linesize,
float *buffer, int buffer_linesize, int plane,
int jobnr, int y, int x)
{
PlaneContext *p = &s->planes[plane];
const int depth = s->depth;
const int bpp = (depth + 7) / 8;
const int width = p->planewidth;
const int height = p->planeheight;
const int block = p->b;
const int overlap = p->o;
const int hoverlap = overlap / 2;
const int size = block - overlap;
const int data_linesize = p->data_linesize / sizeof(AVComplexFloat);
AVComplexFloat *hdata = p->hdata[jobnr];
AVComplexFloat *hdata_out = p->hdata_out[jobnr];
AVComplexFloat *vdata_out = p->vdata_out[jobnr];
const int rw = FFMIN(size, width - x * size);
const int rh = FFMIN(size, height - y * size);
AVComplexFloat *hdst, *vdst = vdata_out, *hdst_out = hdata_out;
float *bsrc = buffer;
hdst = hdata;
buffer_linesize /= sizeof(float);
for (int i = 0; i < block; i++) {
s->itx_fn(s->ifft[jobnr], vdst, bsrc, sizeof(AVComplexFloat));
for (int j = 0; j < block; j++)
hdst[j * data_linesize + i] = vdst[j];
vdst += data_linesize;
bsrc += buffer_linesize;
}
hdst = hdata + hoverlap * data_linesize;
for (int i = 0; i < rh && (y * size + i) < height; i++) {
uint8_t *dst = dstp + dst_linesize * (y * size + i) + x * size * bpp;
s->itx_fn(s->ifft[jobnr], hdst_out, hdst, sizeof(AVComplexFloat));
s->export_row(hdst_out + hoverlap, dst, rw, depth, s->win[i + hoverlap] + hoverlap);
hdst += data_linesize;
hdst_out += data_linesize;
}
}
static void filter_block3d2(FFTdnoizContext *s, int plane, float *pbuffer, float *nbuffer,
int jobnr)
{
PlaneContext *p = &s->planes[plane];
const int block = p->b;
const int buffer_linesize = p->buffer_linesize / sizeof(float);
const float depthx = (1 << (s->depth - 8)) * (1 << (s->depth - 8));
const float sigma = s->sigma * depthx / (3.f * s->block_size * s->block_size);
const float limit = 1.f - s->amount;
float *cbuffer = p->buffer[jobnr][CURRENT];
const int method = s->method;
float *cbuff = cbuffer;
float *pbuff = pbuffer;
float *nbuff = nbuffer;
for (int i = 0; i < block; i++) {
for (int j = 0; j < block; j++) {
AVComplexFloat buffer[BSIZE];
AVComplexFloat outbuffer[BSIZE];
buffer[0].re = pbuff[2 * j ];
buffer[0].im = pbuff[2 * j + 1];
buffer[1].re = cbuff[2 * j ];
buffer[1].im = cbuff[2 * j + 1];
buffer[2].re = nbuff[2 * j ];
buffer[2].im = nbuff[2 * j + 1];
s->tx_r_fn(s->fft_r[jobnr], outbuffer, buffer, sizeof(AVComplexFloat));
for (int z = 0; z < 3; z++) {
const float re = outbuffer[z].re;
const float im = outbuffer[z].im;
const float power = re * re + im * im;
float factor;
switch (method) {
case 0:
factor = fmaxf(limit, (power - sigma) / (power + 1e-15f));
break;
case 1:
factor = power < sigma ? limit : 1.f;
break;
}
outbuffer[z].re *= factor;
outbuffer[z].im *= factor;
}
s->itx_r_fn(s->ifft_r[jobnr], buffer, outbuffer, sizeof(AVComplexFloat));
cbuff[2 * j + 0] = buffer[1].re;
cbuff[2 * j + 1] = buffer[1].im;
}
cbuff += buffer_linesize;
pbuff += buffer_linesize;
nbuff += buffer_linesize;
}
}
static void filter_block3d1(FFTdnoizContext *s, int plane, float *pbuffer,
int jobnr)
{
PlaneContext *p = &s->planes[plane];
const int block = p->b;
const int buffer_linesize = p->buffer_linesize / sizeof(float);
const float depthx = (1 << (s->depth - 8)) * (1 << (s->depth - 8));
const float sigma = s->sigma * depthx / (2.f * s->block_size * s->block_size);
const float limit = 1.f - s->amount;
float *cbuffer = p->buffer[jobnr][CURRENT];
const int method = s->method;
float *cbuff = cbuffer;
float *pbuff = pbuffer;
for (int i = 0; i < block; i++) {
for (int j = 0; j < block; j++) {
AVComplexFloat buffer[BSIZE];
AVComplexFloat outbuffer[BSIZE];
buffer[0].re = pbuff[2 * j ];
buffer[0].im = pbuff[2 * j + 1];
buffer[1].re = cbuff[2 * j ];
buffer[1].im = cbuff[2 * j + 1];
s->tx_r_fn(s->fft_r[jobnr], outbuffer, buffer, sizeof(AVComplexFloat));
for (int z = 0; z < 2; z++) {
const float re = outbuffer[z].re;
const float im = outbuffer[z].im;
const float power = re * re + im * im;
float factor;
switch (method) {
case 0:
factor = fmaxf(limit, (power - sigma) / (power + 1e-15f));
break;
case 1:
factor = power < sigma ? limit : 1.f;
break;
}
outbuffer[z].re *= factor;
outbuffer[z].im *= factor;
}
s->itx_r_fn(s->ifft_r[jobnr], buffer, outbuffer, sizeof(AVComplexFloat));
cbuff[2 * j + 0] = buffer[1].re;
cbuff[2 * j + 1] = buffer[1].im;
}
cbuff += buffer_linesize;
pbuff += buffer_linesize;
}
}
static void filter_block2d(FFTdnoizContext *s, int plane,
int jobnr)
{
PlaneContext *p = &s->planes[plane];
const int block = p->b;
const int method = s->method;
const int buffer_linesize = p->buffer_linesize / sizeof(float);
const float depthx = (1 << (s->depth - 8)) * (1 << (s->depth - 8));
const float sigma = s->sigma * depthx / (s->block_size * s->block_size);
const float limit = 1.f - s->amount;
float *buff = p->buffer[jobnr][CURRENT];
for (int i = 0; i < block; i++) {
for (int j = 0; j < block; j++) {
float factor, power, re, im;
re = buff[j * 2 ];
im = buff[j * 2 + 1];
power = re * re + im * im;
switch (method) {
case 0:
factor = fmaxf(limit, (power - sigma) / (power + 1e-15f));
break;
case 1:
factor = power < sigma ? limit : 1.f;
break;
}
buff[j * 2 ] *= factor;
buff[j * 2 + 1] *= factor;
}
buff += buffer_linesize;
}
}
static int denoise(AVFilterContext *ctx, void *arg,
int jobnr, int nb_jobs)
{
FFTdnoizContext *s = ctx->priv;
AVFrame *out = arg;
for (int plane = 0; plane < s->nb_planes; plane++) {
PlaneContext *p = &s->planes[plane];
const int nox = p->nox;
const int noy = p->noy;
const int slice_start = (noy * jobnr) / nb_jobs;
const int slice_end = (noy * (jobnr+1)) / nb_jobs;
if (!((1 << plane) & s->planesf) || ctx->is_disabled)
continue;
for (int y = slice_start; y < slice_end; y++) {
for (int x = 0; x < nox; x++) {
if (s->next) {
import_block(s, s->next->data[plane], s->next->linesize[plane],
p->buffer[jobnr][NEXT], p->buffer_linesize, plane,
jobnr, y, x);
}
if (s->prev) {
import_block(s, s->prev->data[plane], s->prev->linesize[plane],
p->buffer[jobnr][PREV], p->buffer_linesize, plane,
jobnr, y, x);
}
import_block(s, s->cur->data[plane], s->cur->linesize[plane],
p->buffer[jobnr][CURRENT], p->buffer_linesize, plane,
jobnr, y, x);
if (s->next && s->prev) {
filter_block3d2(s, plane, p->buffer[jobnr][PREV], p->buffer[jobnr][NEXT], jobnr);
} else if (s->next) {
filter_block3d1(s, plane, p->buffer[jobnr][NEXT], jobnr);
} else if (s->prev) {
filter_block3d1(s, plane, p->buffer[jobnr][PREV], jobnr);
} else {
filter_block2d(s, plane, jobnr);
}
export_block(s, out->data[plane], out->linesize[plane],
p->buffer[jobnr][CURRENT], p->buffer_linesize, plane,
jobnr, y, x);
}
}
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
FFTdnoizContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
int direct, plane;
AVFrame *out;
if (s->nb_next > 0 && s->nb_prev > 0) {
av_frame_free(&s->prev);
s->prev = s->cur;
s->cur = s->next;
s->next = in;
if (!s->prev && s->cur) {
s->prev = av_frame_clone(s->cur);
if (!s->prev)
return AVERROR(ENOMEM);
}
if (!s->cur)
return 0;
} else if (s->nb_next > 0) {
av_frame_free(&s->cur);
s->cur = s->next;
s->next = in;
if (!s->cur)
return 0;
} else if (s->nb_prev > 0) {
av_frame_free(&s->prev);
s->prev = s->cur;
s->cur = in;
if (!s->prev)
s->prev = av_frame_clone(s->cur);
if (!s->prev)
return AVERROR(ENOMEM);
} else {
s->cur = in;
}
if (av_frame_is_writable(in) && s->nb_next == 0 && s->nb_prev == 0) {
direct = 1;
out = in;
} else {
direct = 0;
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out)
return AVERROR(ENOMEM);
av_frame_copy_props(out, s->cur);
}
ff_filter_execute(ctx, denoise, out, NULL,
FFMIN(s->planes[0].noy, s->nb_threads));
for (plane = 0; plane < s->nb_planes; plane++) {
PlaneContext *p = &s->planes[plane];
if (!((1 << plane) & s->planesf) || ctx->is_disabled) {
if (!direct)
av_image_copy_plane(out->data[plane], out->linesize[plane],
s->cur->data[plane], s->cur->linesize[plane],
p->planewidth * (1 + (s->depth > 8)), p->planeheight);
continue;
}
}
if (s->nb_next == 0 && s->nb_prev == 0) {
if (direct) {
s->cur = NULL;
} else {
av_frame_free(&s->cur);
}
}
return ff_filter_frame(outlink, out);
}
static int request_frame(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
FFTdnoizContext *s = ctx->priv;
int ret = 0;
ret = ff_request_frame(ctx->inputs[0]);
if (ret == AVERROR_EOF && (s->nb_next > 0)) {
AVFrame *buf;
if (s->next && s->nb_next > 0)
buf = av_frame_clone(s->next);
else if (s->cur)
buf = av_frame_clone(s->cur);
else
buf = av_frame_clone(s->prev);
if (!buf)
return AVERROR(ENOMEM);
ret = filter_frame(ctx->inputs[0], buf);
if (ret < 0)
return ret;
ret = AVERROR_EOF;
}
return ret;
}
static av_cold void uninit(AVFilterContext *ctx)
{
FFTdnoizContext *s = ctx->priv;
int i;
for (i = 0; i < 4; i++) {
PlaneContext *p = &s->planes[i];
for (int j = 0; j < s->nb_threads; j++) {
av_freep(&p->hdata[j]);
av_freep(&p->vdata[j]);
av_freep(&p->hdata_out[j]);
av_freep(&p->vdata_out[j]);
av_freep(&p->buffer[j][PREV]);
av_freep(&p->buffer[j][CURRENT]);
av_freep(&p->buffer[j][NEXT]);
}
}
for (i = 0; i < s->nb_threads; i++) {
av_tx_uninit(&s->fft[i]);
av_tx_uninit(&s->ifft[i]);
av_tx_uninit(&s->fft_r[i]);
av_tx_uninit(&s->ifft_r[i]);
}
av_frame_free(&s->prev);
av_frame_free(&s->cur);
av_frame_free(&s->next);
}
static const AVFilterPad fftdnoiz_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
};
static const AVFilterPad fftdnoiz_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.request_frame = request_frame,
},
};
const AVFilter ff_vf_fftdnoiz = {
.name = "fftdnoiz",
.description = NULL_IF_CONFIG_SMALL("Denoise frames using 3D FFT."),
.priv_size = sizeof(FFTdnoizContext),
.uninit = uninit,
FILTER_INPUTS(fftdnoiz_inputs),
FILTER_OUTPUTS(fftdnoiz_outputs),
FILTER_PIXFMTS_ARRAY(pix_fmts),
.priv_class = &fftdnoiz_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL |
AVFILTER_FLAG_SLICE_THREADS,
.process_command = ff_filter_process_command,
};