1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/snow.c
Jason Garrett-Glaser 504811baea Roll back 4:4:4 H.264 for now
Needs some ARM/PPC asm modifications.
2011-06-13 13:38:46 -07:00

4154 lines
159 KiB
C

/*
* Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/intmath.h"
#include "avcodec.h"
#include "dsputil.h"
#include "dwt.h"
#include "snow.h"
#include "rangecoder.h"
#include "mathops.h"
#include "mpegvideo.h"
#include "h263.h"
#undef NDEBUG
#include <assert.h>
static const int8_t quant3[256]={
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 0,
};
static const int8_t quant3b[256]={
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
};
static const int8_t quant3bA[256]={
0, 0, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1,
};
static const int8_t quant5[256]={
0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,
};
static const int8_t quant7[256]={
0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,
};
static const int8_t quant9[256]={
0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-1,-1,
};
static const int8_t quant11[256]={
0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-1,
};
static const int8_t quant13[256]={
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-2,-2,-1,
};
#if 0 //64*cubic
static const uint8_t obmc32[1024]={
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0,
0, 0, 0, 4, 4, 4, 4, 8, 8, 12, 12, 12, 16, 16, 16, 16, 16, 16, 16, 16, 12, 12, 12, 8, 8, 4, 4, 4, 4, 0, 0, 0,
0, 0, 4, 4, 8, 8, 12, 16, 16, 20, 24, 24, 28, 28, 32, 32, 32, 32, 28, 28, 24, 24, 20, 16, 16, 12, 8, 8, 4, 4, 0, 0,
0, 0, 4, 8, 8, 12, 16, 24, 28, 32, 36, 40, 44, 48, 48, 48, 48, 48, 48, 44, 40, 36, 32, 28, 24, 16, 12, 8, 8, 4, 0, 0,
0, 4, 4, 8, 12, 20, 24, 32, 40, 44, 52, 56, 60, 64, 68, 72, 72, 68, 64, 60, 56, 52, 44, 40, 32, 24, 20, 12, 8, 4, 4, 0,
0, 4, 4, 12, 16, 24, 32, 40, 52, 60, 68, 76, 80, 88, 88, 92, 92, 88, 88, 80, 76, 68, 60, 52, 40, 32, 24, 16, 12, 4, 4, 0,
0, 4, 8, 16, 24, 32, 40, 52, 64, 76, 84, 92,100,108,112,116,116,112,108,100, 92, 84, 76, 64, 52, 40, 32, 24, 16, 8, 4, 0,
0, 4, 8, 16, 28, 40, 52, 64, 76, 88,100,112,124,132,136,140,140,136,132,124,112,100, 88, 76, 64, 52, 40, 28, 16, 8, 4, 0,
0, 4, 12, 20, 32, 44, 60, 76, 88,104,120,132,144,152,160,164,164,160,152,144,132,120,104, 88, 76, 60, 44, 32, 20, 12, 4, 0,
0, 4, 12, 24, 36, 48, 68, 84,100,120,136,152,164,176,180,184,184,180,176,164,152,136,120,100, 84, 68, 48, 36, 24, 12, 4, 0,
0, 4, 12, 24, 40, 56, 76, 92,112,132,152,168,180,192,204,208,208,204,192,180,168,152,132,112, 92, 76, 56, 40, 24, 12, 4, 0,
0, 4, 16, 28, 44, 60, 80,100,124,144,164,180,196,208,220,224,224,220,208,196,180,164,144,124,100, 80, 60, 44, 28, 16, 4, 0,
0, 8, 16, 28, 48, 64, 88,108,132,152,176,192,208,224,232,240,240,232,224,208,192,176,152,132,108, 88, 64, 48, 28, 16, 8, 0,
0, 4, 16, 32, 48, 68, 88,112,136,160,180,204,220,232,244,248,248,244,232,220,204,180,160,136,112, 88, 68, 48, 32, 16, 4, 0,
1, 8, 16, 32, 48, 72, 92,116,140,164,184,208,224,240,248,255,255,248,240,224,208,184,164,140,116, 92, 72, 48, 32, 16, 8, 1,
1, 8, 16, 32, 48, 72, 92,116,140,164,184,208,224,240,248,255,255,248,240,224,208,184,164,140,116, 92, 72, 48, 32, 16, 8, 1,
0, 4, 16, 32, 48, 68, 88,112,136,160,180,204,220,232,244,248,248,244,232,220,204,180,160,136,112, 88, 68, 48, 32, 16, 4, 0,
0, 8, 16, 28, 48, 64, 88,108,132,152,176,192,208,224,232,240,240,232,224,208,192,176,152,132,108, 88, 64, 48, 28, 16, 8, 0,
0, 4, 16, 28, 44, 60, 80,100,124,144,164,180,196,208,220,224,224,220,208,196,180,164,144,124,100, 80, 60, 44, 28, 16, 4, 0,
0, 4, 12, 24, 40, 56, 76, 92,112,132,152,168,180,192,204,208,208,204,192,180,168,152,132,112, 92, 76, 56, 40, 24, 12, 4, 0,
0, 4, 12, 24, 36, 48, 68, 84,100,120,136,152,164,176,180,184,184,180,176,164,152,136,120,100, 84, 68, 48, 36, 24, 12, 4, 0,
0, 4, 12, 20, 32, 44, 60, 76, 88,104,120,132,144,152,160,164,164,160,152,144,132,120,104, 88, 76, 60, 44, 32, 20, 12, 4, 0,
0, 4, 8, 16, 28, 40, 52, 64, 76, 88,100,112,124,132,136,140,140,136,132,124,112,100, 88, 76, 64, 52, 40, 28, 16, 8, 4, 0,
0, 4, 8, 16, 24, 32, 40, 52, 64, 76, 84, 92,100,108,112,116,116,112,108,100, 92, 84, 76, 64, 52, 40, 32, 24, 16, 8, 4, 0,
0, 4, 4, 12, 16, 24, 32, 40, 52, 60, 68, 76, 80, 88, 88, 92, 92, 88, 88, 80, 76, 68, 60, 52, 40, 32, 24, 16, 12, 4, 4, 0,
0, 4, 4, 8, 12, 20, 24, 32, 40, 44, 52, 56, 60, 64, 68, 72, 72, 68, 64, 60, 56, 52, 44, 40, 32, 24, 20, 12, 8, 4, 4, 0,
0, 0, 4, 8, 8, 12, 16, 24, 28, 32, 36, 40, 44, 48, 48, 48, 48, 48, 48, 44, 40, 36, 32, 28, 24, 16, 12, 8, 8, 4, 0, 0,
0, 0, 4, 4, 8, 8, 12, 16, 16, 20, 24, 24, 28, 28, 32, 32, 32, 32, 28, 28, 24, 24, 20, 16, 16, 12, 8, 8, 4, 4, 0, 0,
0, 0, 0, 4, 4, 4, 4, 8, 8, 12, 12, 12, 16, 16, 16, 16, 16, 16, 16, 16, 12, 12, 12, 8, 8, 4, 4, 4, 4, 0, 0, 0,
0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
//error:0.000022
};
static const uint8_t obmc16[256]={
0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0,
0, 4, 4, 8, 16, 20, 20, 24, 24, 20, 20, 16, 8, 4, 4, 0,
0, 4, 16, 24, 36, 44, 52, 60, 60, 52, 44, 36, 24, 16, 4, 0,
0, 8, 24, 44, 60, 80, 96,104,104, 96, 80, 60, 44, 24, 8, 0,
0, 16, 36, 60, 92,116,136,152,152,136,116, 92, 60, 36, 16, 0,
0, 20, 44, 80,116,152,180,196,196,180,152,116, 80, 44, 20, 0,
4, 20, 52, 96,136,180,212,228,228,212,180,136, 96, 52, 20, 4,
4, 24, 60,104,152,196,228,248,248,228,196,152,104, 60, 24, 4,
4, 24, 60,104,152,196,228,248,248,228,196,152,104, 60, 24, 4,
4, 20, 52, 96,136,180,212,228,228,212,180,136, 96, 52, 20, 4,
0, 20, 44, 80,116,152,180,196,196,180,152,116, 80, 44, 20, 0,
0, 16, 36, 60, 92,116,136,152,152,136,116, 92, 60, 36, 16, 0,
0, 8, 24, 44, 60, 80, 96,104,104, 96, 80, 60, 44, 24, 8, 0,
0, 4, 16, 24, 36, 44, 52, 60, 60, 52, 44, 36, 24, 16, 4, 0,
0, 4, 4, 8, 16, 20, 20, 24, 24, 20, 20, 16, 8, 4, 4, 0,
0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0,
//error:0.000033
};
#elif 1 // 64*linear
static const uint8_t obmc32[1024]={
0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0,
0, 4, 4, 4, 8, 8, 8, 12, 12, 16, 16, 16, 20, 20, 20, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 8, 8, 8, 4, 4, 4, 0,
0, 4, 8, 8, 12, 12, 16, 20, 20, 24, 28, 28, 32, 32, 36, 40, 40, 36, 32, 32, 28, 28, 24, 20, 20, 16, 12, 12, 8, 8, 4, 0,
0, 4, 8, 12, 16, 20, 24, 28, 28, 32, 36, 40, 44, 48, 52, 56, 56, 52, 48, 44, 40, 36, 32, 28, 28, 24, 20, 16, 12, 8, 4, 0,
4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 68, 64, 60, 56, 52, 48, 44, 40, 32, 28, 24, 20, 16, 12, 8, 4,
4, 8, 12, 20, 24, 32, 36, 40, 48, 52, 56, 64, 68, 76, 80, 84, 84, 80, 76, 68, 64, 56, 52, 48, 40, 36, 32, 24, 20, 12, 8, 4,
4, 8, 16, 24, 28, 36, 44, 48, 56, 60, 68, 76, 80, 88, 96,100,100, 96, 88, 80, 76, 68, 60, 56, 48, 44, 36, 28, 24, 16, 8, 4,
4, 12, 20, 28, 32, 40, 48, 56, 64, 72, 80, 88, 92,100,108,116,116,108,100, 92, 88, 80, 72, 64, 56, 48, 40, 32, 28, 20, 12, 4,
4, 12, 20, 28, 40, 48, 56, 64, 72, 80, 88, 96,108,116,124,132,132,124,116,108, 96, 88, 80, 72, 64, 56, 48, 40, 28, 20, 12, 4,
4, 16, 24, 32, 44, 52, 60, 72, 80, 92,100,108,120,128,136,148,148,136,128,120,108,100, 92, 80, 72, 60, 52, 44, 32, 24, 16, 4,
4, 16, 28, 36, 48, 56, 68, 80, 88,100,112,120,132,140,152,164,164,152,140,132,120,112,100, 88, 80, 68, 56, 48, 36, 28, 16, 4,
4, 16, 28, 40, 52, 64, 76, 88, 96,108,120,132,144,156,168,180,180,168,156,144,132,120,108, 96, 88, 76, 64, 52, 40, 28, 16, 4,
8, 20, 32, 44, 56, 68, 80, 92,108,120,132,144,156,168,180,192,192,180,168,156,144,132,120,108, 92, 80, 68, 56, 44, 32, 20, 8,
8, 20, 32, 48, 60, 76, 88,100,116,128,140,156,168,184,196,208,208,196,184,168,156,140,128,116,100, 88, 76, 60, 48, 32, 20, 8,
8, 20, 36, 52, 64, 80, 96,108,124,136,152,168,180,196,212,224,224,212,196,180,168,152,136,124,108, 96, 80, 64, 52, 36, 20, 8,
8, 24, 40, 56, 68, 84,100,116,132,148,164,180,192,208,224,240,240,224,208,192,180,164,148,132,116,100, 84, 68, 56, 40, 24, 8,
8, 24, 40, 56, 68, 84,100,116,132,148,164,180,192,208,224,240,240,224,208,192,180,164,148,132,116,100, 84, 68, 56, 40, 24, 8,
8, 20, 36, 52, 64, 80, 96,108,124,136,152,168,180,196,212,224,224,212,196,180,168,152,136,124,108, 96, 80, 64, 52, 36, 20, 8,
8, 20, 32, 48, 60, 76, 88,100,116,128,140,156,168,184,196,208,208,196,184,168,156,140,128,116,100, 88, 76, 60, 48, 32, 20, 8,
8, 20, 32, 44, 56, 68, 80, 92,108,120,132,144,156,168,180,192,192,180,168,156,144,132,120,108, 92, 80, 68, 56, 44, 32, 20, 8,
4, 16, 28, 40, 52, 64, 76, 88, 96,108,120,132,144,156,168,180,180,168,156,144,132,120,108, 96, 88, 76, 64, 52, 40, 28, 16, 4,
4, 16, 28, 36, 48, 56, 68, 80, 88,100,112,120,132,140,152,164,164,152,140,132,120,112,100, 88, 80, 68, 56, 48, 36, 28, 16, 4,
4, 16, 24, 32, 44, 52, 60, 72, 80, 92,100,108,120,128,136,148,148,136,128,120,108,100, 92, 80, 72, 60, 52, 44, 32, 24, 16, 4,
4, 12, 20, 28, 40, 48, 56, 64, 72, 80, 88, 96,108,116,124,132,132,124,116,108, 96, 88, 80, 72, 64, 56, 48, 40, 28, 20, 12, 4,
4, 12, 20, 28, 32, 40, 48, 56, 64, 72, 80, 88, 92,100,108,116,116,108,100, 92, 88, 80, 72, 64, 56, 48, 40, 32, 28, 20, 12, 4,
4, 8, 16, 24, 28, 36, 44, 48, 56, 60, 68, 76, 80, 88, 96,100,100, 96, 88, 80, 76, 68, 60, 56, 48, 44, 36, 28, 24, 16, 8, 4,
4, 8, 12, 20, 24, 32, 36, 40, 48, 52, 56, 64, 68, 76, 80, 84, 84, 80, 76, 68, 64, 56, 52, 48, 40, 36, 32, 24, 20, 12, 8, 4,
4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 68, 64, 60, 56, 52, 48, 44, 40, 32, 28, 24, 20, 16, 12, 8, 4,
0, 4, 8, 12, 16, 20, 24, 28, 28, 32, 36, 40, 44, 48, 52, 56, 56, 52, 48, 44, 40, 36, 32, 28, 28, 24, 20, 16, 12, 8, 4, 0,
0, 4, 8, 8, 12, 12, 16, 20, 20, 24, 28, 28, 32, 32, 36, 40, 40, 36, 32, 32, 28, 28, 24, 20, 20, 16, 12, 12, 8, 8, 4, 0,
0, 4, 4, 4, 8, 8, 8, 12, 12, 16, 16, 16, 20, 20, 20, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 8, 8, 8, 4, 4, 4, 0,
0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0,
//error:0.000020
};
static const uint8_t obmc16[256]={
0, 4, 4, 8, 8, 12, 12, 16, 16, 12, 12, 8, 8, 4, 4, 0,
4, 8, 16, 20, 28, 32, 40, 44, 44, 40, 32, 28, 20, 16, 8, 4,
4, 16, 24, 36, 44, 56, 64, 76, 76, 64, 56, 44, 36, 24, 16, 4,
8, 20, 36, 48, 64, 76, 92,104,104, 92, 76, 64, 48, 36, 20, 8,
8, 28, 44, 64, 80,100,116,136,136,116,100, 80, 64, 44, 28, 8,
12, 32, 56, 76,100,120,144,164,164,144,120,100, 76, 56, 32, 12,
12, 40, 64, 92,116,144,168,196,196,168,144,116, 92, 64, 40, 12,
16, 44, 76,104,136,164,196,224,224,196,164,136,104, 76, 44, 16,
16, 44, 76,104,136,164,196,224,224,196,164,136,104, 76, 44, 16,
12, 40, 64, 92,116,144,168,196,196,168,144,116, 92, 64, 40, 12,
12, 32, 56, 76,100,120,144,164,164,144,120,100, 76, 56, 32, 12,
8, 28, 44, 64, 80,100,116,136,136,116,100, 80, 64, 44, 28, 8,
8, 20, 36, 48, 64, 76, 92,104,104, 92, 76, 64, 48, 36, 20, 8,
4, 16, 24, 36, 44, 56, 64, 76, 76, 64, 56, 44, 36, 24, 16, 4,
4, 8, 16, 20, 28, 32, 40, 44, 44, 40, 32, 28, 20, 16, 8, 4,
0, 4, 4, 8, 8, 12, 12, 16, 16, 12, 12, 8, 8, 4, 4, 0,
//error:0.000015
};
#else //64*cos
static const uint8_t obmc32[1024]={
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 4, 4, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0,
0, 0, 0, 4, 4, 4, 4, 8, 8, 12, 12, 12, 12, 16, 16, 16, 16, 16, 16, 12, 12, 12, 12, 8, 8, 4, 4, 4, 4, 0, 0, 0,
0, 0, 4, 4, 4, 8, 8, 12, 16, 20, 20, 24, 28, 28, 28, 28, 28, 28, 28, 28, 24, 20, 20, 16, 12, 8, 8, 4, 4, 4, 0, 0,
0, 0, 4, 4, 8, 12, 16, 20, 24, 28, 36, 40, 44, 44, 48, 48, 48, 48, 44, 44, 40, 36, 28, 24, 20, 16, 12, 8, 4, 4, 0, 0,
0, 0, 4, 8, 12, 20, 24, 32, 36, 44, 48, 56, 60, 64, 68, 68, 68, 68, 64, 60, 56, 48, 44, 36, 32, 24, 20, 12, 8, 4, 0, 0,
0, 4, 4, 8, 16, 24, 32, 40, 48, 60, 68, 76, 80, 84, 88, 92, 92, 88, 84, 80, 76, 68, 60, 48, 40, 32, 24, 16, 8, 4, 4, 0,
0, 4, 8, 12, 20, 32, 40, 52, 64, 76, 84, 96,104,108,112,116,116,112,108,104, 96, 84, 76, 64, 52, 40, 32, 20, 12, 8, 4, 0,
0, 4, 8, 16, 24, 36, 48, 64, 76, 92,104,116,124,132,136,140,140,136,132,124,116,104, 92, 76, 64, 48, 36, 24, 16, 8, 4, 0,
0, 4, 12, 20, 28, 44, 60, 76, 92,104,120,136,148,156,160,164,164,160,156,148,136,120,104, 92, 76, 60, 44, 28, 20, 12, 4, 0,
0, 4, 12, 20, 36, 48, 68, 84,104,120,140,152,168,176,184,188,188,184,176,168,152,140,120,104, 84, 68, 48, 36, 20, 12, 4, 0,
0, 4, 12, 24, 36, 56, 76, 96,116,136,152,172,184,196,204,208,208,204,196,184,172,152,136,116, 96, 76, 56, 36, 24, 12, 4, 0,
0, 4, 12, 24, 44, 60, 80,104,124,148,168,184,200,212,224,228,228,224,212,200,184,168,148,124,104, 80, 60, 44, 24, 12, 4, 0,
0, 4, 12, 28, 44, 64, 84,108,132,156,176,196,212,228,236,240,240,236,228,212,196,176,156,132,108, 84, 64, 44, 28, 12, 4, 0,
0, 4, 16, 28, 48, 68, 88,112,136,160,184,204,224,236,244,252,252,244,236,224,204,184,160,136,112, 88, 68, 48, 28, 16, 4, 0,
1, 4, 16, 28, 48, 68, 92,116,140,164,188,208,228,240,252,255,255,252,240,228,208,188,164,140,116, 92, 68, 48, 28, 16, 4, 1,
1, 4, 16, 28, 48, 68, 92,116,140,164,188,208,228,240,252,255,255,252,240,228,208,188,164,140,116, 92, 68, 48, 28, 16, 4, 1,
0, 4, 16, 28, 48, 68, 88,112,136,160,184,204,224,236,244,252,252,244,236,224,204,184,160,136,112, 88, 68, 48, 28, 16, 4, 0,
0, 4, 12, 28, 44, 64, 84,108,132,156,176,196,212,228,236,240,240,236,228,212,196,176,156,132,108, 84, 64, 44, 28, 12, 4, 0,
0, 4, 12, 24, 44, 60, 80,104,124,148,168,184,200,212,224,228,228,224,212,200,184,168,148,124,104, 80, 60, 44, 24, 12, 4, 0,
0, 4, 12, 24, 36, 56, 76, 96,116,136,152,172,184,196,204,208,208,204,196,184,172,152,136,116, 96, 76, 56, 36, 24, 12, 4, 0,
0, 4, 12, 20, 36, 48, 68, 84,104,120,140,152,168,176,184,188,188,184,176,168,152,140,120,104, 84, 68, 48, 36, 20, 12, 4, 0,
0, 4, 12, 20, 28, 44, 60, 76, 92,104,120,136,148,156,160,164,164,160,156,148,136,120,104, 92, 76, 60, 44, 28, 20, 12, 4, 0,
0, 4, 8, 16, 24, 36, 48, 64, 76, 92,104,116,124,132,136,140,140,136,132,124,116,104, 92, 76, 64, 48, 36, 24, 16, 8, 4, 0,
0, 4, 8, 12, 20, 32, 40, 52, 64, 76, 84, 96,104,108,112,116,116,112,108,104, 96, 84, 76, 64, 52, 40, 32, 20, 12, 8, 4, 0,
0, 4, 4, 8, 16, 24, 32, 40, 48, 60, 68, 76, 80, 84, 88, 92, 92, 88, 84, 80, 76, 68, 60, 48, 40, 32, 24, 16, 8, 4, 4, 0,
0, 0, 4, 8, 12, 20, 24, 32, 36, 44, 48, 56, 60, 64, 68, 68, 68, 68, 64, 60, 56, 48, 44, 36, 32, 24, 20, 12, 8, 4, 0, 0,
0, 0, 4, 4, 8, 12, 16, 20, 24, 28, 36, 40, 44, 44, 48, 48, 48, 48, 44, 44, 40, 36, 28, 24, 20, 16, 12, 8, 4, 4, 0, 0,
0, 0, 4, 4, 4, 8, 8, 12, 16, 20, 20, 24, 28, 28, 28, 28, 28, 28, 28, 28, 24, 20, 20, 16, 12, 8, 8, 4, 4, 4, 0, 0,
0, 0, 0, 4, 4, 4, 4, 8, 8, 12, 12, 12, 12, 16, 16, 16, 16, 16, 16, 12, 12, 12, 12, 8, 8, 4, 4, 4, 4, 0, 0, 0,
0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 4, 4, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
//error:0.000022
};
static const uint8_t obmc16[256]={
0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0,
0, 0, 4, 8, 12, 16, 20, 20, 20, 20, 16, 12, 8, 4, 0, 0,
0, 4, 12, 24, 32, 44, 52, 56, 56, 52, 44, 32, 24, 12, 4, 0,
0, 8, 24, 40, 60, 80, 96,104,104, 96, 80, 60, 40, 24, 8, 0,
0, 12, 32, 64, 92,120,140,152,152,140,120, 92, 64, 32, 12, 0,
4, 16, 44, 80,120,156,184,196,196,184,156,120, 80, 44, 16, 4,
4, 20, 52, 96,140,184,216,232,232,216,184,140, 96, 52, 20, 4,
0, 20, 56,104,152,196,232,252,252,232,196,152,104, 56, 20, 0,
0, 20, 56,104,152,196,232,252,252,232,196,152,104, 56, 20, 0,
4, 20, 52, 96,140,184,216,232,232,216,184,140, 96, 52, 20, 4,
4, 16, 44, 80,120,156,184,196,196,184,156,120, 80, 44, 16, 4,
0, 12, 32, 64, 92,120,140,152,152,140,120, 92, 64, 32, 12, 0,
0, 8, 24, 40, 60, 80, 96,104,104, 96, 80, 60, 40, 24, 8, 0,
0, 4, 12, 24, 32, 44, 52, 56, 56, 52, 44, 32, 24, 12, 4, 0,
0, 0, 4, 8, 12, 16, 20, 20, 20, 20, 16, 12, 8, 4, 0, 0,
0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0,
//error:0.000022
};
#endif /* 0 */
//linear *64
static const uint8_t obmc8[64]={
4, 12, 20, 28, 28, 20, 12, 4,
12, 36, 60, 84, 84, 60, 36, 12,
20, 60,100,140,140,100, 60, 20,
28, 84,140,196,196,140, 84, 28,
28, 84,140,196,196,140, 84, 28,
20, 60,100,140,140,100, 60, 20,
12, 36, 60, 84, 84, 60, 36, 12,
4, 12, 20, 28, 28, 20, 12, 4,
//error:0.000000
};
//linear *64
static const uint8_t obmc4[16]={
16, 48, 48, 16,
48,144,144, 48,
48,144,144, 48,
16, 48, 48, 16,
//error:0.000000
};
static const uint8_t * const obmc_tab[4]={
obmc32, obmc16, obmc8, obmc4
};
static int scale_mv_ref[MAX_REF_FRAMES][MAX_REF_FRAMES];
typedef struct BlockNode{
int16_t mx;
int16_t my;
uint8_t ref;
uint8_t color[3];
uint8_t type;
//#define TYPE_SPLIT 1
#define BLOCK_INTRA 1
#define BLOCK_OPT 2
//#define TYPE_NOCOLOR 4
uint8_t level; //FIXME merge into type?
}BlockNode;
static const BlockNode null_block= { //FIXME add border maybe
.color= {128,128,128},
.mx= 0,
.my= 0,
.ref= 0,
.type= 0,
.level= 0,
};
#define LOG2_MB_SIZE 4
#define MB_SIZE (1<<LOG2_MB_SIZE)
#define ENCODER_EXTRA_BITS 4
#define HTAPS_MAX 8
typedef struct x_and_coeff{
int16_t x;
uint16_t coeff;
} x_and_coeff;
typedef struct SubBand{
int level;
int stride;
int width;
int height;
int qlog; ///< log(qscale)/log[2^(1/6)]
DWTELEM *buf;
IDWTELEM *ibuf;
int buf_x_offset;
int buf_y_offset;
int stride_line; ///< Stride measured in lines, not pixels.
x_and_coeff * x_coeff;
struct SubBand *parent;
uint8_t state[/*7*2*/ 7 + 512][32];
}SubBand;
typedef struct Plane{
int width;
int height;
SubBand band[MAX_DECOMPOSITIONS][4];
int htaps;
int8_t hcoeff[HTAPS_MAX/2];
int diag_mc;
int fast_mc;
int last_htaps;
int8_t last_hcoeff[HTAPS_MAX/2];
int last_diag_mc;
}Plane;
typedef struct SnowContext{
AVCodecContext *avctx;
RangeCoder c;
DSPContext dsp;
DWTContext dwt;
AVFrame new_picture;
AVFrame input_picture; ///< new_picture with the internal linesizes
AVFrame current_picture;
AVFrame last_picture[MAX_REF_FRAMES];
uint8_t *halfpel_plane[MAX_REF_FRAMES][4][4];
AVFrame mconly_picture;
// uint8_t q_context[16];
uint8_t header_state[32];
uint8_t block_state[128 + 32*128];
int keyframe;
int always_reset;
int version;
int spatial_decomposition_type;
int last_spatial_decomposition_type;
int temporal_decomposition_type;
int spatial_decomposition_count;
int last_spatial_decomposition_count;
int temporal_decomposition_count;
int max_ref_frames;
int ref_frames;
int16_t (*ref_mvs[MAX_REF_FRAMES])[2];
uint32_t *ref_scores[MAX_REF_FRAMES];
DWTELEM *spatial_dwt_buffer;
IDWTELEM *spatial_idwt_buffer;
int colorspace_type;
int chroma_h_shift;
int chroma_v_shift;
int spatial_scalability;
int qlog;
int last_qlog;
int lambda;
int lambda2;
int pass1_rc;
int mv_scale;
int last_mv_scale;
int qbias;
int last_qbias;
#define QBIAS_SHIFT 3
int b_width;
int b_height;
int block_max_depth;
int last_block_max_depth;
Plane plane[MAX_PLANES];
BlockNode *block;
#define ME_CACHE_SIZE 1024
int me_cache[ME_CACHE_SIZE];
int me_cache_generation;
slice_buffer sb;
MpegEncContext m; // needed for motion estimation, should not be used for anything else, the idea is to eventually make the motion estimation independent of MpegEncContext, so this will be removed then (FIXME/XXX)
uint8_t *scratchbuf;
}SnowContext;
#ifdef __sgi
// Avoid a name clash on SGI IRIX
#undef qexp
#endif
#define QEXPSHIFT (7-FRAC_BITS+8) //FIXME try to change this to 0
static uint8_t qexp[QROOT];
static inline void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed){
int i;
if(v){
const int a= FFABS(v);
const int e= av_log2(a);
#if 1
const int el= FFMIN(e, 10);
put_rac(c, state+0, 0);
for(i=0; i<el; i++){
put_rac(c, state+1+i, 1); //1..10
}
for(; i<e; i++){
put_rac(c, state+1+9, 1); //1..10
}
put_rac(c, state+1+FFMIN(i,9), 0);
for(i=e-1; i>=el; i--){
put_rac(c, state+22+9, (a>>i)&1); //22..31
}
for(; i>=0; i--){
put_rac(c, state+22+i, (a>>i)&1); //22..31
}
if(is_signed)
put_rac(c, state+11 + el, v < 0); //11..21
#else
put_rac(c, state+0, 0);
if(e<=9){
for(i=0; i<e; i++){
put_rac(c, state+1+i, 1); //1..10
}
put_rac(c, state+1+i, 0);
for(i=e-1; i>=0; i--){
put_rac(c, state+22+i, (a>>i)&1); //22..31
}
if(is_signed)
put_rac(c, state+11 + e, v < 0); //11..21
}else{
for(i=0; i<e; i++){
put_rac(c, state+1+FFMIN(i,9), 1); //1..10
}
put_rac(c, state+1+9, 0);
for(i=e-1; i>=0; i--){
put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31
}
if(is_signed)
put_rac(c, state+11 + 10, v < 0); //11..21
}
#endif /* 1 */
}else{
put_rac(c, state+0, 1);
}
}
static inline int get_symbol(RangeCoder *c, uint8_t *state, int is_signed){
if(get_rac(c, state+0))
return 0;
else{
int i, e, a;
e= 0;
while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10
e++;
}
a= 1;
for(i=e-1; i>=0; i--){
a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31
}
e= -(is_signed && get_rac(c, state+11 + FFMIN(e,10))); //11..21
return (a^e)-e;
}
}
static inline void put_symbol2(RangeCoder *c, uint8_t *state, int v, int log2){
int i;
int r= log2>=0 ? 1<<log2 : 1;
assert(v>=0);
assert(log2>=-4);
while(v >= r){
put_rac(c, state+4+log2, 1);
v -= r;
log2++;
if(log2>0) r+=r;
}
put_rac(c, state+4+log2, 0);
for(i=log2-1; i>=0; i--){
put_rac(c, state+31-i, (v>>i)&1);
}
}
static inline int get_symbol2(RangeCoder *c, uint8_t *state, int log2){
int i;
int r= log2>=0 ? 1<<log2 : 1;
int v=0;
assert(log2>=-4);
while(get_rac(c, state+4+log2)){
v+= r;
log2++;
if(log2>0) r+=r;
}
for(i=log2-1; i>=0; i--){
v+= get_rac(c, state+31-i)<<i;
}
return v;
}
static inline void unpack_coeffs(SnowContext *s, SubBand *b, SubBand * parent, int orientation){
const int w= b->width;
const int h= b->height;
int x,y;
int run, runs;
x_and_coeff *xc= b->x_coeff;
x_and_coeff *prev_xc= NULL;
x_and_coeff *prev2_xc= xc;
x_and_coeff *parent_xc= parent ? parent->x_coeff : NULL;
x_and_coeff *prev_parent_xc= parent_xc;
runs= get_symbol2(&s->c, b->state[30], 0);
if(runs-- > 0) run= get_symbol2(&s->c, b->state[1], 3);
else run= INT_MAX;
for(y=0; y<h; y++){
int v=0;
int lt=0, t=0, rt=0;
if(y && prev_xc->x == 0){
rt= prev_xc->coeff;
}
for(x=0; x<w; x++){
int p=0;
const int l= v;
lt= t; t= rt;
if(y){
if(prev_xc->x <= x)
prev_xc++;
if(prev_xc->x == x + 1)
rt= prev_xc->coeff;
else
rt=0;
}
if(parent_xc){
if(x>>1 > parent_xc->x){
parent_xc++;
}
if(x>>1 == parent_xc->x){
p= parent_xc->coeff;
}
}
if(/*ll|*/l|lt|t|rt|p){
int context= av_log2(/*FFABS(ll) + */3*(l>>1) + (lt>>1) + (t&~1) + (rt>>1) + (p>>1));
v=get_rac(&s->c, &b->state[0][context]);
if(v){
v= 2*(get_symbol2(&s->c, b->state[context + 2], context-4) + 1);
v+=get_rac(&s->c, &b->state[0][16 + 1 + 3 + quant3bA[l&0xFF] + 3*quant3bA[t&0xFF]]);
xc->x=x;
(xc++)->coeff= v;
}
}else{
if(!run){
if(runs-- > 0) run= get_symbol2(&s->c, b->state[1], 3);
else run= INT_MAX;
v= 2*(get_symbol2(&s->c, b->state[0 + 2], 0-4) + 1);
v+=get_rac(&s->c, &b->state[0][16 + 1 + 3]);
xc->x=x;
(xc++)->coeff= v;
}else{
int max_run;
run--;
v=0;
if(y) max_run= FFMIN(run, prev_xc->x - x - 2);
else max_run= FFMIN(run, w-x-1);
if(parent_xc)
max_run= FFMIN(max_run, 2*parent_xc->x - x - 1);
x+= max_run;
run-= max_run;
}
}
}
(xc++)->x= w+1; //end marker
prev_xc= prev2_xc;
prev2_xc= xc;
if(parent_xc){
if(y&1){
while(parent_xc->x != parent->width+1)
parent_xc++;
parent_xc++;
prev_parent_xc= parent_xc;
}else{
parent_xc= prev_parent_xc;
}
}
}
(xc++)->x= w+1; //end marker
}
static inline void decode_subband_slice_buffered(SnowContext *s, SubBand *b, slice_buffer * sb, int start_y, int h, int save_state[1]){
const int w= b->width;
int y;
const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
int new_index = 0;
if(b->ibuf == s->spatial_idwt_buffer || s->qlog == LOSSLESS_QLOG){
qadd= 0;
qmul= 1<<QEXPSHIFT;
}
/* If we are on the second or later slice, restore our index. */
if (start_y != 0)
new_index = save_state[0];
for(y=start_y; y<h; y++){
int x = 0;
int v;
IDWTELEM * line = slice_buffer_get_line(sb, y * b->stride_line + b->buf_y_offset) + b->buf_x_offset;
memset(line, 0, b->width*sizeof(IDWTELEM));
v = b->x_coeff[new_index].coeff;
x = b->x_coeff[new_index++].x;
while(x < w){
register int t= ( (v>>1)*qmul + qadd)>>QEXPSHIFT;
register int u= -(v&1);
line[x] = (t^u) - u;
v = b->x_coeff[new_index].coeff;
x = b->x_coeff[new_index++].x;
}
}
/* Save our variables for the next slice. */
save_state[0] = new_index;
return;
}
static void reset_contexts(SnowContext *s){ //FIXME better initial contexts
int plane_index, level, orientation;
for(plane_index=0; plane_index<3; plane_index++){
for(level=0; level<MAX_DECOMPOSITIONS; level++){
for(orientation=level ? 1:0; orientation<4; orientation++){
memset(s->plane[plane_index].band[level][orientation].state, MID_STATE, sizeof(s->plane[plane_index].band[level][orientation].state));
}
}
}
memset(s->header_state, MID_STATE, sizeof(s->header_state));
memset(s->block_state, MID_STATE, sizeof(s->block_state));
}
static int alloc_blocks(SnowContext *s){
int w= -((-s->avctx->width )>>LOG2_MB_SIZE);
int h= -((-s->avctx->height)>>LOG2_MB_SIZE);
s->b_width = w;
s->b_height= h;
av_free(s->block);
s->block= av_mallocz(w * h * sizeof(BlockNode) << (s->block_max_depth*2));
return 0;
}
static inline void copy_rac_state(RangeCoder *d, RangeCoder *s){
uint8_t *bytestream= d->bytestream;
uint8_t *bytestream_start= d->bytestream_start;
*d= *s;
d->bytestream= bytestream;
d->bytestream_start= bytestream_start;
}
static inline void set_blocks(SnowContext *s, int level, int x, int y, int l, int cb, int cr, int mx, int my, int ref, int type){
const int w= s->b_width << s->block_max_depth;
const int rem_depth= s->block_max_depth - level;
const int index= (x + y*w) << rem_depth;
const int block_w= 1<<rem_depth;
BlockNode block;
int i,j;
block.color[0]= l;
block.color[1]= cb;
block.color[2]= cr;
block.mx= mx;
block.my= my;
block.ref= ref;
block.type= type;
block.level= level;
for(j=0; j<block_w; j++){
for(i=0; i<block_w; i++){
s->block[index + i + j*w]= block;
}
}
}
static inline void init_ref(MotionEstContext *c, uint8_t *src[3], uint8_t *ref[3], uint8_t *ref2[3], int x, int y, int ref_index){
const int offset[3]= {
y*c-> stride + x,
((y*c->uvstride + x)>>1),
((y*c->uvstride + x)>>1),
};
int i;
for(i=0; i<3; i++){
c->src[0][i]= src [i];
c->ref[0][i]= ref [i] + offset[i];
}
assert(!ref_index);
}
static inline void pred_mv(SnowContext *s, int *mx, int *my, int ref,
const BlockNode *left, const BlockNode *top, const BlockNode *tr){
if(s->ref_frames == 1){
*mx = mid_pred(left->mx, top->mx, tr->mx);
*my = mid_pred(left->my, top->my, tr->my);
}else{
const int *scale = scale_mv_ref[ref];
*mx = mid_pred((left->mx * scale[left->ref] + 128) >>8,
(top ->mx * scale[top ->ref] + 128) >>8,
(tr ->mx * scale[tr ->ref] + 128) >>8);
*my = mid_pred((left->my * scale[left->ref] + 128) >>8,
(top ->my * scale[top ->ref] + 128) >>8,
(tr ->my * scale[tr ->ref] + 128) >>8);
}
}
static av_always_inline int same_block(BlockNode *a, BlockNode *b){
if((a->type&BLOCK_INTRA) && (b->type&BLOCK_INTRA)){
return !((a->color[0] - b->color[0]) | (a->color[1] - b->color[1]) | (a->color[2] - b->color[2]));
}else{
return !((a->mx - b->mx) | (a->my - b->my) | (a->ref - b->ref) | ((a->type ^ b->type)&BLOCK_INTRA));
}
}
static void decode_q_branch(SnowContext *s, int level, int x, int y){
const int w= s->b_width << s->block_max_depth;
const int rem_depth= s->block_max_depth - level;
const int index= (x + y*w) << rem_depth;
int trx= (x+1)<<rem_depth;
const BlockNode *left = x ? &s->block[index-1] : &null_block;
const BlockNode *top = y ? &s->block[index-w] : &null_block;
const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
if(s->keyframe){
set_blocks(s, level, x, y, null_block.color[0], null_block.color[1], null_block.color[2], null_block.mx, null_block.my, null_block.ref, BLOCK_INTRA);
return;
}
if(level==s->block_max_depth || get_rac(&s->c, &s->block_state[4 + s_context])){
int type, mx, my;
int l = left->color[0];
int cb= left->color[1];
int cr= left->color[2];
int ref = 0;
int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 0*av_log2(2*FFABS(tr->mx - top->mx));
int my_context= av_log2(2*FFABS(left->my - top->my)) + 0*av_log2(2*FFABS(tr->my - top->my));
type= get_rac(&s->c, &s->block_state[1 + left->type + top->type]) ? BLOCK_INTRA : 0;
if(type){
pred_mv(s, &mx, &my, 0, left, top, tr);
l += get_symbol(&s->c, &s->block_state[32], 1);
cb+= get_symbol(&s->c, &s->block_state[64], 1);
cr+= get_symbol(&s->c, &s->block_state[96], 1);
}else{
if(s->ref_frames > 1)
ref= get_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], 0);
pred_mv(s, &mx, &my, ref, left, top, tr);
mx+= get_symbol(&s->c, &s->block_state[128 + 32*(mx_context + 16*!!ref)], 1);
my+= get_symbol(&s->c, &s->block_state[128 + 32*(my_context + 16*!!ref)], 1);
}
set_blocks(s, level, x, y, l, cb, cr, mx, my, ref, type);
}else{
decode_q_branch(s, level+1, 2*x+0, 2*y+0);
decode_q_branch(s, level+1, 2*x+1, 2*y+0);
decode_q_branch(s, level+1, 2*x+0, 2*y+1);
decode_q_branch(s, level+1, 2*x+1, 2*y+1);
}
}
static void decode_blocks(SnowContext *s){
int x, y;
int w= s->b_width;
int h= s->b_height;
for(y=0; y<h; y++){
for(x=0; x<w; x++){
decode_q_branch(s, 0, x, y);
}
}
}
static void mc_block(Plane *p, uint8_t *dst, const uint8_t *src, int stride, int b_w, int b_h, int dx, int dy){
static const uint8_t weight[64]={
8,7,6,5,4,3,2,1,
7,7,0,0,0,0,0,1,
6,0,6,0,0,0,2,0,
5,0,0,5,0,3,0,0,
4,0,0,0,4,0,0,0,
3,0,0,5,0,3,0,0,
2,0,6,0,0,0,2,0,
1,7,0,0,0,0,0,1,
};
static const uint8_t brane[256]={
0x00,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x11,0x12,0x12,0x12,0x12,0x12,0x12,0x12,
0x04,0x05,0xcc,0xcc,0xcc,0xcc,0xcc,0x41,0x15,0x16,0xcc,0xcc,0xcc,0xcc,0xcc,0x52,
0x04,0xcc,0x05,0xcc,0xcc,0xcc,0x41,0xcc,0x15,0xcc,0x16,0xcc,0xcc,0xcc,0x52,0xcc,
0x04,0xcc,0xcc,0x05,0xcc,0x41,0xcc,0xcc,0x15,0xcc,0xcc,0x16,0xcc,0x52,0xcc,0xcc,
0x04,0xcc,0xcc,0xcc,0x41,0xcc,0xcc,0xcc,0x15,0xcc,0xcc,0xcc,0x16,0xcc,0xcc,0xcc,
0x04,0xcc,0xcc,0x41,0xcc,0x05,0xcc,0xcc,0x15,0xcc,0xcc,0x52,0xcc,0x16,0xcc,0xcc,
0x04,0xcc,0x41,0xcc,0xcc,0xcc,0x05,0xcc,0x15,0xcc,0x52,0xcc,0xcc,0xcc,0x16,0xcc,
0x04,0x41,0xcc,0xcc,0xcc,0xcc,0xcc,0x05,0x15,0x52,0xcc,0xcc,0xcc,0xcc,0xcc,0x16,
0x44,0x45,0x45,0x45,0x45,0x45,0x45,0x45,0x55,0x56,0x56,0x56,0x56,0x56,0x56,0x56,
0x48,0x49,0xcc,0xcc,0xcc,0xcc,0xcc,0x85,0x59,0x5A,0xcc,0xcc,0xcc,0xcc,0xcc,0x96,
0x48,0xcc,0x49,0xcc,0xcc,0xcc,0x85,0xcc,0x59,0xcc,0x5A,0xcc,0xcc,0xcc,0x96,0xcc,
0x48,0xcc,0xcc,0x49,0xcc,0x85,0xcc,0xcc,0x59,0xcc,0xcc,0x5A,0xcc,0x96,0xcc,0xcc,
0x48,0xcc,0xcc,0xcc,0x49,0xcc,0xcc,0xcc,0x59,0xcc,0xcc,0xcc,0x96,0xcc,0xcc,0xcc,
0x48,0xcc,0xcc,0x85,0xcc,0x49,0xcc,0xcc,0x59,0xcc,0xcc,0x96,0xcc,0x5A,0xcc,0xcc,
0x48,0xcc,0x85,0xcc,0xcc,0xcc,0x49,0xcc,0x59,0xcc,0x96,0xcc,0xcc,0xcc,0x5A,0xcc,
0x48,0x85,0xcc,0xcc,0xcc,0xcc,0xcc,0x49,0x59,0x96,0xcc,0xcc,0xcc,0xcc,0xcc,0x5A,
};
static const uint8_t needs[16]={
0,1,0,0,
2,4,2,0,
0,1,0,0,
15
};
int x, y, b, r, l;
int16_t tmpIt [64*(32+HTAPS_MAX)];
uint8_t tmp2t[3][stride*(32+HTAPS_MAX)];
int16_t *tmpI= tmpIt;
uint8_t *tmp2= tmp2t[0];
const uint8_t *hpel[11];
assert(dx<16 && dy<16);
r= brane[dx + 16*dy]&15;
l= brane[dx + 16*dy]>>4;
b= needs[l] | needs[r];
if(p && !p->diag_mc)
b= 15;
if(b&5){
for(y=0; y < b_h+HTAPS_MAX-1; y++){
for(x=0; x < b_w; x++){
int a_1=src[x + HTAPS_MAX/2-4];
int a0= src[x + HTAPS_MAX/2-3];
int a1= src[x + HTAPS_MAX/2-2];
int a2= src[x + HTAPS_MAX/2-1];
int a3= src[x + HTAPS_MAX/2+0];
int a4= src[x + HTAPS_MAX/2+1];
int a5= src[x + HTAPS_MAX/2+2];
int a6= src[x + HTAPS_MAX/2+3];
int am=0;
if(!p || p->fast_mc){
am= 20*(a2+a3) - 5*(a1+a4) + (a0+a5);
tmpI[x]= am;
am= (am+16)>>5;
}else{
am= p->hcoeff[0]*(a2+a3) + p->hcoeff[1]*(a1+a4) + p->hcoeff[2]*(a0+a5) + p->hcoeff[3]*(a_1+a6);
tmpI[x]= am;
am= (am+32)>>6;
}
if(am&(~255)) am= ~(am>>31);
tmp2[x]= am;
}
tmpI+= 64;
tmp2+= stride;
src += stride;
}
src -= stride*y;
}
src += HTAPS_MAX/2 - 1;
tmp2= tmp2t[1];
if(b&2){
for(y=0; y < b_h; y++){
for(x=0; x < b_w+1; x++){
int a_1=src[x + (HTAPS_MAX/2-4)*stride];
int a0= src[x + (HTAPS_MAX/2-3)*stride];
int a1= src[x + (HTAPS_MAX/2-2)*stride];
int a2= src[x + (HTAPS_MAX/2-1)*stride];
int a3= src[x + (HTAPS_MAX/2+0)*stride];
int a4= src[x + (HTAPS_MAX/2+1)*stride];
int a5= src[x + (HTAPS_MAX/2+2)*stride];
int a6= src[x + (HTAPS_MAX/2+3)*stride];
int am=0;
if(!p || p->fast_mc)
am= (20*(a2+a3) - 5*(a1+a4) + (a0+a5) + 16)>>5;
else
am= (p->hcoeff[0]*(a2+a3) + p->hcoeff[1]*(a1+a4) + p->hcoeff[2]*(a0+a5) + p->hcoeff[3]*(a_1+a6) + 32)>>6;
if(am&(~255)) am= ~(am>>31);
tmp2[x]= am;
}
src += stride;
tmp2+= stride;
}
src -= stride*y;
}
src += stride*(HTAPS_MAX/2 - 1);
tmp2= tmp2t[2];
tmpI= tmpIt;
if(b&4){
for(y=0; y < b_h; y++){
for(x=0; x < b_w; x++){
int a_1=tmpI[x + (HTAPS_MAX/2-4)*64];
int a0= tmpI[x + (HTAPS_MAX/2-3)*64];
int a1= tmpI[x + (HTAPS_MAX/2-2)*64];
int a2= tmpI[x + (HTAPS_MAX/2-1)*64];
int a3= tmpI[x + (HTAPS_MAX/2+0)*64];
int a4= tmpI[x + (HTAPS_MAX/2+1)*64];
int a5= tmpI[x + (HTAPS_MAX/2+2)*64];
int a6= tmpI[x + (HTAPS_MAX/2+3)*64];
int am=0;
if(!p || p->fast_mc)
am= (20*(a2+a3) - 5*(a1+a4) + (a0+a5) + 512)>>10;
else
am= (p->hcoeff[0]*(a2+a3) + p->hcoeff[1]*(a1+a4) + p->hcoeff[2]*(a0+a5) + p->hcoeff[3]*(a_1+a6) + 2048)>>12;
if(am&(~255)) am= ~(am>>31);
tmp2[x]= am;
}
tmpI+= 64;
tmp2+= stride;
}
}
hpel[ 0]= src;
hpel[ 1]= tmp2t[0] + stride*(HTAPS_MAX/2-1);
hpel[ 2]= src + 1;
hpel[ 4]= tmp2t[1];
hpel[ 5]= tmp2t[2];
hpel[ 6]= tmp2t[1] + 1;
hpel[ 8]= src + stride;
hpel[ 9]= hpel[1] + stride;
hpel[10]= hpel[8] + 1;
if(b==15){
const uint8_t *src1= hpel[dx/8 + dy/8*4 ];
const uint8_t *src2= hpel[dx/8 + dy/8*4+1];
const uint8_t *src3= hpel[dx/8 + dy/8*4+4];
const uint8_t *src4= hpel[dx/8 + dy/8*4+5];
dx&=7;
dy&=7;
for(y=0; y < b_h; y++){
for(x=0; x < b_w; x++){
dst[x]= ((8-dx)*(8-dy)*src1[x] + dx*(8-dy)*src2[x]+
(8-dx)* dy *src3[x] + dx* dy *src4[x]+32)>>6;
}
src1+=stride;
src2+=stride;
src3+=stride;
src4+=stride;
dst +=stride;
}
}else{
const uint8_t *src1= hpel[l];
const uint8_t *src2= hpel[r];
int a= weight[((dx&7) + (8*(dy&7)))];
int b= 8-a;
for(y=0; y < b_h; y++){
for(x=0; x < b_w; x++){
dst[x]= (a*src1[x] + b*src2[x] + 4)>>3;
}
src1+=stride;
src2+=stride;
dst +=stride;
}
}
}
#define mca(dx,dy,b_w)\
static void mc_block_hpel ## dx ## dy ## b_w(uint8_t *dst, const uint8_t *src, int stride, int h){\
assert(h==b_w);\
mc_block(NULL, dst, src-(HTAPS_MAX/2-1)-(HTAPS_MAX/2-1)*stride, stride, b_w, b_w, dx, dy);\
}
mca( 0, 0,16)
mca( 8, 0,16)
mca( 0, 8,16)
mca( 8, 8,16)
mca( 0, 0,8)
mca( 8, 0,8)
mca( 0, 8,8)
mca( 8, 8,8)
static void pred_block(SnowContext *s, uint8_t *dst, uint8_t *tmp, int stride, int sx, int sy, int b_w, int b_h, BlockNode *block, int plane_index, int w, int h){
if(block->type & BLOCK_INTRA){
int x, y;
const int color = block->color[plane_index];
const int color4= color*0x01010101;
if(b_w==32){
for(y=0; y < b_h; y++){
*(uint32_t*)&dst[0 + y*stride]= color4;
*(uint32_t*)&dst[4 + y*stride]= color4;
*(uint32_t*)&dst[8 + y*stride]= color4;
*(uint32_t*)&dst[12+ y*stride]= color4;
*(uint32_t*)&dst[16+ y*stride]= color4;
*(uint32_t*)&dst[20+ y*stride]= color4;
*(uint32_t*)&dst[24+ y*stride]= color4;
*(uint32_t*)&dst[28+ y*stride]= color4;
}
}else if(b_w==16){
for(y=0; y < b_h; y++){
*(uint32_t*)&dst[0 + y*stride]= color4;
*(uint32_t*)&dst[4 + y*stride]= color4;
*(uint32_t*)&dst[8 + y*stride]= color4;
*(uint32_t*)&dst[12+ y*stride]= color4;
}
}else if(b_w==8){
for(y=0; y < b_h; y++){
*(uint32_t*)&dst[0 + y*stride]= color4;
*(uint32_t*)&dst[4 + y*stride]= color4;
}
}else if(b_w==4){
for(y=0; y < b_h; y++){
*(uint32_t*)&dst[0 + y*stride]= color4;
}
}else{
for(y=0; y < b_h; y++){
for(x=0; x < b_w; x++){
dst[x + y*stride]= color;
}
}
}
}else{
uint8_t *src= s->last_picture[block->ref].data[plane_index];
const int scale= plane_index ? s->mv_scale : 2*s->mv_scale;
int mx= block->mx*scale;
int my= block->my*scale;
const int dx= mx&15;
const int dy= my&15;
const int tab_index= 3 - (b_w>>2) + (b_w>>4);
sx += (mx>>4) - (HTAPS_MAX/2-1);
sy += (my>>4) - (HTAPS_MAX/2-1);
src += sx + sy*stride;
if( (unsigned)sx >= w - b_w - (HTAPS_MAX-2)
|| (unsigned)sy >= h - b_h - (HTAPS_MAX-2)){
s->dsp.emulated_edge_mc(tmp + MB_SIZE, src, stride, b_w+HTAPS_MAX-1, b_h+HTAPS_MAX-1, sx, sy, w, h);
src= tmp + MB_SIZE;
}
// assert(b_w == b_h || 2*b_w == b_h || b_w == 2*b_h);
// assert(!(b_w&(b_w-1)));
assert(b_w>1 && b_h>1);
assert((tab_index>=0 && tab_index<4) || b_w==32);
if((dx&3) || (dy&3) || !(b_w == b_h || 2*b_w == b_h || b_w == 2*b_h) || (b_w&(b_w-1)) || !s->plane[plane_index].fast_mc )
mc_block(&s->plane[plane_index], dst, src, stride, b_w, b_h, dx, dy);
else if(b_w==32){
int y;
for(y=0; y<b_h; y+=16){
s->dsp.put_h264_qpel_pixels_tab[0][dy+(dx>>2)](dst + y*stride, src + 3 + (y+3)*stride,stride);
s->dsp.put_h264_qpel_pixels_tab[0][dy+(dx>>2)](dst + 16 + y*stride, src + 19 + (y+3)*stride,stride);
}
}else if(b_w==b_h)
s->dsp.put_h264_qpel_pixels_tab[tab_index ][dy+(dx>>2)](dst,src + 3 + 3*stride,stride);
else if(b_w==2*b_h){
s->dsp.put_h264_qpel_pixels_tab[tab_index+1][dy+(dx>>2)](dst ,src + 3 + 3*stride,stride);
s->dsp.put_h264_qpel_pixels_tab[tab_index+1][dy+(dx>>2)](dst+b_h,src + 3 + b_h + 3*stride,stride);
}else{
assert(2*b_w==b_h);
s->dsp.put_h264_qpel_pixels_tab[tab_index ][dy+(dx>>2)](dst ,src + 3 + 3*stride ,stride);
s->dsp.put_h264_qpel_pixels_tab[tab_index ][dy+(dx>>2)](dst+b_w*stride,src + 3 + 3*stride+b_w*stride,stride);
}
}
}
void ff_snow_inner_add_yblock(const uint8_t *obmc, const int obmc_stride, uint8_t * * block, int b_w, int b_h,
int src_x, int src_y, int src_stride, slice_buffer * sb, int add, uint8_t * dst8){
int y, x;
IDWTELEM * dst;
for(y=0; y<b_h; y++){
//FIXME ugly misuse of obmc_stride
const uint8_t *obmc1= obmc + y*obmc_stride;
const uint8_t *obmc2= obmc1+ (obmc_stride>>1);
const uint8_t *obmc3= obmc1+ obmc_stride*(obmc_stride>>1);
const uint8_t *obmc4= obmc3+ (obmc_stride>>1);
dst = slice_buffer_get_line(sb, src_y + y);
for(x=0; x<b_w; x++){
int v= obmc1[x] * block[3][x + y*src_stride]
+obmc2[x] * block[2][x + y*src_stride]
+obmc3[x] * block[1][x + y*src_stride]
+obmc4[x] * block[0][x + y*src_stride];
v <<= 8 - LOG2_OBMC_MAX;
if(FRAC_BITS != 8){
v >>= 8 - FRAC_BITS;
}
if(add){
v += dst[x + src_x];
v = (v + (1<<(FRAC_BITS-1))) >> FRAC_BITS;
if(v&(~255)) v= ~(v>>31);
dst8[x + y*src_stride] = v;
}else{
dst[x + src_x] -= v;
}
}
}
}
//FIXME name cleanup (b_w, block_w, b_width stuff)
static av_always_inline void add_yblock(SnowContext *s, int sliced, slice_buffer *sb, IDWTELEM *dst, uint8_t *dst8, const uint8_t *obmc, int src_x, int src_y, int b_w, int b_h, int w, int h, int dst_stride, int src_stride, int obmc_stride, int b_x, int b_y, int add, int offset_dst, int plane_index){
const int b_width = s->b_width << s->block_max_depth;
const int b_height= s->b_height << s->block_max_depth;
const int b_stride= b_width;
BlockNode *lt= &s->block[b_x + b_y*b_stride];
BlockNode *rt= lt+1;
BlockNode *lb= lt+b_stride;
BlockNode *rb= lb+1;
uint8_t *block[4];
int tmp_step= src_stride >= 7*MB_SIZE ? MB_SIZE : MB_SIZE*src_stride;
uint8_t *tmp = s->scratchbuf;
uint8_t *ptmp;
int x,y;
if(b_x<0){
lt= rt;
lb= rb;
}else if(b_x + 1 >= b_width){
rt= lt;
rb= lb;
}
if(b_y<0){
lt= lb;
rt= rb;
}else if(b_y + 1 >= b_height){
lb= lt;
rb= rt;
}
if(src_x<0){ //FIXME merge with prev & always round internal width up to *16
obmc -= src_x;
b_w += src_x;
if(!sliced && !offset_dst)
dst -= src_x;
src_x=0;
}else if(src_x + b_w > w){
b_w = w - src_x;
}
if(src_y<0){
obmc -= src_y*obmc_stride;
b_h += src_y;
if(!sliced && !offset_dst)
dst -= src_y*dst_stride;
src_y=0;
}else if(src_y + b_h> h){
b_h = h - src_y;
}
if(b_w<=0 || b_h<=0) return;
assert(src_stride > 2*MB_SIZE + 5);
if(!sliced && offset_dst)
dst += src_x + src_y*dst_stride;
dst8+= src_x + src_y*src_stride;
// src += src_x + src_y*src_stride;
ptmp= tmp + 3*tmp_step;
block[0]= ptmp;
ptmp+=tmp_step;
pred_block(s, block[0], tmp, src_stride, src_x, src_y, b_w, b_h, lt, plane_index, w, h);
if(same_block(lt, rt)){
block[1]= block[0];
}else{
block[1]= ptmp;
ptmp+=tmp_step;
pred_block(s, block[1], tmp, src_stride, src_x, src_y, b_w, b_h, rt, plane_index, w, h);
}
if(same_block(lt, lb)){
block[2]= block[0];
}else if(same_block(rt, lb)){
block[2]= block[1];
}else{
block[2]= ptmp;
ptmp+=tmp_step;
pred_block(s, block[2], tmp, src_stride, src_x, src_y, b_w, b_h, lb, plane_index, w, h);
}
if(same_block(lt, rb) ){
block[3]= block[0];
}else if(same_block(rt, rb)){
block[3]= block[1];
}else if(same_block(lb, rb)){
block[3]= block[2];
}else{
block[3]= ptmp;
pred_block(s, block[3], tmp, src_stride, src_x, src_y, b_w, b_h, rb, plane_index, w, h);
}
#if 0
for(y=0; y<b_h; y++){
for(x=0; x<b_w; x++){
int v= obmc [x + y*obmc_stride] * block[3][x + y*src_stride] * (256/OBMC_MAX);
if(add) dst[x + y*dst_stride] += v;
else dst[x + y*dst_stride] -= v;
}
}
for(y=0; y<b_h; y++){
uint8_t *obmc2= obmc + (obmc_stride>>1);
for(x=0; x<b_w; x++){
int v= obmc2[x + y*obmc_stride] * block[2][x + y*src_stride] * (256/OBMC_MAX);
if(add) dst[x + y*dst_stride] += v;
else dst[x + y*dst_stride] -= v;
}
}
for(y=0; y<b_h; y++){
uint8_t *obmc3= obmc + obmc_stride*(obmc_stride>>1);
for(x=0; x<b_w; x++){
int v= obmc3[x + y*obmc_stride] * block[1][x + y*src_stride] * (256/OBMC_MAX);
if(add) dst[x + y*dst_stride] += v;
else dst[x + y*dst_stride] -= v;
}
}
for(y=0; y<b_h; y++){
uint8_t *obmc3= obmc + obmc_stride*(obmc_stride>>1);
uint8_t *obmc4= obmc3+ (obmc_stride>>1);
for(x=0; x<b_w; x++){
int v= obmc4[x + y*obmc_stride] * block[0][x + y*src_stride] * (256/OBMC_MAX);
if(add) dst[x + y*dst_stride] += v;
else dst[x + y*dst_stride] -= v;
}
}
#else
if(sliced){
s->dwt.inner_add_yblock(obmc, obmc_stride, block, b_w, b_h, src_x,src_y, src_stride, sb, add, dst8);
}else{
for(y=0; y<b_h; y++){
//FIXME ugly misuse of obmc_stride
const uint8_t *obmc1= obmc + y*obmc_stride;
const uint8_t *obmc2= obmc1+ (obmc_stride>>1);
const uint8_t *obmc3= obmc1+ obmc_stride*(obmc_stride>>1);
const uint8_t *obmc4= obmc3+ (obmc_stride>>1);
for(x=0; x<b_w; x++){
int v= obmc1[x] * block[3][x + y*src_stride]
+obmc2[x] * block[2][x + y*src_stride]
+obmc3[x] * block[1][x + y*src_stride]
+obmc4[x] * block[0][x + y*src_stride];
v <<= 8 - LOG2_OBMC_MAX;
if(FRAC_BITS != 8){
v >>= 8 - FRAC_BITS;
}
if(add){
v += dst[x + y*dst_stride];
v = (v + (1<<(FRAC_BITS-1))) >> FRAC_BITS;
if(v&(~255)) v= ~(v>>31);
dst8[x + y*src_stride] = v;
}else{
dst[x + y*dst_stride] -= v;
}
}
}
}
#endif /* 0 */
}
static av_always_inline void predict_slice_buffered(SnowContext *s, slice_buffer * sb, IDWTELEM * old_buffer, int plane_index, int add, int mb_y){
Plane *p= &s->plane[plane_index];
const int mb_w= s->b_width << s->block_max_depth;
const int mb_h= s->b_height << s->block_max_depth;
int x, y, mb_x;
int block_size = MB_SIZE >> s->block_max_depth;
int block_w = plane_index ? block_size/2 : block_size;
const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth];
int obmc_stride= plane_index ? block_size : 2*block_size;
int ref_stride= s->current_picture.linesize[plane_index];
uint8_t *dst8= s->current_picture.data[plane_index];
int w= p->width;
int h= p->height;
if(s->keyframe || (s->avctx->debug&512)){
if(mb_y==mb_h)
return;
if(add){
for(y=block_w*mb_y; y<FFMIN(h,block_w*(mb_y+1)); y++){
// DWTELEM * line = slice_buffer_get_line(sb, y);
IDWTELEM * line = sb->line[y];
for(x=0; x<w; x++){
// int v= buf[x + y*w] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
int v= line[x] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
v >>= FRAC_BITS;
if(v&(~255)) v= ~(v>>31);
dst8[x + y*ref_stride]= v;
}
}
}else{
for(y=block_w*mb_y; y<FFMIN(h,block_w*(mb_y+1)); y++){
// DWTELEM * line = slice_buffer_get_line(sb, y);
IDWTELEM * line = sb->line[y];
for(x=0; x<w; x++){
line[x] -= 128 << FRAC_BITS;
// buf[x + y*w]-= 128<<FRAC_BITS;
}
}
}
return;
}
for(mb_x=0; mb_x<=mb_w; mb_x++){
add_yblock(s, 1, sb, old_buffer, dst8, obmc,
block_w*mb_x - block_w/2,
block_w*mb_y - block_w/2,
block_w, block_w,
w, h,
w, ref_stride, obmc_stride,
mb_x - 1, mb_y - 1,
add, 0, plane_index);
}
}
static av_always_inline void predict_slice(SnowContext *s, IDWTELEM *buf, int plane_index, int add, int mb_y){
Plane *p= &s->plane[plane_index];
const int mb_w= s->b_width << s->block_max_depth;
const int mb_h= s->b_height << s->block_max_depth;
int x, y, mb_x;
int block_size = MB_SIZE >> s->block_max_depth;
int block_w = plane_index ? block_size/2 : block_size;
const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth];
const int obmc_stride= plane_index ? block_size : 2*block_size;
int ref_stride= s->current_picture.linesize[plane_index];
uint8_t *dst8= s->current_picture.data[plane_index];
int w= p->width;
int h= p->height;
if(s->keyframe || (s->avctx->debug&512)){
if(mb_y==mb_h)
return;
if(add){
for(y=block_w*mb_y; y<FFMIN(h,block_w*(mb_y+1)); y++){
for(x=0; x<w; x++){
int v= buf[x + y*w] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
v >>= FRAC_BITS;
if(v&(~255)) v= ~(v>>31);
dst8[x + y*ref_stride]= v;
}
}
}else{
for(y=block_w*mb_y; y<FFMIN(h,block_w*(mb_y+1)); y++){
for(x=0; x<w; x++){
buf[x + y*w]-= 128<<FRAC_BITS;
}
}
}
return;
}
for(mb_x=0; mb_x<=mb_w; mb_x++){
add_yblock(s, 0, NULL, buf, dst8, obmc,
block_w*mb_x - block_w/2,
block_w*mb_y - block_w/2,
block_w, block_w,
w, h,
w, ref_stride, obmc_stride,
mb_x - 1, mb_y - 1,
add, 1, plane_index);
}
}
static av_always_inline void predict_plane(SnowContext *s, IDWTELEM *buf, int plane_index, int add){
const int mb_h= s->b_height << s->block_max_depth;
int mb_y;
for(mb_y=0; mb_y<=mb_h; mb_y++)
predict_slice(s, buf, plane_index, add, mb_y);
}
static void dequantize_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int start_y, int end_y){
const int w= b->width;
const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
const int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
int x,y;
if(s->qlog == LOSSLESS_QLOG) return;
for(y=start_y; y<end_y; y++){
// DWTELEM * line = slice_buffer_get_line_from_address(sb, src + (y * stride));
IDWTELEM * line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
for(x=0; x<w; x++){
int i= line[x];
if(i<0){
line[x]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
}else if(i>0){
line[x]= (( i*qmul + qadd)>>(QEXPSHIFT));
}
}
}
}
static void correlate_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median, int start_y, int end_y){
const int w= b->width;
int x,y;
IDWTELEM * line=0; // silence silly "could be used without having been initialized" warning
IDWTELEM * prev;
if (start_y != 0)
line = slice_buffer_get_line(sb, ((start_y - 1) * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
for(y=start_y; y<end_y; y++){
prev = line;
// line = slice_buffer_get_line_from_address(sb, src + (y * stride));
line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
for(x=0; x<w; x++){
if(x){
if(use_median){
if(y && x+1<w) line[x] += mid_pred(line[x - 1], prev[x], prev[x + 1]);
else line[x] += line[x - 1];
}else{
if(y) line[x] += mid_pred(line[x - 1], prev[x], line[x - 1] + prev[x] - prev[x - 1]);
else line[x] += line[x - 1];
}
}else{
if(y) line[x] += prev[x];
}
}
}
}
static void decode_qlogs(SnowContext *s){
int plane_index, level, orientation;
for(plane_index=0; plane_index<3; plane_index++){
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1:0; orientation<4; orientation++){
int q;
if (plane_index==2) q= s->plane[1].band[level][orientation].qlog;
else if(orientation==2) q= s->plane[plane_index].band[level][1].qlog;
else q= get_symbol(&s->c, s->header_state, 1);
s->plane[plane_index].band[level][orientation].qlog= q;
}
}
}
}
#define GET_S(dst, check) \
tmp= get_symbol(&s->c, s->header_state, 0);\
if(!(check)){\
av_log(s->avctx, AV_LOG_ERROR, "Error " #dst " is %d\n", tmp);\
return -1;\
}\
dst= tmp;
static int decode_header(SnowContext *s){
int plane_index, tmp;
uint8_t kstate[32];
memset(kstate, MID_STATE, sizeof(kstate));
s->keyframe= get_rac(&s->c, kstate);
if(s->keyframe || s->always_reset){
reset_contexts(s);
s->spatial_decomposition_type=
s->qlog=
s->qbias=
s->mv_scale=
s->block_max_depth= 0;
}
if(s->keyframe){
GET_S(s->version, tmp <= 0U)
s->always_reset= get_rac(&s->c, s->header_state);
s->temporal_decomposition_type= get_symbol(&s->c, s->header_state, 0);
s->temporal_decomposition_count= get_symbol(&s->c, s->header_state, 0);
GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS)
s->colorspace_type= get_symbol(&s->c, s->header_state, 0);
s->chroma_h_shift= get_symbol(&s->c, s->header_state, 0);
s->chroma_v_shift= get_symbol(&s->c, s->header_state, 0);
s->spatial_scalability= get_rac(&s->c, s->header_state);
// s->rate_scalability= get_rac(&s->c, s->header_state);
GET_S(s->max_ref_frames, tmp < (unsigned)MAX_REF_FRAMES)
s->max_ref_frames++;
decode_qlogs(s);
}
if(!s->keyframe){
if(get_rac(&s->c, s->header_state)){
for(plane_index=0; plane_index<2; plane_index++){
int htaps, i, sum=0;
Plane *p= &s->plane[plane_index];
p->diag_mc= get_rac(&s->c, s->header_state);
htaps= get_symbol(&s->c, s->header_state, 0)*2 + 2;
if((unsigned)htaps > HTAPS_MAX || htaps==0)
return -1;
p->htaps= htaps;
for(i= htaps/2; i; i--){
p->hcoeff[i]= get_symbol(&s->c, s->header_state, 0) * (1-2*(i&1));
sum += p->hcoeff[i];
}
p->hcoeff[0]= 32-sum;
}
s->plane[2].diag_mc= s->plane[1].diag_mc;
s->plane[2].htaps = s->plane[1].htaps;
memcpy(s->plane[2].hcoeff, s->plane[1].hcoeff, sizeof(s->plane[1].hcoeff));
}
if(get_rac(&s->c, s->header_state)){
GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS)
decode_qlogs(s);
}
}
s->spatial_decomposition_type+= get_symbol(&s->c, s->header_state, 1);
if(s->spatial_decomposition_type > 1U){
av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_type %d not supported", s->spatial_decomposition_type);
return -1;
}
if(FFMIN(s->avctx-> width>>s->chroma_h_shift,
s->avctx->height>>s->chroma_v_shift) >> (s->spatial_decomposition_count-1) <= 0){
av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_count %d too large for size", s->spatial_decomposition_count);
return -1;
}
s->qlog += get_symbol(&s->c, s->header_state, 1);
s->mv_scale += get_symbol(&s->c, s->header_state, 1);
s->qbias += get_symbol(&s->c, s->header_state, 1);
s->block_max_depth+= get_symbol(&s->c, s->header_state, 1);
if(s->block_max_depth > 1 || s->block_max_depth < 0){
av_log(s->avctx, AV_LOG_ERROR, "block_max_depth= %d is too large", s->block_max_depth);
s->block_max_depth= 0;
return -1;
}
return 0;
}
static void init_qexp(void){
int i;
double v=128;
for(i=0; i<QROOT; i++){
qexp[i]= lrintf(v);
v *= pow(2, 1.0 / QROOT);
}
}
static av_cold int common_init(AVCodecContext *avctx){
SnowContext *s = avctx->priv_data;
int width, height;
int i, j;
s->avctx= avctx;
s->max_ref_frames=1; //just make sure its not an invalid value in case of no initial keyframe
dsputil_init(&s->dsp, avctx);
ff_dwt_init(&s->dwt);
#define mcf(dx,dy)\
s->dsp.put_qpel_pixels_tab [0][dy+dx/4]=\
s->dsp.put_no_rnd_qpel_pixels_tab[0][dy+dx/4]=\
s->dsp.put_h264_qpel_pixels_tab[0][dy+dx/4];\
s->dsp.put_qpel_pixels_tab [1][dy+dx/4]=\
s->dsp.put_no_rnd_qpel_pixels_tab[1][dy+dx/4]=\
s->dsp.put_h264_qpel_pixels_tab[1][dy+dx/4];
mcf( 0, 0)
mcf( 4, 0)
mcf( 8, 0)
mcf(12, 0)
mcf( 0, 4)
mcf( 4, 4)
mcf( 8, 4)
mcf(12, 4)
mcf( 0, 8)
mcf( 4, 8)
mcf( 8, 8)
mcf(12, 8)
mcf( 0,12)
mcf( 4,12)
mcf( 8,12)
mcf(12,12)
#define mcfh(dx,dy)\
s->dsp.put_pixels_tab [0][dy/4+dx/8]=\
s->dsp.put_no_rnd_pixels_tab[0][dy/4+dx/8]=\
mc_block_hpel ## dx ## dy ## 16;\
s->dsp.put_pixels_tab [1][dy/4+dx/8]=\
s->dsp.put_no_rnd_pixels_tab[1][dy/4+dx/8]=\
mc_block_hpel ## dx ## dy ## 8;
mcfh(0, 0)
mcfh(8, 0)
mcfh(0, 8)
mcfh(8, 8)
if(!qexp[0])
init_qexp();
// dec += FFMAX(s->chroma_h_shift, s->chroma_v_shift);
width= s->avctx->width;
height= s->avctx->height;
s->spatial_idwt_buffer= av_mallocz(width*height*sizeof(IDWTELEM));
s->spatial_dwt_buffer= av_mallocz(width*height*sizeof(DWTELEM)); //FIXME this does not belong here
for(i=0; i<MAX_REF_FRAMES; i++)
for(j=0; j<MAX_REF_FRAMES; j++)
scale_mv_ref[i][j] = 256*(i+1)/(j+1);
s->avctx->get_buffer(s->avctx, &s->mconly_picture);
s->scratchbuf = av_malloc(s->mconly_picture.linesize[0]*7*MB_SIZE);
return 0;
}
static int common_init_after_header(AVCodecContext *avctx){
SnowContext *s = avctx->priv_data;
int plane_index, level, orientation;
for(plane_index=0; plane_index<3; plane_index++){
int w= s->avctx->width;
int h= s->avctx->height;
if(plane_index){
w>>= s->chroma_h_shift;
h>>= s->chroma_v_shift;
}
s->plane[plane_index].width = w;
s->plane[plane_index].height= h;
for(level=s->spatial_decomposition_count-1; level>=0; level--){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &s->plane[plane_index].band[level][orientation];
b->buf= s->spatial_dwt_buffer;
b->level= level;
b->stride= s->plane[plane_index].width << (s->spatial_decomposition_count - level);
b->width = (w + !(orientation&1))>>1;
b->height= (h + !(orientation>1))>>1;
b->stride_line = 1 << (s->spatial_decomposition_count - level);
b->buf_x_offset = 0;
b->buf_y_offset = 0;
if(orientation&1){
b->buf += (w+1)>>1;
b->buf_x_offset = (w+1)>>1;
}
if(orientation>1){
b->buf += b->stride>>1;
b->buf_y_offset = b->stride_line >> 1;
}
b->ibuf= s->spatial_idwt_buffer + (b->buf - s->spatial_dwt_buffer);
if(level)
b->parent= &s->plane[plane_index].band[level-1][orientation];
//FIXME avoid this realloc
av_freep(&b->x_coeff);
b->x_coeff=av_mallocz(((b->width+1) * b->height+1)*sizeof(x_and_coeff));
}
w= (w+1)>>1;
h= (h+1)>>1;
}
}
return 0;
}
#define QUANTIZE2 0
#if QUANTIZE2==1
#define Q2_STEP 8
static void find_sse(SnowContext *s, Plane *p, int *score, int score_stride, IDWTELEM *r0, IDWTELEM *r1, int level, int orientation){
SubBand *b= &p->band[level][orientation];
int x, y;
int xo=0;
int yo=0;
int step= 1 << (s->spatial_decomposition_count - level);
if(orientation&1)
xo= step>>1;
if(orientation&2)
yo= step>>1;
//FIXME bias for nonzero ?
//FIXME optimize
memset(score, 0, sizeof(*score)*score_stride*((p->height + Q2_STEP-1)/Q2_STEP));
for(y=0; y<p->height; y++){
for(x=0; x<p->width; x++){
int sx= (x-xo + step/2) / step / Q2_STEP;
int sy= (y-yo + step/2) / step / Q2_STEP;
int v= r0[x + y*p->width] - r1[x + y*p->width];
assert(sx>=0 && sy>=0 && sx < score_stride);
v= ((v+8)>>4)<<4;
score[sx + sy*score_stride] += v*v;
assert(score[sx + sy*score_stride] >= 0);
}
}
}
static void dequantize_all(SnowContext *s, Plane *p, IDWTELEM *buffer, int width, int height){
int level, orientation;
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation];
IDWTELEM *dst= buffer + (b->ibuf - s->spatial_idwt_buffer);
dequantize(s, b, dst, b->stride);
}
}
}
static void dwt_quantize(SnowContext *s, Plane *p, DWTELEM *buffer, int width, int height, int stride, int type){
int level, orientation, ys, xs, x, y, pass;
IDWTELEM best_dequant[height * stride];
IDWTELEM idwt2_buffer[height * stride];
const int score_stride= (width + 10)/Q2_STEP;
int best_score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP]; //FIXME size
int score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP]; //FIXME size
int threshold= (s->m.lambda * s->m.lambda) >> 6;
//FIXME pass the copy cleanly ?
// memcpy(dwt_buffer, buffer, height * stride * sizeof(DWTELEM));
ff_spatial_dwt(buffer, width, height, stride, type, s->spatial_decomposition_count);
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation];
IDWTELEM *dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer);
DWTELEM *src= buffer + (b-> buf - s->spatial_dwt_buffer);
assert(src == b->buf); // code does not depend on this but it is true currently
quantize(s, b, dst, src, b->stride, s->qbias);
}
}
for(pass=0; pass<1; pass++){
if(s->qbias == 0) //keyframe
continue;
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation];
IDWTELEM *dst= idwt2_buffer + (b->ibuf - s->spatial_idwt_buffer);
IDWTELEM *best_dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer);
for(ys= 0; ys<Q2_STEP; ys++){
for(xs= 0; xs<Q2_STEP; xs++){
memcpy(idwt2_buffer, best_dequant, height * stride * sizeof(IDWTELEM));
dequantize_all(s, p, idwt2_buffer, width, height);
ff_spatial_idwt(idwt2_buffer, width, height, stride, type, s->spatial_decomposition_count);
find_sse(s, p, best_score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation);
memcpy(idwt2_buffer, best_dequant, height * stride * sizeof(IDWTELEM));
for(y=ys; y<b->height; y+= Q2_STEP){
for(x=xs; x<b->width; x+= Q2_STEP){
if(dst[x + y*b->stride]<0) dst[x + y*b->stride]++;
if(dst[x + y*b->stride]>0) dst[x + y*b->stride]--;
//FIXME try more than just --
}
}
dequantize_all(s, p, idwt2_buffer, width, height);
ff_spatial_idwt(idwt2_buffer, width, height, stride, type, s->spatial_decomposition_count);
find_sse(s, p, score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation);
for(y=ys; y<b->height; y+= Q2_STEP){
for(x=xs; x<b->width; x+= Q2_STEP){
int score_idx= x/Q2_STEP + (y/Q2_STEP)*score_stride;
if(score[score_idx] <= best_score[score_idx] + threshold){
best_score[score_idx]= score[score_idx];
if(best_dst[x + y*b->stride]<0) best_dst[x + y*b->stride]++;
if(best_dst[x + y*b->stride]>0) best_dst[x + y*b->stride]--;
//FIXME copy instead
}
}
}
}
}
}
}
}
memcpy(s->spatial_idwt_buffer, best_dequant, height * stride * sizeof(IDWTELEM)); //FIXME work with that directly instead of copy at the end
}
#endif /* QUANTIZE2==1 */
#define USE_HALFPEL_PLANE 0
static void halfpel_interpol(SnowContext *s, uint8_t *halfpel[4][4], AVFrame *frame){
int p,x,y;
assert(!(s->avctx->flags & CODEC_FLAG_EMU_EDGE));
for(p=0; p<3; p++){
int is_chroma= !!p;
int w= s->avctx->width >>is_chroma;
int h= s->avctx->height >>is_chroma;
int ls= frame->linesize[p];
uint8_t *src= frame->data[p];
halfpel[1][p]= (uint8_t*)av_malloc(ls * (h+2*EDGE_WIDTH)) + EDGE_WIDTH*(1+ls);
halfpel[2][p]= (uint8_t*)av_malloc(ls * (h+2*EDGE_WIDTH)) + EDGE_WIDTH*(1+ls);
halfpel[3][p]= (uint8_t*)av_malloc(ls * (h+2*EDGE_WIDTH)) + EDGE_WIDTH*(1+ls);
halfpel[0][p]= src;
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int i= y*ls + x;
halfpel[1][p][i]= (20*(src[i] + src[i+1]) - 5*(src[i-1] + src[i+2]) + (src[i-2] + src[i+3]) + 16 )>>5;
}
}
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int i= y*ls + x;
halfpel[2][p][i]= (20*(src[i] + src[i+ls]) - 5*(src[i-ls] + src[i+2*ls]) + (src[i-2*ls] + src[i+3*ls]) + 16 )>>5;
}
}
src= halfpel[1][p];
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int i= y*ls + x;
halfpel[3][p][i]= (20*(src[i] + src[i+ls]) - 5*(src[i-ls] + src[i+2*ls]) + (src[i-2*ls] + src[i+3*ls]) + 16 )>>5;
}
}
//FIXME border!
}
}
static void release_buffer(AVCodecContext *avctx){
SnowContext *s = avctx->priv_data;
int i;
if(s->last_picture[s->max_ref_frames-1].data[0]){
avctx->release_buffer(avctx, &s->last_picture[s->max_ref_frames-1]);
for(i=0; i<9; i++)
if(s->halfpel_plane[s->max_ref_frames-1][1+i/3][i%3])
av_free(s->halfpel_plane[s->max_ref_frames-1][1+i/3][i%3] - EDGE_WIDTH*(1+s->current_picture.linesize[i%3]));
}
}
static int frame_start(SnowContext *s){
AVFrame tmp;
int w= s->avctx->width; //FIXME round up to x16 ?
int h= s->avctx->height;
if(s->current_picture.data[0]){
s->dsp.draw_edges(s->current_picture.data[0],
s->current_picture.linesize[0], w , h ,
EDGE_WIDTH , EDGE_TOP | EDGE_BOTTOM);
s->dsp.draw_edges(s->current_picture.data[1],
s->current_picture.linesize[1], w>>1, h>>1,
EDGE_WIDTH/2, EDGE_TOP | EDGE_BOTTOM);
s->dsp.draw_edges(s->current_picture.data[2],
s->current_picture.linesize[2], w>>1, h>>1,
EDGE_WIDTH/2, EDGE_TOP | EDGE_BOTTOM);
}
release_buffer(s->avctx);
tmp= s->last_picture[s->max_ref_frames-1];
memmove(s->last_picture+1, s->last_picture, (s->max_ref_frames-1)*sizeof(AVFrame));
memmove(s->halfpel_plane+1, s->halfpel_plane, (s->max_ref_frames-1)*sizeof(void*)*4*4);
if(USE_HALFPEL_PLANE && s->current_picture.data[0])
halfpel_interpol(s, s->halfpel_plane[0], &s->current_picture);
s->last_picture[0]= s->current_picture;
s->current_picture= tmp;
if(s->keyframe){
s->ref_frames= 0;
}else{
int i;
for(i=0; i<s->max_ref_frames && s->last_picture[i].data[0]; i++)
if(i && s->last_picture[i-1].key_frame)
break;
s->ref_frames= i;
if(s->ref_frames==0){
av_log(s->avctx,AV_LOG_ERROR, "No reference frames\n");
return -1;
}
}
s->current_picture.reference= 1;
if(s->avctx->get_buffer(s->avctx, &s->current_picture) < 0){
av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return -1;
}
s->current_picture.key_frame= s->keyframe;
return 0;
}
static av_cold void common_end(SnowContext *s){
int plane_index, level, orientation, i;
av_freep(&s->spatial_dwt_buffer);
av_freep(&s->spatial_idwt_buffer);
s->m.me.temp= NULL;
av_freep(&s->m.me.scratchpad);
av_freep(&s->m.me.map);
av_freep(&s->m.me.score_map);
av_freep(&s->m.obmc_scratchpad);
av_freep(&s->block);
av_freep(&s->scratchbuf);
for(i=0; i<MAX_REF_FRAMES; i++){
av_freep(&s->ref_mvs[i]);
av_freep(&s->ref_scores[i]);
if(s->last_picture[i].data[0])
s->avctx->release_buffer(s->avctx, &s->last_picture[i]);
}
for(plane_index=0; plane_index<3; plane_index++){
for(level=s->spatial_decomposition_count-1; level>=0; level--){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &s->plane[plane_index].band[level][orientation];
av_freep(&b->x_coeff);
}
}
}
if (s->mconly_picture.data[0])
s->avctx->release_buffer(s->avctx, &s->mconly_picture);
if (s->current_picture.data[0])
s->avctx->release_buffer(s->avctx, &s->current_picture);
}
static av_cold int decode_init(AVCodecContext *avctx)
{
avctx->pix_fmt= PIX_FMT_YUV420P;
common_init(avctx);
return 0;
}
static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
SnowContext *s = avctx->priv_data;
RangeCoder * const c= &s->c;
int bytes_read;
AVFrame *picture = data;
int level, orientation, plane_index;
ff_init_range_decoder(c, buf, buf_size);
ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
s->current_picture.pict_type= AV_PICTURE_TYPE_I; //FIXME I vs. P
if(decode_header(s)<0)
return -1;
common_init_after_header(avctx);
// realloc slice buffer for the case that spatial_decomposition_count changed
ff_slice_buffer_destroy(&s->sb);
ff_slice_buffer_init(&s->sb, s->plane[0].height, (MB_SIZE >> s->block_max_depth) + s->spatial_decomposition_count * 8 + 1, s->plane[0].width, s->spatial_idwt_buffer);
for(plane_index=0; plane_index<3; plane_index++){
Plane *p= &s->plane[plane_index];
p->fast_mc= p->diag_mc && p->htaps==6 && p->hcoeff[0]==40
&& p->hcoeff[1]==-10
&& p->hcoeff[2]==2;
}
alloc_blocks(s);
if(frame_start(s) < 0)
return -1;
//keyframe flag duplication mess FIXME
if(avctx->debug&FF_DEBUG_PICT_INFO)
av_log(avctx, AV_LOG_ERROR, "keyframe:%d qlog:%d\n", s->keyframe, s->qlog);
decode_blocks(s);
for(plane_index=0; plane_index<3; plane_index++){
Plane *p= &s->plane[plane_index];
int w= p->width;
int h= p->height;
int x, y;
int decode_state[MAX_DECOMPOSITIONS][4][1]; /* Stored state info for unpack_coeffs. 1 variable per instance. */
if(s->avctx->debug&2048){
memset(s->spatial_dwt_buffer, 0, sizeof(DWTELEM)*w*h);
predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int v= s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x];
s->mconly_picture.data[plane_index][y*s->mconly_picture.linesize[plane_index] + x]= v;
}
}
}
{
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation];
unpack_coeffs(s, b, b->parent, orientation);
}
}
}
{
const int mb_h= s->b_height << s->block_max_depth;
const int block_size = MB_SIZE >> s->block_max_depth;
const int block_w = plane_index ? block_size/2 : block_size;
int mb_y;
DWTCompose cs[MAX_DECOMPOSITIONS];
int yd=0, yq=0;
int y;
int end_y;
ff_spatial_idwt_buffered_init(cs, &s->sb, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count);
for(mb_y=0; mb_y<=mb_h; mb_y++){
int slice_starty = block_w*mb_y;
int slice_h = block_w*(mb_y+1);
if (!(s->keyframe || s->avctx->debug&512)){
slice_starty = FFMAX(0, slice_starty - (block_w >> 1));
slice_h -= (block_w >> 1);
}
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation];
int start_y;
int end_y;
int our_mb_start = mb_y;
int our_mb_end = (mb_y + 1);
const int extra= 3;
start_y = (mb_y ? ((block_w * our_mb_start) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra: 0);
end_y = (((block_w * our_mb_end) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra);
if (!(s->keyframe || s->avctx->debug&512)){
start_y = FFMAX(0, start_y - (block_w >> (1+s->spatial_decomposition_count - level)));
end_y = FFMAX(0, end_y - (block_w >> (1+s->spatial_decomposition_count - level)));
}
start_y = FFMIN(b->height, start_y);
end_y = FFMIN(b->height, end_y);
if (start_y != end_y){
if (orientation == 0){
SubBand * correlate_band = &p->band[0][0];
int correlate_end_y = FFMIN(b->height, end_y + 1);
int correlate_start_y = FFMIN(b->height, (start_y ? start_y + 1 : 0));
decode_subband_slice_buffered(s, correlate_band, &s->sb, correlate_start_y, correlate_end_y, decode_state[0][0]);
correlate_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, 1, 0, correlate_start_y, correlate_end_y);
dequantize_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, start_y, end_y);
}
else
decode_subband_slice_buffered(s, b, &s->sb, start_y, end_y, decode_state[level][orientation]);
}
}
}
for(; yd<slice_h; yd+=4){
ff_spatial_idwt_buffered_slice(&s->dwt, cs, &s->sb, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count, yd);
}
if(s->qlog == LOSSLESS_QLOG){
for(; yq<slice_h && yq<h; yq++){
IDWTELEM * line = slice_buffer_get_line(&s->sb, yq);
for(x=0; x<w; x++){
line[x] <<= FRAC_BITS;
}
}
}
predict_slice_buffered(s, &s->sb, s->spatial_idwt_buffer, plane_index, 1, mb_y);
y = FFMIN(p->height, slice_starty);
end_y = FFMIN(p->height, slice_h);
while(y < end_y)
ff_slice_buffer_release(&s->sb, y++);
}
ff_slice_buffer_flush(&s->sb);
}
}
emms_c();
release_buffer(avctx);
if(!(s->avctx->debug&2048))
*picture= s->current_picture;
else
*picture= s->mconly_picture;
*data_size = sizeof(AVFrame);
bytes_read= c->bytestream - c->bytestream_start;
if(bytes_read ==0) av_log(s->avctx, AV_LOG_ERROR, "error at end of frame\n"); //FIXME
return bytes_read;
}
static av_cold int decode_end(AVCodecContext *avctx)
{
SnowContext *s = avctx->priv_data;
ff_slice_buffer_destroy(&s->sb);
common_end(s);
return 0;
}
AVCodec ff_snow_decoder = {
"snow",
AVMEDIA_TYPE_VIDEO,
CODEC_ID_SNOW,
sizeof(SnowContext),
decode_init,
NULL,
decode_end,
decode_frame,
CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/,
NULL,
.long_name = NULL_IF_CONFIG_SMALL("Snow"),
};
#if CONFIG_SNOW_ENCODER
static av_cold int encode_init(AVCodecContext *avctx)
{
SnowContext *s = avctx->priv_data;
int plane_index;
if(avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL){
av_log(avctx, AV_LOG_ERROR, "This codec is under development, files encoded with it may not be decodable with future versions!!!\n"
"Use vstrict=-2 / -strict -2 to use it anyway.\n");
return -1;
}
if(avctx->prediction_method == DWT_97
&& (avctx->flags & CODEC_FLAG_QSCALE)
&& avctx->global_quality == 0){
av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n");
return -1;
}
s->spatial_decomposition_type= avctx->prediction_method; //FIXME add decorrelator type r transform_type
s->mv_scale = (avctx->flags & CODEC_FLAG_QPEL) ? 2 : 4;
s->block_max_depth= (avctx->flags & CODEC_FLAG_4MV ) ? 1 : 0;
for(plane_index=0; plane_index<3; plane_index++){
s->plane[plane_index].diag_mc= 1;
s->plane[plane_index].htaps= 6;
s->plane[plane_index].hcoeff[0]= 40;
s->plane[plane_index].hcoeff[1]= -10;
s->plane[plane_index].hcoeff[2]= 2;
s->plane[plane_index].fast_mc= 1;
}
common_init(avctx);
alloc_blocks(s);
s->version=0;
s->m.avctx = avctx;
s->m.flags = avctx->flags;
s->m.bit_rate= avctx->bit_rate;
s->m.me.temp =
s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t));
s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
s->m.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t));
h263_encode_init(&s->m); //mv_penalty
s->max_ref_frames = FFMAX(FFMIN(avctx->refs, MAX_REF_FRAMES), 1);
if(avctx->flags&CODEC_FLAG_PASS1){
if(!avctx->stats_out)
avctx->stats_out = av_mallocz(256);
}
if((avctx->flags&CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){
if(ff_rate_control_init(&s->m) < 0)
return -1;
}
s->pass1_rc= !(avctx->flags & (CODEC_FLAG_QSCALE|CODEC_FLAG_PASS2));
avctx->coded_frame= &s->current_picture;
switch(avctx->pix_fmt){
// case PIX_FMT_YUV444P:
// case PIX_FMT_YUV422P:
case PIX_FMT_YUV420P:
case PIX_FMT_GRAY8:
// case PIX_FMT_YUV411P:
// case PIX_FMT_YUV410P:
s->colorspace_type= 0;
break;
/* case PIX_FMT_RGB32:
s->colorspace= 1;
break;*/
default:
av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n");
return -1;
}
// avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
s->chroma_h_shift= 1;
s->chroma_v_shift= 1;
ff_set_cmp(&s->dsp, s->dsp.me_cmp, s->avctx->me_cmp);
ff_set_cmp(&s->dsp, s->dsp.me_sub_cmp, s->avctx->me_sub_cmp);
s->avctx->get_buffer(s->avctx, &s->input_picture);
if(s->avctx->me_method == ME_ITER){
int i;
int size= s->b_width * s->b_height << 2*s->block_max_depth;
for(i=0; i<s->max_ref_frames; i++){
s->ref_mvs[i]= av_mallocz(size*sizeof(int16_t[2]));
s->ref_scores[i]= av_mallocz(size*sizeof(uint32_t));
}
}
return 0;
}
//near copy & paste from dsputil, FIXME
static int pix_sum(uint8_t * pix, int line_size, int w)
{
int s, i, j;
s = 0;
for (i = 0; i < w; i++) {
for (j = 0; j < w; j++) {
s += pix[0];
pix ++;
}
pix += line_size - w;
}
return s;
}
//near copy & paste from dsputil, FIXME
static int pix_norm1(uint8_t * pix, int line_size, int w)
{
int s, i, j;
uint32_t *sq = ff_squareTbl + 256;
s = 0;
for (i = 0; i < w; i++) {
for (j = 0; j < w; j ++) {
s += sq[pix[0]];
pix ++;
}
pix += line_size - w;
}
return s;
}
//FIXME copy&paste
#define P_LEFT P[1]
#define P_TOP P[2]
#define P_TOPRIGHT P[3]
#define P_MEDIAN P[4]
#define P_MV1 P[9]
#define FLAG_QPEL 1 //must be 1
static int encode_q_branch(SnowContext *s, int level, int x, int y){
uint8_t p_buffer[1024];
uint8_t i_buffer[1024];
uint8_t p_state[sizeof(s->block_state)];
uint8_t i_state[sizeof(s->block_state)];
RangeCoder pc, ic;
uint8_t *pbbak= s->c.bytestream;
uint8_t *pbbak_start= s->c.bytestream_start;
int score, score2, iscore, i_len, p_len, block_s, sum, base_bits;
const int w= s->b_width << s->block_max_depth;
const int h= s->b_height << s->block_max_depth;
const int rem_depth= s->block_max_depth - level;
const int index= (x + y*w) << rem_depth;
const int block_w= 1<<(LOG2_MB_SIZE - level);
int trx= (x+1)<<rem_depth;
int try= (y+1)<<rem_depth;
const BlockNode *left = x ? &s->block[index-1] : &null_block;
const BlockNode *top = y ? &s->block[index-w] : &null_block;
const BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
int pl = left->color[0];
int pcb= left->color[1];
int pcr= left->color[2];
int pmx, pmy;
int mx=0, my=0;
int l,cr,cb;
const int stride= s->current_picture.linesize[0];
const int uvstride= s->current_picture.linesize[1];
uint8_t *current_data[3]= { s->input_picture.data[0] + (x + y* stride)*block_w,
s->input_picture.data[1] + (x + y*uvstride)*block_w/2,
s->input_picture.data[2] + (x + y*uvstride)*block_w/2};
int P[10][2];
int16_t last_mv[3][2];
int qpel= !!(s->avctx->flags & CODEC_FLAG_QPEL); //unused
const int shift= 1+qpel;
MotionEstContext *c= &s->m.me;
int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
int mx_context= av_log2(2*FFABS(left->mx - top->mx));
int my_context= av_log2(2*FFABS(left->my - top->my));
int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
int ref, best_ref, ref_score, ref_mx, ref_my;
assert(sizeof(s->block_state) >= 256);
if(s->keyframe){
set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
return 0;
}
// clip predictors / edge ?
P_LEFT[0]= left->mx;
P_LEFT[1]= left->my;
P_TOP [0]= top->mx;
P_TOP [1]= top->my;
P_TOPRIGHT[0]= tr->mx;
P_TOPRIGHT[1]= tr->my;
last_mv[0][0]= s->block[index].mx;
last_mv[0][1]= s->block[index].my;
last_mv[1][0]= right->mx;
last_mv[1][1]= right->my;
last_mv[2][0]= bottom->mx;
last_mv[2][1]= bottom->my;
s->m.mb_stride=2;
s->m.mb_x=
s->m.mb_y= 0;
c->skip= 0;
assert(c-> stride == stride);
assert(c->uvstride == uvstride);
c->penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp);
c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp);
c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp);
c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_MV;
c->xmin = - x*block_w - 16+3;
c->ymin = - y*block_w - 16+3;
c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift);
if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift);
if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift);
if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift);
if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip
if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
if (!y) {
c->pred_x= P_LEFT[0];
c->pred_y= P_LEFT[1];
} else {
c->pred_x = P_MEDIAN[0];
c->pred_y = P_MEDIAN[1];
}
score= INT_MAX;
best_ref= 0;
for(ref=0; ref<s->ref_frames; ref++){
init_ref(c, current_data, s->last_picture[ref].data, NULL, block_w*x, block_w*y, 0);
ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv,
(1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
assert(ref_mx >= c->xmin);
assert(ref_mx <= c->xmax);
assert(ref_my >= c->ymin);
assert(ref_my <= c->ymax);
ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
ref_score+= 2*av_log2(2*ref)*c->penalty_factor;
if(s->ref_mvs[ref]){
s->ref_mvs[ref][index][0]= ref_mx;
s->ref_mvs[ref][index][1]= ref_my;
s->ref_scores[ref][index]= ref_score;
}
if(score > ref_score){
score= ref_score;
best_ref= ref;
mx= ref_mx;
my= ref_my;
}
}
//FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2
// subpel search
base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start);
pc= s->c;
pc.bytestream_start=
pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo
memcpy(p_state, s->block_state, sizeof(s->block_state));
if(level!=s->block_max_depth)
put_rac(&pc, &p_state[4 + s_context], 1);
put_rac(&pc, &p_state[1 + left->type + top->type], 0);
if(s->ref_frames > 1)
put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0);
pred_mv(s, &pmx, &pmy, best_ref, left, top, tr);
put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1);
put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1);
p_len= pc.bytestream - pc.bytestream_start;
score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT;
block_s= block_w*block_w;
sum = pix_sum(current_data[0], stride, block_w);
l= (sum + block_s/2)/block_s;
iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s;
block_s= block_w*block_w>>2;
sum = pix_sum(current_data[1], uvstride, block_w>>1);
cb= (sum + block_s/2)/block_s;
// iscore += pix_norm1(&current_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s;
sum = pix_sum(current_data[2], uvstride, block_w>>1);
cr= (sum + block_s/2)/block_s;
// iscore += pix_norm1(&current_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s;
ic= s->c;
ic.bytestream_start=
ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo
memcpy(i_state, s->block_state, sizeof(s->block_state));
if(level!=s->block_max_depth)
put_rac(&ic, &i_state[4 + s_context], 1);
put_rac(&ic, &i_state[1 + left->type + top->type], 1);
put_symbol(&ic, &i_state[32], l-pl , 1);
put_symbol(&ic, &i_state[64], cb-pcb, 1);
put_symbol(&ic, &i_state[96], cr-pcr, 1);
i_len= ic.bytestream - ic.bytestream_start;
iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT;
// assert(score==256*256*256*64-1);
assert(iscore < 255*255*256 + s->lambda2*10);
assert(iscore >= 0);
assert(l>=0 && l<=255);
assert(pl>=0 && pl<=255);
if(level==0){
int varc= iscore >> 8;
int vard= score >> 8;
if (vard <= 64 || vard < varc)
c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
else
c->scene_change_score+= s->m.qscale;
}
if(level!=s->block_max_depth){
put_rac(&s->c, &s->block_state[4 + s_context], 0);
score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead
if(score2 < score && score2 < iscore)
return score2;
}
if(iscore < score){
pred_mv(s, &pmx, &pmy, 0, left, top, tr);
memcpy(pbbak, i_buffer, i_len);
s->c= ic;
s->c.bytestream_start= pbbak_start;
s->c.bytestream= pbbak + i_len;
set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA);
memcpy(s->block_state, i_state, sizeof(s->block_state));
return iscore;
}else{
memcpy(pbbak, p_buffer, p_len);
s->c= pc;
s->c.bytestream_start= pbbak_start;
s->c.bytestream= pbbak + p_len;
set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0);
memcpy(s->block_state, p_state, sizeof(s->block_state));
return score;
}
}
static void encode_q_branch2(SnowContext *s, int level, int x, int y){
const int w= s->b_width << s->block_max_depth;
const int rem_depth= s->block_max_depth - level;
const int index= (x + y*w) << rem_depth;
int trx= (x+1)<<rem_depth;
BlockNode *b= &s->block[index];
const BlockNode *left = x ? &s->block[index-1] : &null_block;
const BlockNode *top = y ? &s->block[index-w] : &null_block;
const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
int pl = left->color[0];
int pcb= left->color[1];
int pcr= left->color[2];
int pmx, pmy;
int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref;
int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref;
int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
if(s->keyframe){
set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
return;
}
if(level!=s->block_max_depth){
if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){
put_rac(&s->c, &s->block_state[4 + s_context], 1);
}else{
put_rac(&s->c, &s->block_state[4 + s_context], 0);
encode_q_branch2(s, level+1, 2*x+0, 2*y+0);
encode_q_branch2(s, level+1, 2*x+1, 2*y+0);
encode_q_branch2(s, level+1, 2*x+0, 2*y+1);
encode_q_branch2(s, level+1, 2*x+1, 2*y+1);
return;
}
}
if(b->type & BLOCK_INTRA){
pred_mv(s, &pmx, &pmy, 0, left, top, tr);
put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1);
put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1);
put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1);
put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1);
set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA);
}else{
pred_mv(s, &pmx, &pmy, b->ref, left, top, tr);
put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0);
if(s->ref_frames > 1)
put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0);
put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1);
put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1);
set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0);
}
}
static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){
int i, x2, y2;
Plane *p= &s->plane[plane_index];
const int block_size = MB_SIZE >> s->block_max_depth;
const int block_w = plane_index ? block_size/2 : block_size;
const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth];
const int obmc_stride= plane_index ? block_size : 2*block_size;
const int ref_stride= s->current_picture.linesize[plane_index];
uint8_t *src= s-> input_picture.data[plane_index];
IDWTELEM *dst= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned
const int b_stride = s->b_width << s->block_max_depth;
const int w= p->width;
const int h= p->height;
int index= mb_x + mb_y*b_stride;
BlockNode *b= &s->block[index];
BlockNode backup= *b;
int ab=0;
int aa=0;
b->type|= BLOCK_INTRA;
b->color[plane_index]= 0;
memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM));
for(i=0; i<4; i++){
int mb_x2= mb_x + (i &1) - 1;
int mb_y2= mb_y + (i>>1) - 1;
int x= block_w*mb_x2 + block_w/2;
int y= block_w*mb_y2 + block_w/2;
add_yblock(s, 0, NULL, dst + ((i&1)+(i>>1)*obmc_stride)*block_w, NULL, obmc,
x, y, block_w, block_w, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index);
for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_w); y2++){
for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){
int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_w*mb_y - block_w/2))*obmc_stride;
int obmc_v= obmc[index];
int d;
if(y<0) obmc_v += obmc[index + block_w*obmc_stride];
if(x<0) obmc_v += obmc[index + block_w];
if(y+block_w>h) obmc_v += obmc[index - block_w*obmc_stride];
if(x+block_w>w) obmc_v += obmc[index - block_w];
//FIXME precalculate this or simplify it somehow else
d = -dst[index] + (1<<(FRAC_BITS-1));
dst[index] = d;
ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v;
aa += obmc_v * obmc_v; //FIXME precalculate this
}
}
}
*b= backup;
return av_clip(((ab<<LOG2_OBMC_MAX) + aa/2)/aa, 0, 255); //FIXME we should not need clipping
}
static inline int get_block_bits(SnowContext *s, int x, int y, int w){
const int b_stride = s->b_width << s->block_max_depth;
const int b_height = s->b_height<< s->block_max_depth;
int index= x + y*b_stride;
const BlockNode *b = &s->block[index];
const BlockNode *left = x ? &s->block[index-1] : &null_block;
const BlockNode *top = y ? &s->block[index-b_stride] : &null_block;
const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left;
const BlockNode *tr = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl;
int dmx, dmy;
// int mx_context= av_log2(2*FFABS(left->mx - top->mx));
// int my_context= av_log2(2*FFABS(left->my - top->my));
if(x<0 || x>=b_stride || y>=b_height)
return 0;
/*
1 0 0
01X 1-2 1
001XX 3-6 2-3
0001XXX 7-14 4-7
00001XXXX 15-30 8-15
*/
//FIXME try accurate rate
//FIXME intra and inter predictors if surrounding blocks are not the same type
if(b->type & BLOCK_INTRA){
return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0]))
+ av_log2(2*FFABS(left->color[1] - b->color[1]))
+ av_log2(2*FFABS(left->color[2] - b->color[2])));
}else{
pred_mv(s, &dmx, &dmy, b->ref, left, top, tr);
dmx-= b->mx;
dmy-= b->my;
return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda
+ av_log2(2*FFABS(dmy))
+ av_log2(2*b->ref));
}
}
static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, const uint8_t *obmc_edged){
Plane *p= &s->plane[plane_index];
const int block_size = MB_SIZE >> s->block_max_depth;
const int block_w = plane_index ? block_size/2 : block_size;
const int obmc_stride= plane_index ? block_size : 2*block_size;
const int ref_stride= s->current_picture.linesize[plane_index];
uint8_t *dst= s->current_picture.data[plane_index];
uint8_t *src= s-> input_picture.data[plane_index];
IDWTELEM *pred= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4;
uint8_t *cur = s->scratchbuf;
uint8_t tmp[ref_stride*(2*MB_SIZE+HTAPS_MAX-1)];
const int b_stride = s->b_width << s->block_max_depth;
const int b_height = s->b_height<< s->block_max_depth;
const int w= p->width;
const int h= p->height;
int distortion;
int rate= 0;
const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
int sx= block_w*mb_x - block_w/2;
int sy= block_w*mb_y - block_w/2;
int x0= FFMAX(0,-sx);
int y0= FFMAX(0,-sy);
int x1= FFMIN(block_w*2, w-sx);
int y1= FFMIN(block_w*2, h-sy);
int i,x,y;
pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_w*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h);
for(y=y0; y<y1; y++){
const uint8_t *obmc1= obmc_edged + y*obmc_stride;
const IDWTELEM *pred1 = pred + y*obmc_stride;
uint8_t *cur1 = cur + y*ref_stride;
uint8_t *dst1 = dst + sx + (sy+y)*ref_stride;
for(x=x0; x<x1; x++){
#if FRAC_BITS >= LOG2_OBMC_MAX
int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX);
#else
int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS);
#endif
v = (v + pred1[x]) >> FRAC_BITS;
if(v&(~255)) v= ~(v>>31);
dst1[x] = v;
}
}
/* copy the regions where obmc[] = (uint8_t)256 */
if(LOG2_OBMC_MAX == 8
&& (mb_x == 0 || mb_x == b_stride-1)
&& (mb_y == 0 || mb_y == b_height-1)){
if(mb_x == 0)
x1 = block_w;
else
x0 = block_w;
if(mb_y == 0)
y1 = block_w;
else
y0 = block_w;
for(y=y0; y<y1; y++)
memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0);
}
if(block_w==16){
/* FIXME rearrange dsputil to fit 32x32 cmp functions */
/* FIXME check alignment of the cmp wavelet vs the encoding wavelet */
/* FIXME cmps overlap but do not cover the wavelet's whole support.
* So improving the score of one block is not strictly guaranteed
* to improve the score of the whole frame, thus iterative motion
* estimation does not always converge. */
if(s->avctx->me_cmp == FF_CMP_W97)
distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
else if(s->avctx->me_cmp == FF_CMP_W53)
distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
else{
distortion = 0;
for(i=0; i<4; i++){
int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride;
distortion += s->dsp.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16);
}
}
}else{
assert(block_w==8);
distortion = s->dsp.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2);
}
if(plane_index==0){
for(i=0; i<4; i++){
/* ..RRr
* .RXx.
* rxx..
*/
rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1);
}
if(mb_x == b_stride-2)
rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1);
}
return distortion + rate*penalty_factor;
}
static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){
int i, y2;
Plane *p= &s->plane[plane_index];
const int block_size = MB_SIZE >> s->block_max_depth;
const int block_w = plane_index ? block_size/2 : block_size;
const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth];
const int obmc_stride= plane_index ? block_size : 2*block_size;
const int ref_stride= s->current_picture.linesize[plane_index];
uint8_t *dst= s->current_picture.data[plane_index];
uint8_t *src= s-> input_picture.data[plane_index];
//FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst
// const has only been removed from zero_dst to suppress a warning
static IDWTELEM zero_dst[4096]; //FIXME
const int b_stride = s->b_width << s->block_max_depth;
const int w= p->width;
const int h= p->height;
int distortion= 0;
int rate= 0;
const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
for(i=0; i<9; i++){
int mb_x2= mb_x + (i%3) - 1;
int mb_y2= mb_y + (i/3) - 1;
int x= block_w*mb_x2 + block_w/2;
int y= block_w*mb_y2 + block_w/2;
add_yblock(s, 0, NULL, zero_dst, dst, obmc,
x, y, block_w, block_w, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index);
//FIXME find a cleaner/simpler way to skip the outside stuff
for(y2= y; y2<0; y2++)
memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
for(y2= h; y2<y+block_w; y2++)
memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
if(x<0){
for(y2= y; y2<y+block_w; y2++)
memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x);
}
if(x+block_w > w){
for(y2= y; y2<y+block_w; y2++)
memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w);
}
assert(block_w== 8 || block_w==16);
distortion += s->dsp.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_w);
}
if(plane_index==0){
BlockNode *b= &s->block[mb_x+mb_y*b_stride];
int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1);
/* ..RRRr
* .RXXx.
* .RXXx.
* rxxx.
*/
if(merged)
rate = get_block_bits(s, mb_x, mb_y, 2);
for(i=merged?4:0; i<9; i++){
static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}};
rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1);
}
}
return distortion + rate*penalty_factor;
}
static int encode_subband_c0run(SnowContext *s, SubBand *b, IDWTELEM *src, IDWTELEM *parent, int stride, int orientation){
const int w= b->width;
const int h= b->height;
int x, y;
if(1){
int run=0;
int runs[w*h];
int run_index=0;
int max_index;
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int v, p=0;
int /*ll=0, */l=0, lt=0, t=0, rt=0;
v= src[x + y*stride];
if(y){
t= src[x + (y-1)*stride];
if(x){
lt= src[x - 1 + (y-1)*stride];
}
if(x + 1 < w){
rt= src[x + 1 + (y-1)*stride];
}
}
if(x){
l= src[x - 1 + y*stride];
/*if(x > 1){
if(orientation==1) ll= src[y + (x-2)*stride];
else ll= src[x - 2 + y*stride];
}*/
}
if(parent){
int px= x>>1;
int py= y>>1;
if(px<b->parent->width && py<b->parent->height)
p= parent[px + py*2*stride];
}
if(!(/*ll|*/l|lt|t|rt|p)){
if(v){
runs[run_index++]= run;
run=0;
}else{
run++;
}
}
}
}
max_index= run_index;
runs[run_index++]= run;
run_index=0;
run= runs[run_index++];
put_symbol2(&s->c, b->state[30], max_index, 0);
if(run_index <= max_index)
put_symbol2(&s->c, b->state[1], run, 3);
for(y=0; y<h; y++){
if(s->c.bytestream_end - s->c.bytestream < w*40){
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
for(x=0; x<w; x++){
int v, p=0;
int /*ll=0, */l=0, lt=0, t=0, rt=0;
v= src[x + y*stride];
if(y){
t= src[x + (y-1)*stride];
if(x){
lt= src[x - 1 + (y-1)*stride];
}
if(x + 1 < w){
rt= src[x + 1 + (y-1)*stride];
}
}
if(x){
l= src[x - 1 + y*stride];
/*if(x > 1){
if(orientation==1) ll= src[y + (x-2)*stride];
else ll= src[x - 2 + y*stride];
}*/
}
if(parent){
int px= x>>1;
int py= y>>1;
if(px<b->parent->width && py<b->parent->height)
p= parent[px + py*2*stride];
}
if(/*ll|*/l|lt|t|rt|p){
int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
put_rac(&s->c, &b->state[0][context], !!v);
}else{
if(!run){
run= runs[run_index++];
if(run_index <= max_index)
put_symbol2(&s->c, b->state[1], run, 3);
assert(v);
}else{
run--;
assert(!v);
}
}
if(v){
int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
int l2= 2*FFABS(l) + (l<0);
int t2= 2*FFABS(t) + (t<0);
put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4);
put_rac(&s->c, &b->state[0][16 + 1 + 3 + quant3bA[l2&0xFF] + 3*quant3bA[t2&0xFF]], v<0);
}
}
}
}
return 0;
}
static int encode_subband(SnowContext *s, SubBand *b, IDWTELEM *src, IDWTELEM *parent, int stride, int orientation){
// encode_subband_qtree(s, b, src, parent, stride, orientation);
// encode_subband_z0run(s, b, src, parent, stride, orientation);
return encode_subband_c0run(s, b, src, parent, stride, orientation);
// encode_subband_dzr(s, b, src, parent, stride, orientation);
}
static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, const uint8_t *obmc_edged, int *best_rd){
const int b_stride= s->b_width << s->block_max_depth;
BlockNode *block= &s->block[mb_x + mb_y * b_stride];
BlockNode backup= *block;
int rd, index, value;
assert(mb_x>=0 && mb_y>=0);
assert(mb_x<b_stride);
if(intra){
block->color[0] = p[0];
block->color[1] = p[1];
block->color[2] = p[2];
block->type |= BLOCK_INTRA;
}else{
index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1);
value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12);
if(s->me_cache[index] == value)
return 0;
s->me_cache[index]= value;
block->mx= p[0];
block->my= p[1];
block->type &= ~BLOCK_INTRA;
}
rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged);
//FIXME chroma
if(rd < *best_rd){
*best_rd= rd;
return 1;
}else{
*block= backup;
return 0;
}
}
/* special case for int[2] args we discard afterwards,
* fixes compilation problem with gcc 2.95 */
static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, const uint8_t *obmc_edged, int *best_rd){
int p[2] = {p0, p1};
return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd);
}
static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){
const int b_stride= s->b_width << s->block_max_depth;
BlockNode *block= &s->block[mb_x + mb_y * b_stride];
BlockNode backup[4]= {block[0], block[1], block[b_stride], block[b_stride+1]};
int rd, index, value;
assert(mb_x>=0 && mb_y>=0);
assert(mb_x<b_stride);
assert(((mb_x|mb_y)&1) == 0);
index= (p0 + 31*p1) & (ME_CACHE_SIZE-1);
value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12);
if(s->me_cache[index] == value)
return 0;
s->me_cache[index]= value;
block->mx= p0;
block->my= p1;
block->ref= ref;
block->type &= ~BLOCK_INTRA;
block[1]= block[b_stride]= block[b_stride+1]= *block;
rd= get_4block_rd(s, mb_x, mb_y, 0);
//FIXME chroma
if(rd < *best_rd){
*best_rd= rd;
return 1;
}else{
block[0]= backup[0];
block[1]= backup[1];
block[b_stride]= backup[2];
block[b_stride+1]= backup[3];
return 0;
}
}
static void iterative_me(SnowContext *s){
int pass, mb_x, mb_y;
const int b_width = s->b_width << s->block_max_depth;
const int b_height= s->b_height << s->block_max_depth;
const int b_stride= b_width;
int color[3];
{
RangeCoder r = s->c;
uint8_t state[sizeof(s->block_state)];
memcpy(state, s->block_state, sizeof(s->block_state));
for(mb_y= 0; mb_y<s->b_height; mb_y++)
for(mb_x= 0; mb_x<s->b_width; mb_x++)
encode_q_branch(s, 0, mb_x, mb_y);
s->c = r;
memcpy(s->block_state, state, sizeof(s->block_state));
}
for(pass=0; pass<25; pass++){
int change= 0;
for(mb_y= 0; mb_y<b_height; mb_y++){
for(mb_x= 0; mb_x<b_width; mb_x++){
int dia_change, i, j, ref;
int best_rd= INT_MAX, ref_rd;
BlockNode backup, ref_b;
const int index= mb_x + mb_y * b_stride;
BlockNode *block= &s->block[index];
BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL;
BlockNode *lb = mb_x ? &s->block[index -1] : NULL;
BlockNode *rb = mb_x+1<b_width ? &s->block[index +1] : NULL;
BlockNode *bb = mb_y+1<b_height ? &s->block[index+b_stride ] : NULL;
BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL;
BlockNode *trb= mb_x+1<b_width && mb_y ? &s->block[index-b_stride+1] : NULL;
BlockNode *blb= mb_x && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL;
BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL;
const int b_w= (MB_SIZE >> s->block_max_depth);
uint8_t obmc_edged[b_w*2][b_w*2];
if(pass && (block->type & BLOCK_OPT))
continue;
block->type |= BLOCK_OPT;
backup= *block;
if(!s->me_cache_generation)
memset(s->me_cache, 0, sizeof(s->me_cache));
s->me_cache_generation += 1<<22;
//FIXME precalculate
{
int x, y;
memcpy(obmc_edged, obmc_tab[s->block_max_depth], b_w*b_w*4);
if(mb_x==0)
for(y=0; y<b_w*2; y++)
memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w);
if(mb_x==b_stride-1)
for(y=0; y<b_w*2; y++)
memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w);
if(mb_y==0){
for(x=0; x<b_w*2; x++)
obmc_edged[0][x] += obmc_edged[b_w-1][x];
for(y=1; y<b_w; y++)
memcpy(obmc_edged[y], obmc_edged[0], b_w*2);
}
if(mb_y==b_height-1){
for(x=0; x<b_w*2; x++)
obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x];
for(y=b_w; y<b_w*2-1; y++)
memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2);
}
}
//skip stuff outside the picture
if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){
uint8_t *src= s-> input_picture.data[0];
uint8_t *dst= s->current_picture.data[0];
const int stride= s->current_picture.linesize[0];
const int block_w= MB_SIZE >> s->block_max_depth;
const int sx= block_w*mb_x - block_w/2;
const int sy= block_w*mb_y - block_w/2;
const int w= s->plane[0].width;
const int h= s->plane[0].height;
int y;
for(y=sy; y<0; y++)
memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
for(y=h; y<sy+block_w*2; y++)
memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
if(sx<0){
for(y=sy; y<sy+block_w*2; y++)
memcpy(dst + sx + y*stride, src + sx + y*stride, -sx);
}
if(sx+block_w*2 > w){
for(y=sy; y<sy+block_w*2; y++)
memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w);
}
}
// intra(black) = neighbors' contribution to the current block
for(i=0; i<3; i++)
color[i]= get_dc(s, mb_x, mb_y, i);
// get previous score (cannot be cached due to OBMC)
if(pass > 0 && (block->type&BLOCK_INTRA)){
int color0[3]= {block->color[0], block->color[1], block->color[2]};
check_block(s, mb_x, mb_y, color0, 1, *obmc_edged, &best_rd);
}else
check_block_inter(s, mb_x, mb_y, block->mx, block->my, *obmc_edged, &best_rd);
ref_b= *block;
ref_rd= best_rd;
for(ref=0; ref < s->ref_frames; ref++){
int16_t (*mvr)[2]= &s->ref_mvs[ref][index];
if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold
continue;
block->ref= ref;
best_rd= INT_MAX;
check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], *obmc_edged, &best_rd);
check_block_inter(s, mb_x, mb_y, 0, 0, *obmc_edged, &best_rd);
if(tb)
check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], *obmc_edged, &best_rd);
if(lb)
check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], *obmc_edged, &best_rd);
if(rb)
check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], *obmc_edged, &best_rd);
if(bb)
check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], *obmc_edged, &best_rd);
/* fullpel ME */
//FIXME avoid subpel interpolation / round to nearest integer
do{
dia_change=0;
for(i=0; i<FFMAX(s->avctx->dia_size, 1); i++){
for(j=0; j<i; j++){
dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my+(4*j), *obmc_edged, &best_rd);
dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my-(4*j), *obmc_edged, &best_rd);
dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my-(4*j), *obmc_edged, &best_rd);
dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my+(4*j), *obmc_edged, &best_rd);
}
}
}while(dia_change);
/* subpel ME */
do{
static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},};
dia_change=0;
for(i=0; i<8; i++)
dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], *obmc_edged, &best_rd);
}while(dia_change);
//FIXME or try the standard 2 pass qpel or similar
mvr[0][0]= block->mx;
mvr[0][1]= block->my;
if(ref_rd > best_rd){
ref_rd= best_rd;
ref_b= *block;
}
}
best_rd= ref_rd;
*block= ref_b;
check_block(s, mb_x, mb_y, color, 1, *obmc_edged, &best_rd);
//FIXME RD style color selection
if(!same_block(block, &backup)){
if(tb ) tb ->type &= ~BLOCK_OPT;
if(lb ) lb ->type &= ~BLOCK_OPT;
if(rb ) rb ->type &= ~BLOCK_OPT;
if(bb ) bb ->type &= ~BLOCK_OPT;
if(tlb) tlb->type &= ~BLOCK_OPT;
if(trb) trb->type &= ~BLOCK_OPT;
if(blb) blb->type &= ~BLOCK_OPT;
if(brb) brb->type &= ~BLOCK_OPT;
change ++;
}
}
}
av_log(s->avctx, AV_LOG_ERROR, "pass:%d changed:%d\n", pass, change);
if(!change)
break;
}
if(s->block_max_depth == 1){
int change= 0;
for(mb_y= 0; mb_y<b_height; mb_y+=2){
for(mb_x= 0; mb_x<b_width; mb_x+=2){
int i;
int best_rd, init_rd;
const int index= mb_x + mb_y * b_stride;
BlockNode *b[4];
b[0]= &s->block[index];
b[1]= b[0]+1;
b[2]= b[0]+b_stride;
b[3]= b[2]+1;
if(same_block(b[0], b[1]) &&
same_block(b[0], b[2]) &&
same_block(b[0], b[3]))
continue;
if(!s->me_cache_generation)
memset(s->me_cache, 0, sizeof(s->me_cache));
s->me_cache_generation += 1<<22;
init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0);
//FIXME more multiref search?
check_4block_inter(s, mb_x, mb_y,
(b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2,
(b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd);
for(i=0; i<4; i++)
if(!(b[i]->type&BLOCK_INTRA))
check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd);
if(init_rd != best_rd)
change++;
}
}
av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4);
}
}
static void encode_blocks(SnowContext *s, int search){
int x, y;
int w= s->b_width;
int h= s->b_height;
if(s->avctx->me_method == ME_ITER && !s->keyframe && search)
iterative_me(s);
for(y=0; y<h; y++){
if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return;
}
for(x=0; x<w; x++){
if(s->avctx->me_method == ME_ITER || !search)
encode_q_branch2(s, 0, x, y);
else
encode_q_branch (s, 0, x, y);
}
}
}
static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){
const int w= b->width;
const int h= b->height;
const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
const int qmul= qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS);
int x,y, thres1, thres2;
if(s->qlog == LOSSLESS_QLOG){
for(y=0; y<h; y++)
for(x=0; x<w; x++)
dst[x + y*stride]= src[x + y*stride];
return;
}
bias= bias ? 0 : (3*qmul)>>3;
thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
thres2= 2*thres1;
if(!bias){
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int i= src[x + y*stride];
if((unsigned)(i+thres1) > thres2){
if(i>=0){
i<<= QEXPSHIFT;
i/= qmul; //FIXME optimize
dst[x + y*stride]= i;
}else{
i= -i;
i<<= QEXPSHIFT;
i/= qmul; //FIXME optimize
dst[x + y*stride]= -i;
}
}else
dst[x + y*stride]= 0;
}
}
}else{
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int i= src[x + y*stride];
if((unsigned)(i+thres1) > thres2){
if(i>=0){
i<<= QEXPSHIFT;
i= (i + bias) / qmul; //FIXME optimize
dst[x + y*stride]= i;
}else{
i= -i;
i<<= QEXPSHIFT;
i= (i + bias) / qmul; //FIXME optimize
dst[x + y*stride]= -i;
}
}else
dst[x + y*stride]= 0;
}
}
}
}
static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){
const int w= b->width;
const int h= b->height;
const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
const int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
int x,y;
if(s->qlog == LOSSLESS_QLOG) return;
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int i= src[x + y*stride];
if(i<0){
src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
}else if(i>0){
src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT));
}
}
}
}
static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
const int w= b->width;
const int h= b->height;
int x,y;
for(y=h-1; y>=0; y--){
for(x=w-1; x>=0; x--){
int i= x + y*stride;
if(x){
if(use_median){
if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
else src[i] -= src[i - 1];
}else{
if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
else src[i] -= src[i - 1];
}
}else{
if(y) src[i] -= src[i - stride];
}
}
}
}
static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
const int w= b->width;
const int h= b->height;
int x,y;
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int i= x + y*stride;
if(x){
if(use_median){
if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
else src[i] += src[i - 1];
}else{
if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
else src[i] += src[i - 1];
}
}else{
if(y) src[i] += src[i - stride];
}
}
}
}
static void encode_qlogs(SnowContext *s){
int plane_index, level, orientation;
for(plane_index=0; plane_index<2; plane_index++){
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1:0; orientation<4; orientation++){
if(orientation==2) continue;
put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
}
}
}
}
static void encode_header(SnowContext *s){
int plane_index, i;
uint8_t kstate[32];
memset(kstate, MID_STATE, sizeof(kstate));
put_rac(&s->c, kstate, s->keyframe);
if(s->keyframe || s->always_reset){
reset_contexts(s);
s->last_spatial_decomposition_type=
s->last_qlog=
s->last_qbias=
s->last_mv_scale=
s->last_block_max_depth= 0;
for(plane_index=0; plane_index<2; plane_index++){
Plane *p= &s->plane[plane_index];
p->last_htaps=0;
p->last_diag_mc=0;
memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff));
}
}
if(s->keyframe){
put_symbol(&s->c, s->header_state, s->version, 0);
put_rac(&s->c, s->header_state, s->always_reset);
put_symbol(&s->c, s->header_state, s->temporal_decomposition_type, 0);
put_symbol(&s->c, s->header_state, s->temporal_decomposition_count, 0);
put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
put_rac(&s->c, s->header_state, s->spatial_scalability);
// put_rac(&s->c, s->header_state, s->rate_scalability);
put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0);
encode_qlogs(s);
}
if(!s->keyframe){
int update_mc=0;
for(plane_index=0; plane_index<2; plane_index++){
Plane *p= &s->plane[plane_index];
update_mc |= p->last_htaps != p->htaps;
update_mc |= p->last_diag_mc != p->diag_mc;
update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
}
put_rac(&s->c, s->header_state, update_mc);
if(update_mc){
for(plane_index=0; plane_index<2; plane_index++){
Plane *p= &s->plane[plane_index];
put_rac(&s->c, s->header_state, p->diag_mc);
put_symbol(&s->c, s->header_state, p->htaps/2-1, 0);
for(i= p->htaps/2; i; i--)
put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0);
}
}
if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
put_rac(&s->c, s->header_state, 1);
put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
encode_qlogs(s);
}else
put_rac(&s->c, s->header_state, 0);
}
put_symbol(&s->c, s->header_state, s->spatial_decomposition_type - s->last_spatial_decomposition_type, 1);
put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1);
put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1);
put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1);
put_symbol(&s->c, s->header_state, s->block_max_depth - s->last_block_max_depth, 1);
}
static void update_last_header_values(SnowContext *s){
int plane_index;
if(!s->keyframe){
for(plane_index=0; plane_index<2; plane_index++){
Plane *p= &s->plane[plane_index];
p->last_diag_mc= p->diag_mc;
p->last_htaps = p->htaps;
memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
}
}
s->last_spatial_decomposition_type = s->spatial_decomposition_type;
s->last_qlog = s->qlog;
s->last_qbias = s->qbias;
s->last_mv_scale = s->mv_scale;
s->last_block_max_depth = s->block_max_depth;
s->last_spatial_decomposition_count = s->spatial_decomposition_count;
}
static int qscale2qlog(int qscale){
return rint(QROOT*log(qscale / (float)FF_QP2LAMBDA)/log(2))
+ 61*QROOT/8; //<64 >60
}
static int ratecontrol_1pass(SnowContext *s, AVFrame *pict)
{
/* Estimate the frame's complexity as a sum of weighted dwt coefficients.
* FIXME we know exact mv bits at this point,
* but ratecontrol isn't set up to include them. */
uint32_t coef_sum= 0;
int level, orientation, delta_qlog;
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &s->plane[0].band[level][orientation];
IDWTELEM *buf= b->ibuf;
const int w= b->width;
const int h= b->height;
const int stride= b->stride;
const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16);
const int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
const int qdiv= (1<<16)/qmul;
int x, y;
//FIXME this is ugly
for(y=0; y<h; y++)
for(x=0; x<w; x++)
buf[x+y*stride]= b->buf[x+y*stride];
if(orientation==0)
decorrelate(s, b, buf, stride, 1, 0);
for(y=0; y<h; y++)
for(x=0; x<w; x++)
coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16;
}
}
/* ugly, ratecontrol just takes a sqrt again */
coef_sum = (uint64_t)coef_sum * coef_sum >> 16;
assert(coef_sum < INT_MAX);
if(pict->pict_type == AV_PICTURE_TYPE_I){
s->m.current_picture.mb_var_sum= coef_sum;
s->m.current_picture.mc_mb_var_sum= 0;
}else{
s->m.current_picture.mc_mb_var_sum= coef_sum;
s->m.current_picture.mb_var_sum= 0;
}
pict->quality= ff_rate_estimate_qscale(&s->m, 1);
if (pict->quality < 0)
return INT_MIN;
s->lambda= pict->quality * 3/2;
delta_qlog= qscale2qlog(pict->quality) - s->qlog;
s->qlog+= delta_qlog;
return delta_qlog;
}
static void calculate_visual_weight(SnowContext *s, Plane *p){
int width = p->width;
int height= p->height;
int level, orientation, x, y;
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation];
IDWTELEM *ibuf= b->ibuf;
int64_t error=0;
memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height);
ibuf[b->width/2 + b->height/2*b->stride]= 256*16;
ff_spatial_idwt(s->spatial_idwt_buffer, width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
for(y=0; y<height; y++){
for(x=0; x<width; x++){
int64_t d= s->spatial_idwt_buffer[x + y*width]*16;
error += d*d;
}
}
b->qlog= (int)(log(352256.0/sqrt(error)) / log(pow(2.0, 1.0/QROOT))+0.5);
}
}
}
static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
SnowContext *s = avctx->priv_data;
RangeCoder * const c= &s->c;
AVFrame *pict = data;
const int width= s->avctx->width;
const int height= s->avctx->height;
int level, orientation, plane_index, i, y;
uint8_t rc_header_bak[sizeof(s->header_state)];
uint8_t rc_block_bak[sizeof(s->block_state)];
ff_init_range_encoder(c, buf, buf_size);
ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
for(i=0; i<3; i++){
int shift= !!i;
for(y=0; y<(height>>shift); y++)
memcpy(&s->input_picture.data[i][y * s->input_picture.linesize[i]],
&pict->data[i][y * pict->linesize[i]],
width>>shift);
}
s->new_picture = *pict;
s->m.picture_number= avctx->frame_number;
if(avctx->flags&CODEC_FLAG_PASS2){
s->m.pict_type =
pict->pict_type= s->m.rc_context.entry[avctx->frame_number].new_pict_type;
s->keyframe= pict->pict_type==AV_PICTURE_TYPE_I;
if(!(avctx->flags&CODEC_FLAG_QSCALE)) {
pict->quality= ff_rate_estimate_qscale(&s->m, 0);
if (pict->quality < 0)
return -1;
}
}else{
s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
s->m.pict_type=
pict->pict_type= s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
}
if(s->pass1_rc && avctx->frame_number == 0)
pict->quality= 2*FF_QP2LAMBDA;
if(pict->quality){
s->qlog= qscale2qlog(pict->quality);
s->lambda = pict->quality * 3/2;
}
if(s->qlog < 0 || (!pict->quality && (avctx->flags & CODEC_FLAG_QSCALE))){
s->qlog= LOSSLESS_QLOG;
s->lambda = 0;
}//else keep previous frame's qlog until after motion estimation
frame_start(s);
s->m.current_picture_ptr= &s->m.current_picture;
s->m.last_picture.pts= s->m.current_picture.pts;
s->m.current_picture.pts= pict->pts;
if(pict->pict_type == AV_PICTURE_TYPE_P){
int block_width = (width +15)>>4;
int block_height= (height+15)>>4;
int stride= s->current_picture.linesize[0];
assert(s->current_picture.data[0]);
assert(s->last_picture[0].data[0]);
s->m.avctx= s->avctx;
s->m.current_picture.data[0]= s->current_picture.data[0];
s->m. last_picture.data[0]= s->last_picture[0].data[0];
s->m. new_picture.data[0]= s-> input_picture.data[0];
s->m. last_picture_ptr= &s->m. last_picture;
s->m.linesize=
s->m. last_picture.linesize[0]=
s->m. new_picture.linesize[0]=
s->m.current_picture.linesize[0]= stride;
s->m.uvlinesize= s->current_picture.linesize[1];
s->m.width = width;
s->m.height= height;
s->m.mb_width = block_width;
s->m.mb_height= block_height;
s->m.mb_stride= s->m.mb_width+1;
s->m.b8_stride= 2*s->m.mb_width+1;
s->m.f_code=1;
s->m.pict_type= pict->pict_type;
s->m.me_method= s->avctx->me_method;
s->m.me.scene_change_score=0;
s->m.flags= s->avctx->flags;
s->m.quarter_sample= (s->avctx->flags & CODEC_FLAG_QPEL)!=0;
s->m.out_format= FMT_H263;
s->m.unrestricted_mv= 1;
s->m.lambda = s->lambda;
s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
s->m.dsp= s->dsp; //move
ff_init_me(&s->m);
s->dsp= s->m.dsp;
}
if(s->pass1_rc){
memcpy(rc_header_bak, s->header_state, sizeof(s->header_state));
memcpy(rc_block_bak, s->block_state, sizeof(s->block_state));
}
redo_frame:
if(pict->pict_type == AV_PICTURE_TYPE_I)
s->spatial_decomposition_count= 5;
else
s->spatial_decomposition_count= 5;
s->m.pict_type = pict->pict_type;
s->qbias= pict->pict_type == AV_PICTURE_TYPE_P ? 2 : 0;
common_init_after_header(avctx);
if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
for(plane_index=0; plane_index<3; plane_index++){
calculate_visual_weight(s, &s->plane[plane_index]);
}
}
encode_header(s);
s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start);
encode_blocks(s, 1);
s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits;
for(plane_index=0; plane_index<3; plane_index++){
Plane *p= &s->plane[plane_index];
int w= p->width;
int h= p->height;
int x, y;
// int bits= put_bits_count(&s->c.pb);
if(!(avctx->flags2 & CODEC_FLAG2_MEMC_ONLY)){
//FIXME optimize
if(pict->data[plane_index]) //FIXME gray hack
for(y=0; y<h; y++){
for(x=0; x<w; x++){
s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
}
}
predict_plane(s, s->spatial_idwt_buffer, plane_index, 0);
if( plane_index==0
&& pict->pict_type == AV_PICTURE_TYPE_P
&& !(avctx->flags&CODEC_FLAG_PASS2)
&& s->m.me.scene_change_score > s->avctx->scenechange_threshold){
ff_init_range_encoder(c, buf, buf_size);
ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
pict->pict_type= AV_PICTURE_TYPE_I;
s->keyframe=1;
s->current_picture.key_frame=1;
goto redo_frame;
}
if(s->qlog == LOSSLESS_QLOG){
for(y=0; y<h; y++){
for(x=0; x<w; x++){
s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS;
}
}
}else{
for(y=0; y<h; y++){
for(x=0; x<w; x++){
s->spatial_dwt_buffer[y*w + x]=s->spatial_idwt_buffer[y*w + x]<<ENCODER_EXTRA_BITS;
}
}
}
/* if(QUANTIZE2)
dwt_quantize(s, p, s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type);
else*/
ff_spatial_dwt(s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
if(s->pass1_rc && plane_index==0){
int delta_qlog = ratecontrol_1pass(s, pict);
if (delta_qlog <= INT_MIN)
return -1;
if(delta_qlog){
//reordering qlog in the bitstream would eliminate this reset
ff_init_range_encoder(c, buf, buf_size);
memcpy(s->header_state, rc_header_bak, sizeof(s->header_state));
memcpy(s->block_state, rc_block_bak, sizeof(s->block_state));
encode_header(s);
encode_blocks(s, 0);
}
}
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation];
if(!QUANTIZE2)
quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias);
if(orientation==0)
decorrelate(s, b, b->ibuf, b->stride, pict->pict_type == AV_PICTURE_TYPE_P, 0);
encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation);
assert(b->parent==NULL || b->parent->stride == b->stride*2);
if(orientation==0)
correlate(s, b, b->ibuf, b->stride, 1, 0);
}
}
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation];
dequantize(s, b, b->ibuf, b->stride);
}
}
ff_spatial_idwt(s->spatial_idwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
if(s->qlog == LOSSLESS_QLOG){
for(y=0; y<h; y++){
for(x=0; x<w; x++){
s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS;
}
}
}
predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
}else{
//ME/MC only
if(pict->pict_type == AV_PICTURE_TYPE_I){
for(y=0; y<h; y++){
for(x=0; x<w; x++){
s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x]=
pict->data[plane_index][y*pict->linesize[plane_index] + x];
}
}
}else{
memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h);
predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
}
}
if(s->avctx->flags&CODEC_FLAG_PSNR){
int64_t error= 0;
if(pict->data[plane_index]) //FIXME gray hack
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int d= s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
error += d*d;
}
}
s->avctx->error[plane_index] += error;
s->current_picture.error[plane_index] = error;
}
}
update_last_header_values(s);
release_buffer(avctx);
s->current_picture.coded_picture_number = avctx->frame_number;
s->current_picture.pict_type = pict->pict_type;
s->current_picture.quality = pict->quality;
s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start);
s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits;
s->m.current_picture.display_picture_number =
s->m.current_picture.coded_picture_number = avctx->frame_number;
s->m.current_picture.quality = pict->quality;
s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start);
if(s->pass1_rc)
if (ff_rate_estimate_qscale(&s->m, 0) < 0)
return -1;
if(avctx->flags&CODEC_FLAG_PASS1)
ff_write_pass1_stats(&s->m);
s->m.last_pict_type = s->m.pict_type;
avctx->frame_bits = s->m.frame_bits;
avctx->mv_bits = s->m.mv_bits;
avctx->misc_bits = s->m.misc_bits;
avctx->p_tex_bits = s->m.p_tex_bits;
emms_c();
return ff_rac_terminate(c);
}
static av_cold int encode_end(AVCodecContext *avctx)
{
SnowContext *s = avctx->priv_data;
common_end(s);
if (s->input_picture.data[0])
avctx->release_buffer(avctx, &s->input_picture);
av_free(avctx->stats_out);
return 0;
}
AVCodec ff_snow_encoder = {
"snow",
AVMEDIA_TYPE_VIDEO,
CODEC_ID_SNOW,
sizeof(SnowContext),
encode_init,
encode_frame,
encode_end,
.long_name = NULL_IF_CONFIG_SMALL("Snow"),
};
#endif
#ifdef TEST
#undef malloc
#undef free
#undef printf
#include "libavutil/lfg.h"
int main(void){
int width=256;
int height=256;
int buffer[2][width*height];
SnowContext s;
int i;
AVLFG prng;
s.spatial_decomposition_count=6;
s.spatial_decomposition_type=1;
av_lfg_init(&prng, 1);
printf("testing 5/3 DWT\n");
for(i=0; i<width*height; i++)
buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
ff_spatial_dwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
ff_spatial_idwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
for(i=0; i<width*height; i++)
if(buffer[0][i]!= buffer[1][i]) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
printf("testing 9/7 DWT\n");
s.spatial_decomposition_type=0;
for(i=0; i<width*height; i++)
buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
ff_spatial_dwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
ff_spatial_idwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
for(i=0; i<width*height; i++)
if(FFABS(buffer[0][i] - buffer[1][i])>20) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
#if 0
printf("testing AC coder\n");
memset(s.header_state, 0, sizeof(s.header_state));
ff_init_range_encoder(&s.c, buffer[0], 256*256);
ff_init_cabac_states(&s.c, ff_h264_lps_range, ff_h264_mps_state, ff_h264_lps_state, 64);
for(i=-256; i<256; i++){
put_symbol(&s.c, s.header_state, i*i*i/3*FFABS(i), 1);
}
ff_rac_terminate(&s.c);
memset(s.header_state, 0, sizeof(s.header_state));
ff_init_range_decoder(&s.c, buffer[0], 256*256);
ff_init_cabac_states(&s.c, ff_h264_lps_range, ff_h264_mps_state, ff_h264_lps_state, 64);
for(i=-256; i<256; i++){
int j;
j= get_symbol(&s.c, s.header_state, 1);
if(j!=i*i*i/3*FFABS(i)) printf("fsck: %d != %d\n", i, j);
}
#endif
{
int level, orientation, x, y;
int64_t errors[8][4];
int64_t g=0;
memset(errors, 0, sizeof(errors));
s.spatial_decomposition_count=3;
s.spatial_decomposition_type=0;
for(level=0; level<s.spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
int w= width >> (s.spatial_decomposition_count-level);
int h= height >> (s.spatial_decomposition_count-level);
int stride= width << (s.spatial_decomposition_count-level);
DWTELEM *buf= buffer[0];
int64_t error=0;
if(orientation&1) buf+=w;
if(orientation>1) buf+=stride>>1;
memset(buffer[0], 0, sizeof(int)*width*height);
buf[w/2 + h/2*stride]= 256*256;
ff_spatial_idwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
for(y=0; y<height; y++){
for(x=0; x<width; x++){
int64_t d= buffer[0][x + y*width];
error += d*d;
if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9 && level==2) printf("%8"PRId64" ", d);
}
if(FFABS(height/2-y)<9 && level==2) printf("\n");
}
error= (int)(sqrt(error)+0.5);
errors[level][orientation]= error;
if(g) g=av_gcd(g, error);
else g= error;
}
}
printf("static int const visual_weight[][4]={\n");
for(level=0; level<s.spatial_decomposition_count; level++){
printf(" {");
for(orientation=0; orientation<4; orientation++){
printf("%8"PRId64",", errors[level][orientation]/g);
}
printf("},\n");
}
printf("};\n");
{
int level=2;
int w= width >> (s.spatial_decomposition_count-level);
//int h= height >> (s.spatial_decomposition_count-level);
int stride= width << (s.spatial_decomposition_count-level);
DWTELEM *buf= buffer[0];
int64_t error=0;
buf+=w;
buf+=stride>>1;
memset(buffer[0], 0, sizeof(int)*width*height);
#if 1
for(y=0; y<height; y++){
for(x=0; x<width; x++){
int tab[4]={0,2,3,1};
buffer[0][x+width*y]= 256*256*tab[(x&1) + 2*(y&1)];
}
}
ff_spatial_dwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
#else
for(y=0; y<h; y++){
for(x=0; x<w; x++){
buf[x + y*stride ]=169;
buf[x + y*stride-w]=64;
}
}
ff_spatial_idwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
#endif
for(y=0; y<height; y++){
for(x=0; x<width; x++){
int64_t d= buffer[0][x + y*width];
error += d*d;
if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9) printf("%8"PRId64" ", d);
}
if(FFABS(height/2-y)<9) printf("\n");
}
}
}
return 0;
}
#endif /* TEST */