1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libavcodec/libaomenc.c
elliottk ea673a0edb Delete unused branch in libaomenc
this branch is leftover from libvpxenc+vp8

Signed-off-by: James Zern <jzern@google.com>
2019-09-19 23:56:03 -07:00

1122 lines
43 KiB
C

/*
* Copyright (c) 2010, Google, Inc.
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* AV1 encoder support via libaom
*/
#define AOM_DISABLE_CTRL_TYPECHECKS 1
#include <aom/aom_encoder.h>
#include <aom/aomcx.h>
#include "libavutil/avassert.h"
#include "libavutil/base64.h"
#include "libavutil/common.h"
#include "libavutil/mathematics.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "av1.h"
#include "avcodec.h"
#include "internal.h"
#include "profiles.h"
/*
* Portion of struct aom_codec_cx_pkt from aom_encoder.h.
* One encoded frame returned from the library.
*/
struct FrameListData {
void *buf; /**< compressed data buffer */
size_t sz; /**< length of compressed data */
int64_t pts; /**< time stamp to show frame
(in timebase units) */
unsigned long duration; /**< duration to show frame
(in timebase units) */
uint32_t flags; /**< flags for this frame */
uint64_t sse[4];
int have_sse; /**< true if we have pending sse[] */
uint64_t frame_number;
struct FrameListData *next;
};
typedef struct AOMEncoderContext {
AVClass *class;
AVBSFContext *bsf;
struct aom_codec_ctx encoder;
struct aom_image rawimg;
struct aom_fixed_buf twopass_stats;
struct FrameListData *coded_frame_list;
int cpu_used;
int auto_alt_ref;
int arnr_max_frames;
int arnr_strength;
int aq_mode;
int lag_in_frames;
int error_resilient;
int crf;
int static_thresh;
int drop_threshold;
int denoise_noise_level;
int denoise_block_size;
uint64_t sse[4];
int have_sse; /**< true if we have pending sse[] */
uint64_t frame_number;
int rc_undershoot_pct;
int rc_overshoot_pct;
int minsection_pct;
int maxsection_pct;
int frame_parallel;
int tile_cols, tile_rows;
int tile_cols_log2, tile_rows_log2;
aom_superblock_size_t superblock_size;
int uniform_tiles;
int row_mt;
int enable_cdef;
int enable_global_motion;
int enable_intrabc;
} AOMContext;
static const char *const ctlidstr[] = {
[AOME_SET_CPUUSED] = "AOME_SET_CPUUSED",
[AOME_SET_CQ_LEVEL] = "AOME_SET_CQ_LEVEL",
[AOME_SET_ENABLEAUTOALTREF] = "AOME_SET_ENABLEAUTOALTREF",
[AOME_SET_ARNR_MAXFRAMES] = "AOME_SET_ARNR_MAXFRAMES",
[AOME_SET_ARNR_STRENGTH] = "AOME_SET_ARNR_STRENGTH",
[AOME_SET_STATIC_THRESHOLD] = "AOME_SET_STATIC_THRESHOLD",
[AV1E_SET_COLOR_RANGE] = "AV1E_SET_COLOR_RANGE",
[AV1E_SET_COLOR_PRIMARIES] = "AV1E_SET_COLOR_PRIMARIES",
[AV1E_SET_MATRIX_COEFFICIENTS] = "AV1E_SET_MATRIX_COEFFICIENTS",
[AV1E_SET_TRANSFER_CHARACTERISTICS] = "AV1E_SET_TRANSFER_CHARACTERISTICS",
[AV1E_SET_AQ_MODE] = "AV1E_SET_AQ_MODE",
[AV1E_SET_FRAME_PARALLEL_DECODING] = "AV1E_SET_FRAME_PARALLEL_DECODING",
[AV1E_SET_SUPERBLOCK_SIZE] = "AV1E_SET_SUPERBLOCK_SIZE",
[AV1E_SET_TILE_COLUMNS] = "AV1E_SET_TILE_COLUMNS",
[AV1E_SET_TILE_ROWS] = "AV1E_SET_TILE_ROWS",
#ifdef AOM_CTRL_AV1E_SET_ROW_MT
[AV1E_SET_ROW_MT] = "AV1E_SET_ROW_MT",
#endif
#ifdef AOM_CTRL_AV1E_SET_DENOISE_NOISE_LEVEL
[AV1E_SET_DENOISE_NOISE_LEVEL] = "AV1E_SET_DENOISE_NOISE_LEVEL",
#endif
#ifdef AOM_CTRL_AV1E_SET_DENOISE_BLOCK_SIZE
[AV1E_SET_DENOISE_BLOCK_SIZE] = "AV1E_SET_DENOISE_BLOCK_SIZE",
#endif
#ifdef AOM_CTRL_AV1E_SET_MAX_REFERENCE_FRAMES
[AV1E_SET_MAX_REFERENCE_FRAMES] = "AV1E_SET_MAX_REFERENCE_FRAMES",
#endif
#ifdef AOM_CTRL_AV1E_SET_ENABLE_GLOBAL_MOTION
[AV1E_SET_ENABLE_GLOBAL_MOTION] = "AV1E_SET_ENABLE_GLOBAL_MOTION",
#endif
#ifdef AOM_CTRL_AV1E_SET_ENABLE_INTRABC
[AV1E_SET_ENABLE_INTRABC] = "AV1E_SET_ENABLE_INTRABC",
#endif
[AV1E_SET_ENABLE_CDEF] = "AV1E_SET_ENABLE_CDEF",
};
static av_cold void log_encoder_error(AVCodecContext *avctx, const char *desc)
{
AOMContext *ctx = avctx->priv_data;
const char *error = aom_codec_error(&ctx->encoder);
const char *detail = aom_codec_error_detail(&ctx->encoder);
av_log(avctx, AV_LOG_ERROR, "%s: %s\n", desc, error);
if (detail)
av_log(avctx, AV_LOG_ERROR, " Additional information: %s\n", detail);
}
static av_cold void dump_enc_cfg(AVCodecContext *avctx,
const struct aom_codec_enc_cfg *cfg)
{
int width = -30;
int level = AV_LOG_DEBUG;
av_log(avctx, level, "aom_codec_enc_cfg\n");
av_log(avctx, level, "generic settings\n"
" %*s%u\n %*s%u\n %*s%u\n %*s%u\n %*s%u\n"
" %*s%u\n %*s%u\n"
" %*s{%u/%u}\n %*s%u\n %*s%d\n %*s%u\n",
width, "g_usage:", cfg->g_usage,
width, "g_threads:", cfg->g_threads,
width, "g_profile:", cfg->g_profile,
width, "g_w:", cfg->g_w,
width, "g_h:", cfg->g_h,
width, "g_bit_depth:", cfg->g_bit_depth,
width, "g_input_bit_depth:", cfg->g_input_bit_depth,
width, "g_timebase:", cfg->g_timebase.num, cfg->g_timebase.den,
width, "g_error_resilient:", cfg->g_error_resilient,
width, "g_pass:", cfg->g_pass,
width, "g_lag_in_frames:", cfg->g_lag_in_frames);
av_log(avctx, level, "rate control settings\n"
" %*s%u\n %*s%d\n %*s%p(%"SIZE_SPECIFIER")\n %*s%u\n",
width, "rc_dropframe_thresh:", cfg->rc_dropframe_thresh,
width, "rc_end_usage:", cfg->rc_end_usage,
width, "rc_twopass_stats_in:", cfg->rc_twopass_stats_in.buf, cfg->rc_twopass_stats_in.sz,
width, "rc_target_bitrate:", cfg->rc_target_bitrate);
av_log(avctx, level, "quantizer settings\n"
" %*s%u\n %*s%u\n",
width, "rc_min_quantizer:", cfg->rc_min_quantizer,
width, "rc_max_quantizer:", cfg->rc_max_quantizer);
av_log(avctx, level, "bitrate tolerance\n"
" %*s%u\n %*s%u\n",
width, "rc_undershoot_pct:", cfg->rc_undershoot_pct,
width, "rc_overshoot_pct:", cfg->rc_overshoot_pct);
av_log(avctx, level, "decoder buffer model\n"
" %*s%u\n %*s%u\n %*s%u\n",
width, "rc_buf_sz:", cfg->rc_buf_sz,
width, "rc_buf_initial_sz:", cfg->rc_buf_initial_sz,
width, "rc_buf_optimal_sz:", cfg->rc_buf_optimal_sz);
av_log(avctx, level, "2 pass rate control settings\n"
" %*s%u\n %*s%u\n %*s%u\n",
width, "rc_2pass_vbr_bias_pct:", cfg->rc_2pass_vbr_bias_pct,
width, "rc_2pass_vbr_minsection_pct:", cfg->rc_2pass_vbr_minsection_pct,
width, "rc_2pass_vbr_maxsection_pct:", cfg->rc_2pass_vbr_maxsection_pct);
av_log(avctx, level, "keyframing settings\n"
" %*s%d\n %*s%u\n %*s%u\n",
width, "kf_mode:", cfg->kf_mode,
width, "kf_min_dist:", cfg->kf_min_dist,
width, "kf_max_dist:", cfg->kf_max_dist);
av_log(avctx, level, "tile settings\n"
" %*s%d\n %*s%d\n",
width, "tile_width_count:", cfg->tile_width_count,
width, "tile_height_count:", cfg->tile_height_count);
av_log(avctx, level, "\n");
}
static void coded_frame_add(void *list, struct FrameListData *cx_frame)
{
struct FrameListData **p = list;
while (*p)
p = &(*p)->next;
*p = cx_frame;
cx_frame->next = NULL;
}
static av_cold void free_coded_frame(struct FrameListData *cx_frame)
{
av_freep(&cx_frame->buf);
av_freep(&cx_frame);
}
static av_cold void free_frame_list(struct FrameListData *list)
{
struct FrameListData *p = list;
while (p) {
list = list->next;
free_coded_frame(p);
p = list;
}
}
static av_cold int codecctl_int(AVCodecContext *avctx,
#ifdef UENUM1BYTE
aome_enc_control_id id,
#else
enum aome_enc_control_id id,
#endif
int val)
{
AOMContext *ctx = avctx->priv_data;
char buf[80];
int width = -30;
int res;
snprintf(buf, sizeof(buf), "%s:", ctlidstr[id]);
av_log(avctx, AV_LOG_DEBUG, " %*s%d\n", width, buf, val);
res = aom_codec_control(&ctx->encoder, id, val);
if (res != AOM_CODEC_OK) {
snprintf(buf, sizeof(buf), "Failed to set %s codec control",
ctlidstr[id]);
log_encoder_error(avctx, buf);
return AVERROR(EINVAL);
}
return 0;
}
static av_cold int aom_free(AVCodecContext *avctx)
{
AOMContext *ctx = avctx->priv_data;
aom_codec_destroy(&ctx->encoder);
av_freep(&ctx->twopass_stats.buf);
av_freep(&avctx->stats_out);
free_frame_list(ctx->coded_frame_list);
av_bsf_free(&ctx->bsf);
return 0;
}
static int set_pix_fmt(AVCodecContext *avctx, aom_codec_caps_t codec_caps,
struct aom_codec_enc_cfg *enccfg, aom_codec_flags_t *flags,
aom_img_fmt_t *img_fmt)
{
AOMContext av_unused *ctx = avctx->priv_data;
enccfg->g_bit_depth = enccfg->g_input_bit_depth = 8;
switch (avctx->pix_fmt) {
case AV_PIX_FMT_YUV420P:
enccfg->g_profile = FF_PROFILE_AV1_MAIN;
*img_fmt = AOM_IMG_FMT_I420;
return 0;
case AV_PIX_FMT_YUV422P:
enccfg->g_profile = FF_PROFILE_AV1_PROFESSIONAL;
*img_fmt = AOM_IMG_FMT_I422;
return 0;
case AV_PIX_FMT_YUV444P:
enccfg->g_profile = FF_PROFILE_AV1_HIGH;
*img_fmt = AOM_IMG_FMT_I444;
return 0;
case AV_PIX_FMT_YUV420P10:
case AV_PIX_FMT_YUV420P12:
if (codec_caps & AOM_CODEC_CAP_HIGHBITDEPTH) {
enccfg->g_bit_depth = enccfg->g_input_bit_depth =
avctx->pix_fmt == AV_PIX_FMT_YUV420P10 ? 10 : 12;
enccfg->g_profile =
enccfg->g_bit_depth == 10 ? FF_PROFILE_AV1_MAIN : FF_PROFILE_AV1_PROFESSIONAL;
*img_fmt = AOM_IMG_FMT_I42016;
*flags |= AOM_CODEC_USE_HIGHBITDEPTH;
return 0;
}
break;
case AV_PIX_FMT_YUV422P10:
case AV_PIX_FMT_YUV422P12:
if (codec_caps & AOM_CODEC_CAP_HIGHBITDEPTH) {
enccfg->g_bit_depth = enccfg->g_input_bit_depth =
avctx->pix_fmt == AV_PIX_FMT_YUV422P10 ? 10 : 12;
enccfg->g_profile = FF_PROFILE_AV1_PROFESSIONAL;
*img_fmt = AOM_IMG_FMT_I42216;
*flags |= AOM_CODEC_USE_HIGHBITDEPTH;
return 0;
}
break;
case AV_PIX_FMT_YUV444P10:
case AV_PIX_FMT_YUV444P12:
if (codec_caps & AOM_CODEC_CAP_HIGHBITDEPTH) {
enccfg->g_bit_depth = enccfg->g_input_bit_depth =
avctx->pix_fmt == AV_PIX_FMT_YUV444P10 ? 10 : 12;
enccfg->g_profile =
enccfg->g_bit_depth == 10 ? FF_PROFILE_AV1_HIGH : FF_PROFILE_AV1_PROFESSIONAL;
*img_fmt = AOM_IMG_FMT_I44416;
*flags |= AOM_CODEC_USE_HIGHBITDEPTH;
return 0;
}
break;
default:
break;
}
av_log(avctx, AV_LOG_ERROR, "Unsupported pixel format.\n");
return AVERROR_INVALIDDATA;
}
static void set_color_range(AVCodecContext *avctx)
{
aom_color_range_t aom_cr;
switch (avctx->color_range) {
case AVCOL_RANGE_UNSPECIFIED:
case AVCOL_RANGE_MPEG: aom_cr = AOM_CR_STUDIO_RANGE; break;
case AVCOL_RANGE_JPEG: aom_cr = AOM_CR_FULL_RANGE; break;
default:
av_log(avctx, AV_LOG_WARNING, "Unsupported color range (%d)\n",
avctx->color_range);
return;
}
codecctl_int(avctx, AV1E_SET_COLOR_RANGE, aom_cr);
}
static int count_uniform_tiling(int dim, int sb_size, int tiles_log2)
{
int sb_dim = (dim + sb_size - 1) / sb_size;
int tile_dim = (sb_dim + (1 << tiles_log2) - 1) >> tiles_log2;
av_assert0(tile_dim > 0);
return (sb_dim + tile_dim - 1) / tile_dim;
}
static int choose_tiling(AVCodecContext *avctx,
struct aom_codec_enc_cfg *enccfg)
{
AOMContext *ctx = avctx->priv_data;
int sb_128x128_possible, sb_size, sb_width, sb_height;
int uniform_rows, uniform_cols;
int uniform_64x64_possible, uniform_128x128_possible;
int tile_size, rounding, i;
if (ctx->tile_cols_log2 >= 0)
ctx->tile_cols = 1 << ctx->tile_cols_log2;
if (ctx->tile_rows_log2 >= 0)
ctx->tile_rows = 1 << ctx->tile_rows_log2;
if (ctx->tile_cols == 0) {
ctx->tile_cols = (avctx->width + AV1_MAX_TILE_WIDTH - 1) /
AV1_MAX_TILE_WIDTH;
if (ctx->tile_cols > 1) {
av_log(avctx, AV_LOG_DEBUG, "Automatically using %d tile "
"columns to fill width.\n", ctx->tile_cols);
}
}
av_assert0(ctx->tile_cols > 0);
if (ctx->tile_rows == 0) {
int max_tile_width =
FFALIGN((FFALIGN(avctx->width, 128) +
ctx->tile_cols - 1) / ctx->tile_cols, 128);
ctx->tile_rows =
(max_tile_width * FFALIGN(avctx->height, 128) +
AV1_MAX_TILE_AREA - 1) / AV1_MAX_TILE_AREA;
if (ctx->tile_rows > 1) {
av_log(avctx, AV_LOG_DEBUG, "Automatically using %d tile "
"rows to fill area.\n", ctx->tile_rows);
}
}
av_assert0(ctx->tile_rows > 0);
if ((avctx->width + 63) / 64 < ctx->tile_cols ||
(avctx->height + 63) / 64 < ctx->tile_rows) {
av_log(avctx, AV_LOG_ERROR, "Invalid tile sizing: frame not "
"large enough to fit specified tile arrangement.\n");
return AVERROR(EINVAL);
}
if (ctx->tile_cols > AV1_MAX_TILE_COLS ||
ctx->tile_rows > AV1_MAX_TILE_ROWS) {
av_log(avctx, AV_LOG_ERROR, "Invalid tile sizing: AV1 does "
"not allow more than %dx%d tiles.\n",
AV1_MAX_TILE_COLS, AV1_MAX_TILE_ROWS);
return AVERROR(EINVAL);
}
if (avctx->width / ctx->tile_cols > AV1_MAX_TILE_WIDTH) {
av_log(avctx, AV_LOG_ERROR, "Invalid tile sizing: AV1 does "
"not allow tiles of width greater than %d.\n",
AV1_MAX_TILE_WIDTH);
return AVERROR(EINVAL);
}
ctx->superblock_size = AOM_SUPERBLOCK_SIZE_DYNAMIC;
if (ctx->tile_cols == 1 && ctx->tile_rows == 1) {
av_log(avctx, AV_LOG_DEBUG, "Using a single tile.\n");
return 0;
}
sb_128x128_possible =
(avctx->width + 127) / 128 >= ctx->tile_cols &&
(avctx->height + 127) / 128 >= ctx->tile_rows;
ctx->tile_cols_log2 = ctx->tile_cols == 1 ? 0 :
av_log2(ctx->tile_cols - 1) + 1;
ctx->tile_rows_log2 = ctx->tile_rows == 1 ? 0 :
av_log2(ctx->tile_rows - 1) + 1;
uniform_cols = count_uniform_tiling(avctx->width,
64, ctx->tile_cols_log2);
uniform_rows = count_uniform_tiling(avctx->height,
64, ctx->tile_rows_log2);
av_log(avctx, AV_LOG_DEBUG, "Uniform with 64x64 superblocks "
"-> %dx%d tiles.\n", uniform_cols, uniform_rows);
uniform_64x64_possible = uniform_cols == ctx->tile_cols &&
uniform_rows == ctx->tile_rows;
if (sb_128x128_possible) {
uniform_cols = count_uniform_tiling(avctx->width,
128, ctx->tile_cols_log2);
uniform_rows = count_uniform_tiling(avctx->height,
128, ctx->tile_rows_log2);
av_log(avctx, AV_LOG_DEBUG, "Uniform with 128x128 superblocks "
"-> %dx%d tiles.\n", uniform_cols, uniform_rows);
uniform_128x128_possible = uniform_cols == ctx->tile_cols &&
uniform_rows == ctx->tile_rows;
} else {
av_log(avctx, AV_LOG_DEBUG, "128x128 superblocks not possible.\n");
uniform_128x128_possible = 0;
}
ctx->uniform_tiles = 1;
if (uniform_64x64_possible && uniform_128x128_possible) {
av_log(avctx, AV_LOG_DEBUG, "Using uniform tiling with dynamic "
"superblocks (tile_cols_log2 = %d, tile_rows_log2 = %d).\n",
ctx->tile_cols_log2, ctx->tile_rows_log2);
return 0;
}
if (uniform_64x64_possible && !sb_128x128_possible) {
av_log(avctx, AV_LOG_DEBUG, "Using uniform tiling with 64x64 "
"superblocks (tile_cols_log2 = %d, tile_rows_log2 = %d).\n",
ctx->tile_cols_log2, ctx->tile_rows_log2);
ctx->superblock_size = AOM_SUPERBLOCK_SIZE_64X64;
return 0;
}
if (uniform_128x128_possible) {
av_log(avctx, AV_LOG_DEBUG, "Using uniform tiling with 128x128 "
"superblocks (tile_cols_log2 = %d, tile_rows_log2 = %d).\n",
ctx->tile_cols_log2, ctx->tile_rows_log2);
ctx->superblock_size = AOM_SUPERBLOCK_SIZE_128X128;
return 0;
}
ctx->uniform_tiles = 0;
if (sb_128x128_possible) {
sb_size = 128;
ctx->superblock_size = AOM_SUPERBLOCK_SIZE_128X128;
} else {
sb_size = 64;
ctx->superblock_size = AOM_SUPERBLOCK_SIZE_64X64;
}
av_log(avctx, AV_LOG_DEBUG, "Using fixed tiling with %dx%d "
"superblocks (tile_cols = %d, tile_rows = %d).\n",
sb_size, sb_size, ctx->tile_cols, ctx->tile_rows);
enccfg->tile_width_count = ctx->tile_cols;
enccfg->tile_height_count = ctx->tile_rows;
sb_width = (avctx->width + sb_size - 1) / sb_size;
sb_height = (avctx->height + sb_size - 1) / sb_size;
tile_size = sb_width / ctx->tile_cols;
rounding = sb_width % ctx->tile_cols;
for (i = 0; i < ctx->tile_cols; i++) {
enccfg->tile_widths[i] = tile_size +
(i < rounding / 2 ||
i > ctx->tile_cols - 1 - (rounding + 1) / 2);
}
tile_size = sb_height / ctx->tile_rows;
rounding = sb_height % ctx->tile_rows;
for (i = 0; i < ctx->tile_rows; i++) {
enccfg->tile_heights[i] = tile_size +
(i < rounding / 2 ||
i > ctx->tile_rows - 1 - (rounding + 1) / 2);
}
return 0;
}
static av_cold int aom_init(AVCodecContext *avctx,
const struct aom_codec_iface *iface)
{
AOMContext *ctx = avctx->priv_data;
struct aom_codec_enc_cfg enccfg = { 0 };
#ifdef AOM_FRAME_IS_INTRAONLY
aom_codec_flags_t flags =
(avctx->flags & AV_CODEC_FLAG_PSNR) ? AOM_CODEC_USE_PSNR : 0;
#else
aom_codec_flags_t flags = 0;
#endif
AVCPBProperties *cpb_props;
int res;
aom_img_fmt_t img_fmt;
aom_codec_caps_t codec_caps = aom_codec_get_caps(iface);
av_log(avctx, AV_LOG_INFO, "%s\n", aom_codec_version_str());
av_log(avctx, AV_LOG_VERBOSE, "%s\n", aom_codec_build_config());
if ((res = aom_codec_enc_config_default(iface, &enccfg, 0)) != AOM_CODEC_OK) {
av_log(avctx, AV_LOG_ERROR, "Failed to get config: %s\n",
aom_codec_err_to_string(res));
return AVERROR(EINVAL);
}
if (set_pix_fmt(avctx, codec_caps, &enccfg, &flags, &img_fmt))
return AVERROR(EINVAL);
if(!avctx->bit_rate)
if(avctx->rc_max_rate || avctx->rc_buffer_size || avctx->rc_initial_buffer_occupancy) {
av_log( avctx, AV_LOG_ERROR, "Rate control parameters set without a bitrate\n");
return AVERROR(EINVAL);
}
dump_enc_cfg(avctx, &enccfg);
enccfg.g_w = avctx->width;
enccfg.g_h = avctx->height;
enccfg.g_timebase.num = avctx->time_base.num;
enccfg.g_timebase.den = avctx->time_base.den;
enccfg.g_threads =
FFMIN(avctx->thread_count ? avctx->thread_count : av_cpu_count(), 64);
if (ctx->lag_in_frames >= 0)
enccfg.g_lag_in_frames = ctx->lag_in_frames;
if (avctx->flags & AV_CODEC_FLAG_PASS1)
enccfg.g_pass = AOM_RC_FIRST_PASS;
else if (avctx->flags & AV_CODEC_FLAG_PASS2)
enccfg.g_pass = AOM_RC_LAST_PASS;
else
enccfg.g_pass = AOM_RC_ONE_PASS;
if (avctx->rc_min_rate == avctx->rc_max_rate &&
avctx->rc_min_rate == avctx->bit_rate && avctx->bit_rate) {
enccfg.rc_end_usage = AOM_CBR;
} else if (ctx->crf >= 0) {
enccfg.rc_end_usage = AOM_CQ;
if (!avctx->bit_rate)
enccfg.rc_end_usage = AOM_Q;
}
if (avctx->bit_rate) {
enccfg.rc_target_bitrate = av_rescale_rnd(avctx->bit_rate, 1, 1000,
AV_ROUND_NEAR_INF);
} else if (enccfg.rc_end_usage != AOM_Q) {
enccfg.rc_end_usage = AOM_Q;
ctx->crf = 32;
av_log(avctx, AV_LOG_WARNING,
"Neither bitrate nor constrained quality specified, using default CRF of %d\n",
ctx->crf);
}
if (avctx->qmin >= 0)
enccfg.rc_min_quantizer = avctx->qmin;
if (avctx->qmax >= 0)
enccfg.rc_max_quantizer = avctx->qmax;
if (enccfg.rc_end_usage == AOM_CQ || enccfg.rc_end_usage == AOM_Q) {
if (ctx->crf < enccfg.rc_min_quantizer || ctx->crf > enccfg.rc_max_quantizer) {
av_log(avctx, AV_LOG_ERROR,
"CQ level %d must be between minimum and maximum quantizer value (%d-%d)\n",
ctx->crf, enccfg.rc_min_quantizer, enccfg.rc_max_quantizer);
return AVERROR(EINVAL);
}
}
enccfg.rc_dropframe_thresh = ctx->drop_threshold;
// 0-100 (0 => CBR, 100 => VBR)
enccfg.rc_2pass_vbr_bias_pct = round(avctx->qcompress * 100);
if (ctx->minsection_pct >= 0)
enccfg.rc_2pass_vbr_minsection_pct = ctx->minsection_pct;
else if (avctx->bit_rate)
enccfg.rc_2pass_vbr_minsection_pct =
avctx->rc_min_rate * 100LL / avctx->bit_rate;
if (ctx->maxsection_pct >= 0)
enccfg.rc_2pass_vbr_maxsection_pct = ctx->maxsection_pct;
else if (avctx->rc_max_rate)
enccfg.rc_2pass_vbr_maxsection_pct =
avctx->rc_max_rate * 100LL / avctx->bit_rate;
if (avctx->rc_buffer_size)
enccfg.rc_buf_sz =
avctx->rc_buffer_size * 1000LL / avctx->bit_rate;
if (avctx->rc_initial_buffer_occupancy)
enccfg.rc_buf_initial_sz =
avctx->rc_initial_buffer_occupancy * 1000LL / avctx->bit_rate;
enccfg.rc_buf_optimal_sz = enccfg.rc_buf_sz * 5 / 6;
if (ctx->rc_undershoot_pct >= 0)
enccfg.rc_undershoot_pct = ctx->rc_undershoot_pct;
if (ctx->rc_overshoot_pct >= 0)
enccfg.rc_overshoot_pct = ctx->rc_overshoot_pct;
// _enc_init() will balk if kf_min_dist differs from max w/AOM_KF_AUTO
if (avctx->keyint_min >= 0 && avctx->keyint_min == avctx->gop_size)
enccfg.kf_min_dist = avctx->keyint_min;
if (avctx->gop_size >= 0)
enccfg.kf_max_dist = avctx->gop_size;
if (enccfg.g_pass == AOM_RC_FIRST_PASS)
enccfg.g_lag_in_frames = 0;
else if (enccfg.g_pass == AOM_RC_LAST_PASS) {
int decode_size, ret;
if (!avctx->stats_in) {
av_log(avctx, AV_LOG_ERROR, "No stats file for second pass\n");
return AVERROR_INVALIDDATA;
}
ctx->twopass_stats.sz = strlen(avctx->stats_in) * 3 / 4;
ret = av_reallocp(&ctx->twopass_stats.buf, ctx->twopass_stats.sz);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR,
"Stat buffer alloc (%"SIZE_SPECIFIER" bytes) failed\n",
ctx->twopass_stats.sz);
ctx->twopass_stats.sz = 0;
return ret;
}
decode_size = av_base64_decode(ctx->twopass_stats.buf, avctx->stats_in,
ctx->twopass_stats.sz);
if (decode_size < 0) {
av_log(avctx, AV_LOG_ERROR, "Stat buffer decode failed\n");
return AVERROR_INVALIDDATA;
}
ctx->twopass_stats.sz = decode_size;
enccfg.rc_twopass_stats_in = ctx->twopass_stats;
}
/* 0-3: For non-zero values the encoder increasingly optimizes for reduced
* complexity playback on low powered devices at the expense of encode
* quality. */
if (avctx->profile != FF_PROFILE_UNKNOWN)
enccfg.g_profile = avctx->profile;
enccfg.g_error_resilient = ctx->error_resilient;
res = choose_tiling(avctx, &enccfg);
if (res < 0)
return res;
dump_enc_cfg(avctx, &enccfg);
/* Construct Encoder Context */
res = aom_codec_enc_init(&ctx->encoder, iface, &enccfg, flags);
if (res != AOM_CODEC_OK) {
log_encoder_error(avctx, "Failed to initialize encoder");
return AVERROR(EINVAL);
}
// codec control failures are currently treated only as warnings
av_log(avctx, AV_LOG_DEBUG, "aom_codec_control\n");
codecctl_int(avctx, AOME_SET_CPUUSED, ctx->cpu_used);
if (ctx->auto_alt_ref >= 0)
codecctl_int(avctx, AOME_SET_ENABLEAUTOALTREF, ctx->auto_alt_ref);
if (ctx->arnr_max_frames >= 0)
codecctl_int(avctx, AOME_SET_ARNR_MAXFRAMES, ctx->arnr_max_frames);
if (ctx->arnr_strength >= 0)
codecctl_int(avctx, AOME_SET_ARNR_STRENGTH, ctx->arnr_strength);
if (ctx->enable_cdef >= 0)
codecctl_int(avctx, AV1E_SET_ENABLE_CDEF, ctx->enable_cdef);
codecctl_int(avctx, AOME_SET_STATIC_THRESHOLD, ctx->static_thresh);
if (ctx->crf >= 0)
codecctl_int(avctx, AOME_SET_CQ_LEVEL, ctx->crf);
codecctl_int(avctx, AV1E_SET_COLOR_PRIMARIES, avctx->color_primaries);
codecctl_int(avctx, AV1E_SET_MATRIX_COEFFICIENTS, avctx->colorspace);
codecctl_int(avctx, AV1E_SET_TRANSFER_CHARACTERISTICS, avctx->color_trc);
if (ctx->aq_mode >= 0)
codecctl_int(avctx, AV1E_SET_AQ_MODE, ctx->aq_mode);
if (ctx->frame_parallel >= 0)
codecctl_int(avctx, AV1E_SET_FRAME_PARALLEL_DECODING, ctx->frame_parallel);
set_color_range(avctx);
codecctl_int(avctx, AV1E_SET_SUPERBLOCK_SIZE, ctx->superblock_size);
if (ctx->uniform_tiles) {
codecctl_int(avctx, AV1E_SET_TILE_COLUMNS, ctx->tile_cols_log2);
codecctl_int(avctx, AV1E_SET_TILE_ROWS, ctx->tile_rows_log2);
}
#ifdef AOM_CTRL_AV1E_SET_DENOISE_NOISE_LEVEL
if (ctx->denoise_noise_level >= 0)
codecctl_int(avctx, AV1E_SET_DENOISE_NOISE_LEVEL, ctx->denoise_noise_level);
#endif
#ifdef AOM_CTRL_AV1E_SET_DENOISE_BLOCK_SIZE
if (ctx->denoise_block_size >= 0)
codecctl_int(avctx, AV1E_SET_DENOISE_BLOCK_SIZE, ctx->denoise_block_size);
#endif
#ifdef AOM_CTRL_AV1E_SET_ENABLE_GLOBAL_MOTION
if (ctx->enable_global_motion >= 0)
codecctl_int(avctx, AV1E_SET_ENABLE_GLOBAL_MOTION, ctx->enable_global_motion);
#endif
#ifdef AOM_CTRL_AV1E_SET_MAX_REFERENCE_FRAMES
if (avctx->refs >= 3) {
codecctl_int(avctx, AV1E_SET_MAX_REFERENCE_FRAMES, avctx->refs);
}
#endif
#ifdef AOM_CTRL_AV1E_SET_ROW_MT
if (ctx->row_mt >= 0)
codecctl_int(avctx, AV1E_SET_ROW_MT, ctx->row_mt);
#endif
#ifdef AOM_CTRL_AV1E_SET_ENABLE_INTRABC
if (ctx->enable_intrabc >= 0)
codecctl_int(avctx, AV1E_SET_ENABLE_INTRABC, ctx->enable_intrabc);
#endif
// provide dummy value to initialize wrapper, values will be updated each _encode()
aom_img_wrap(&ctx->rawimg, img_fmt, avctx->width, avctx->height, 1,
(unsigned char*)1);
if (codec_caps & AOM_CODEC_CAP_HIGHBITDEPTH)
ctx->rawimg.bit_depth = enccfg.g_bit_depth;
cpb_props = ff_add_cpb_side_data(avctx);
if (!cpb_props)
return AVERROR(ENOMEM);
if (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) {
const AVBitStreamFilter *filter = av_bsf_get_by_name("extract_extradata");
int ret;
if (!filter) {
av_log(avctx, AV_LOG_ERROR, "extract_extradata bitstream filter "
"not found. This is a bug, please report it.\n");
return AVERROR_BUG;
}
ret = av_bsf_alloc(filter, &ctx->bsf);
if (ret < 0)
return ret;
ret = avcodec_parameters_from_context(ctx->bsf->par_in, avctx);
if (ret < 0)
return ret;
ret = av_bsf_init(ctx->bsf);
if (ret < 0)
return ret;
}
if (enccfg.rc_end_usage == AOM_CBR ||
enccfg.g_pass != AOM_RC_ONE_PASS) {
cpb_props->max_bitrate = avctx->rc_max_rate;
cpb_props->min_bitrate = avctx->rc_min_rate;
cpb_props->avg_bitrate = avctx->bit_rate;
}
cpb_props->buffer_size = avctx->rc_buffer_size;
return 0;
}
static inline void cx_pktcpy(AOMContext *ctx,
struct FrameListData *dst,
const struct aom_codec_cx_pkt *src)
{
dst->pts = src->data.frame.pts;
dst->duration = src->data.frame.duration;
dst->flags = src->data.frame.flags;
dst->sz = src->data.frame.sz;
dst->buf = src->data.frame.buf;
#ifdef AOM_FRAME_IS_INTRAONLY
dst->have_sse = 0;
dst->frame_number = ++ctx->frame_number;
dst->have_sse = ctx->have_sse;
if (ctx->have_sse) {
/* associate last-seen SSE to the frame. */
/* Transfers ownership from ctx to dst. */
memcpy(dst->sse, ctx->sse, sizeof(dst->sse));
ctx->have_sse = 0;
}
#endif
}
/**
* Store coded frame information in format suitable for return from encode2().
*
* Write information from @a cx_frame to @a pkt
* @return packet data size on success
* @return a negative AVERROR on error
*/
static int storeframe(AVCodecContext *avctx, struct FrameListData *cx_frame,
AVPacket *pkt)
{
AOMContext *ctx = avctx->priv_data;
int av_unused pict_type;
int ret = ff_alloc_packet2(avctx, pkt, cx_frame->sz, 0);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR,
"Error getting output packet of size %"SIZE_SPECIFIER".\n", cx_frame->sz);
return ret;
}
memcpy(pkt->data, cx_frame->buf, pkt->size);
pkt->pts = pkt->dts = cx_frame->pts;
if (!!(cx_frame->flags & AOM_FRAME_IS_KEY)) {
pkt->flags |= AV_PKT_FLAG_KEY;
#ifdef AOM_FRAME_IS_INTRAONLY
pict_type = AV_PICTURE_TYPE_I;
} else if (cx_frame->flags & AOM_FRAME_IS_INTRAONLY) {
pict_type = AV_PICTURE_TYPE_I;
} else {
pict_type = AV_PICTURE_TYPE_P;
}
ff_side_data_set_encoder_stats(pkt, 0, cx_frame->sse + 1,
cx_frame->have_sse ? 3 : 0, pict_type);
if (cx_frame->have_sse) {
int i;
for (i = 0; i < 3; ++i) {
avctx->error[i] += cx_frame->sse[i + 1];
}
cx_frame->have_sse = 0;
#endif
}
if (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) {
ret = av_bsf_send_packet(ctx->bsf, pkt);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "extract_extradata filter "
"failed to send input packet\n");
return ret;
}
ret = av_bsf_receive_packet(ctx->bsf, pkt);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "extract_extradata filter "
"failed to receive output packet\n");
return ret;
}
}
return pkt->size;
}
/**
* Queue multiple output frames from the encoder, returning the front-most.
* In cases where aom_codec_get_cx_data() returns more than 1 frame append
* the frame queue. Return the head frame if available.
* @return Stored frame size
* @return AVERROR(EINVAL) on output size error
* @return AVERROR(ENOMEM) on coded frame queue data allocation error
*/
static int queue_frames(AVCodecContext *avctx, AVPacket *pkt_out)
{
AOMContext *ctx = avctx->priv_data;
const struct aom_codec_cx_pkt *pkt;
const void *iter = NULL;
int size = 0;
if (ctx->coded_frame_list) {
struct FrameListData *cx_frame = ctx->coded_frame_list;
/* return the leading frame if we've already begun queueing */
size = storeframe(avctx, cx_frame, pkt_out);
if (size < 0)
return size;
ctx->coded_frame_list = cx_frame->next;
free_coded_frame(cx_frame);
}
/* consume all available output from the encoder before returning. buffers
* are only good through the next aom_codec call */
while ((pkt = aom_codec_get_cx_data(&ctx->encoder, &iter))) {
switch (pkt->kind) {
case AOM_CODEC_CX_FRAME_PKT:
if (!size) {
struct FrameListData cx_frame;
/* avoid storing the frame when the list is empty and we haven't yet
* provided a frame for output */
av_assert0(!ctx->coded_frame_list);
cx_pktcpy(ctx, &cx_frame, pkt);
size = storeframe(avctx, &cx_frame, pkt_out);
if (size < 0)
return size;
} else {
struct FrameListData *cx_frame =
av_malloc(sizeof(struct FrameListData));
if (!cx_frame) {
av_log(avctx, AV_LOG_ERROR,
"Frame queue element alloc failed\n");
return AVERROR(ENOMEM);
}
cx_pktcpy(ctx, cx_frame, pkt);
cx_frame->buf = av_malloc(cx_frame->sz);
if (!cx_frame->buf) {
av_log(avctx, AV_LOG_ERROR,
"Data buffer alloc (%"SIZE_SPECIFIER" bytes) failed\n",
cx_frame->sz);
av_freep(&cx_frame);
return AVERROR(ENOMEM);
}
memcpy(cx_frame->buf, pkt->data.frame.buf, pkt->data.frame.sz);
coded_frame_add(&ctx->coded_frame_list, cx_frame);
}
break;
case AOM_CODEC_STATS_PKT:
{
struct aom_fixed_buf *stats = &ctx->twopass_stats;
int err;
if ((err = av_reallocp(&stats->buf,
stats->sz +
pkt->data.twopass_stats.sz)) < 0) {
stats->sz = 0;
av_log(avctx, AV_LOG_ERROR, "Stat buffer realloc failed\n");
return err;
}
memcpy((uint8_t *)stats->buf + stats->sz,
pkt->data.twopass_stats.buf, pkt->data.twopass_stats.sz);
stats->sz += pkt->data.twopass_stats.sz;
break;
}
#ifdef AOM_FRAME_IS_INTRAONLY
case AOM_CODEC_PSNR_PKT:
{
av_assert0(!ctx->have_sse);
ctx->sse[0] = pkt->data.psnr.sse[0];
ctx->sse[1] = pkt->data.psnr.sse[1];
ctx->sse[2] = pkt->data.psnr.sse[2];
ctx->sse[3] = pkt->data.psnr.sse[3];
ctx->have_sse = 1;
break;
}
#endif
case AOM_CODEC_CUSTOM_PKT:
// ignore unsupported/unrecognized packet types
break;
}
}
return size;
}
static int aom_encode(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *frame, int *got_packet)
{
AOMContext *ctx = avctx->priv_data;
struct aom_image *rawimg = NULL;
int64_t timestamp = 0;
int res, coded_size;
aom_enc_frame_flags_t flags = 0;
if (frame) {
rawimg = &ctx->rawimg;
rawimg->planes[AOM_PLANE_Y] = frame->data[0];
rawimg->planes[AOM_PLANE_U] = frame->data[1];
rawimg->planes[AOM_PLANE_V] = frame->data[2];
rawimg->stride[AOM_PLANE_Y] = frame->linesize[0];
rawimg->stride[AOM_PLANE_U] = frame->linesize[1];
rawimg->stride[AOM_PLANE_V] = frame->linesize[2];
timestamp = frame->pts;
switch (frame->color_range) {
case AVCOL_RANGE_MPEG:
rawimg->range = AOM_CR_STUDIO_RANGE;
break;
case AVCOL_RANGE_JPEG:
rawimg->range = AOM_CR_FULL_RANGE;
break;
}
if (frame->pict_type == AV_PICTURE_TYPE_I)
flags |= AOM_EFLAG_FORCE_KF;
}
res = aom_codec_encode(&ctx->encoder, rawimg, timestamp,
avctx->ticks_per_frame, flags);
if (res != AOM_CODEC_OK) {
log_encoder_error(avctx, "Error encoding frame");
return AVERROR_INVALIDDATA;
}
coded_size = queue_frames(avctx, pkt);
if (!frame && avctx->flags & AV_CODEC_FLAG_PASS1) {
size_t b64_size = AV_BASE64_SIZE(ctx->twopass_stats.sz);
avctx->stats_out = av_malloc(b64_size);
if (!avctx->stats_out) {
av_log(avctx, AV_LOG_ERROR, "Stat buffer alloc (%"SIZE_SPECIFIER" bytes) failed\n",
b64_size);
return AVERROR(ENOMEM);
}
av_base64_encode(avctx->stats_out, b64_size, ctx->twopass_stats.buf,
ctx->twopass_stats.sz);
}
*got_packet = !!coded_size;
return 0;
}
static const enum AVPixelFormat av1_pix_fmts[] = {
AV_PIX_FMT_YUV420P,
AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV444P,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat av1_pix_fmts_highbd[] = {
AV_PIX_FMT_YUV420P,
AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUV420P10,
AV_PIX_FMT_YUV422P10,
AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV420P12,
AV_PIX_FMT_YUV422P12,
AV_PIX_FMT_YUV444P12,
AV_PIX_FMT_NONE
};
static av_cold void av1_init_static(AVCodec *codec)
{
aom_codec_caps_t codec_caps = aom_codec_get_caps(aom_codec_av1_cx());
if (codec_caps & AOM_CODEC_CAP_HIGHBITDEPTH)
codec->pix_fmts = av1_pix_fmts_highbd;
else
codec->pix_fmts = av1_pix_fmts;
}
static av_cold int av1_init(AVCodecContext *avctx)
{
return aom_init(avctx, aom_codec_av1_cx());
}
#define OFFSET(x) offsetof(AOMContext, x)
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
static const AVOption options[] = {
{ "cpu-used", "Quality/Speed ratio modifier", OFFSET(cpu_used), AV_OPT_TYPE_INT, {.i64 = 1}, 0, 8, VE},
{ "auto-alt-ref", "Enable use of alternate reference "
"frames (2-pass only)", OFFSET(auto_alt_ref), AV_OPT_TYPE_INT, {.i64 = -1}, -1, 2, VE},
{ "lag-in-frames", "Number of frames to look ahead at for "
"alternate reference frame selection", OFFSET(lag_in_frames), AV_OPT_TYPE_INT, {.i64 = -1}, -1, INT_MAX, VE},
{ "arnr-max-frames", "altref noise reduction max frame count", OFFSET(arnr_max_frames), AV_OPT_TYPE_INT, {.i64 = -1}, -1, INT_MAX, VE},
{ "arnr-strength", "altref noise reduction filter strength", OFFSET(arnr_strength), AV_OPT_TYPE_INT, {.i64 = -1}, -1, 6, VE},
{ "aq-mode", "adaptive quantization mode", OFFSET(aq_mode), AV_OPT_TYPE_INT, {.i64 = -1}, -1, 4, VE, "aq_mode"},
{ "none", "Aq not used", 0, AV_OPT_TYPE_CONST, {.i64 = 0}, 0, 0, VE, "aq_mode"},
{ "variance", "Variance based Aq", 0, AV_OPT_TYPE_CONST, {.i64 = 1}, 0, 0, VE, "aq_mode"},
{ "complexity", "Complexity based Aq", 0, AV_OPT_TYPE_CONST, {.i64 = 2}, 0, 0, VE, "aq_mode"},
{ "cyclic", "Cyclic Refresh Aq", 0, AV_OPT_TYPE_CONST, {.i64 = 3}, 0, 0, VE, "aq_mode"},
{ "error-resilience", "Error resilience configuration", OFFSET(error_resilient), AV_OPT_TYPE_FLAGS, {.i64 = 0}, INT_MIN, INT_MAX, VE, "er"},
{ "default", "Improve resiliency against losses of whole frames", 0, AV_OPT_TYPE_CONST, {.i64 = AOM_ERROR_RESILIENT_DEFAULT}, 0, 0, VE, "er"},
{ "crf", "Select the quality for constant quality mode", offsetof(AOMContext, crf), AV_OPT_TYPE_INT, {.i64 = -1}, -1, 63, VE },
{ "static-thresh", "A change threshold on blocks below which they will be skipped by the encoder", OFFSET(static_thresh), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VE },
{ "drop-threshold", "Frame drop threshold", offsetof(AOMContext, drop_threshold), AV_OPT_TYPE_INT, {.i64 = 0 }, INT_MIN, INT_MAX, VE },
{ "denoise-noise-level", "Amount of noise to be removed", OFFSET(denoise_noise_level), AV_OPT_TYPE_INT, {.i64 = -1}, -1, INT_MAX, VE},
{ "denoise-block-size", "Denoise block size ", OFFSET(denoise_block_size), AV_OPT_TYPE_INT, {.i64 = -1}, -1, INT_MAX, VE},
{ "undershoot-pct", "Datarate undershoot (min) target (%)", OFFSET(rc_undershoot_pct), AV_OPT_TYPE_INT, {.i64 = -1}, -1, 100, VE},
{ "overshoot-pct", "Datarate overshoot (max) target (%)", OFFSET(rc_overshoot_pct), AV_OPT_TYPE_INT, {.i64 = -1}, -1, 1000, VE},
{ "minsection-pct", "GOP min bitrate (% of target)", OFFSET(minsection_pct), AV_OPT_TYPE_INT, {.i64 = -1}, -1, 100, VE},
{ "maxsection-pct", "GOP max bitrate (% of target)", OFFSET(maxsection_pct), AV_OPT_TYPE_INT, {.i64 = -1}, -1, 5000, VE},
{ "frame-parallel", "Enable frame parallel decodability features", OFFSET(frame_parallel), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, VE},
{ "tiles", "Tile columns x rows", OFFSET(tile_cols), AV_OPT_TYPE_IMAGE_SIZE, { .str = NULL }, 0, 0, VE },
{ "tile-columns", "Log2 of number of tile columns to use", OFFSET(tile_cols_log2), AV_OPT_TYPE_INT, {.i64 = -1}, -1, 6, VE},
{ "tile-rows", "Log2 of number of tile rows to use", OFFSET(tile_rows_log2), AV_OPT_TYPE_INT, {.i64 = -1}, -1, 6, VE},
{ "row-mt", "Enable row based multi-threading", OFFSET(row_mt), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, VE},
{ "enable-cdef", "Enable CDEF filtering", OFFSET(enable_cdef), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, VE},
{ "enable-global-motion", "Enable global motion", OFFSET(enable_global_motion), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, VE},
{ "enable-intrabc", "Enable intra block copy prediction mode", OFFSET(enable_intrabc), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, VE},
{ NULL },
};
static const AVCodecDefault defaults[] = {
{ "b", "0" },
{ "qmin", "-1" },
{ "qmax", "-1" },
{ "g", "-1" },
{ "keyint_min", "-1" },
{ NULL },
};
static const AVClass class_aom = {
.class_name = "libaom-av1 encoder",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
AVCodec ff_libaom_av1_encoder = {
.name = "libaom-av1",
.long_name = NULL_IF_CONFIG_SMALL("libaom AV1"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_AV1,
.priv_data_size = sizeof(AOMContext),
.init = av1_init,
.encode2 = aom_encode,
.close = aom_free,
.capabilities = AV_CODEC_CAP_DELAY | AV_CODEC_CAP_AUTO_THREADS | AV_CODEC_CAP_EXPERIMENTAL,
.profiles = NULL_IF_CONFIG_SMALL(ff_av1_profiles),
.priv_class = &class_aom,
.defaults = defaults,
.init_static_data = av1_init_static,
.wrapper_name = "libaom",
};