1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libavcodec/vp9.c
Andreas Rheinhardt a1a8815220 libavcodec: Reduce the size of some arrays
This commit uses smaller types for some static const arrays to reduce
their size in case the entries can be represented in the smaller type.
The biggest savings came from inv_map_table in vp9.c.

Reviewed-by: Michael Niedermayer <michael@niedermayer.cc>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
Signed-off-by: James Almer <jamrial@gmail.com>
2019-06-20 14:47:46 -03:00

1823 lines
71 KiB
C

/*
* VP9 compatible video decoder
*
* Copyright (C) 2013 Ronald S. Bultje <rsbultje gmail com>
* Copyright (C) 2013 Clément Bœsch <u pkh me>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "avcodec.h"
#include "get_bits.h"
#include "hwaccel.h"
#include "internal.h"
#include "profiles.h"
#include "thread.h"
#include "videodsp.h"
#include "vp56.h"
#include "vp9.h"
#include "vp9data.h"
#include "vp9dec.h"
#include "libavutil/avassert.h"
#include "libavutil/pixdesc.h"
#define VP9_SYNCCODE 0x498342
#if HAVE_THREADS
static void vp9_free_entries(AVCodecContext *avctx) {
VP9Context *s = avctx->priv_data;
if (avctx->active_thread_type & FF_THREAD_SLICE) {
pthread_mutex_destroy(&s->progress_mutex);
pthread_cond_destroy(&s->progress_cond);
av_freep(&s->entries);
}
}
static int vp9_alloc_entries(AVCodecContext *avctx, int n) {
VP9Context *s = avctx->priv_data;
int i;
if (avctx->active_thread_type & FF_THREAD_SLICE) {
if (s->entries)
av_freep(&s->entries);
s->entries = av_malloc_array(n, sizeof(atomic_int));
if (!s->entries) {
av_freep(&s->entries);
return AVERROR(ENOMEM);
}
for (i = 0; i < n; i++)
atomic_init(&s->entries[i], 0);
pthread_mutex_init(&s->progress_mutex, NULL);
pthread_cond_init(&s->progress_cond, NULL);
}
return 0;
}
static void vp9_report_tile_progress(VP9Context *s, int field, int n) {
pthread_mutex_lock(&s->progress_mutex);
atomic_fetch_add_explicit(&s->entries[field], n, memory_order_release);
pthread_cond_signal(&s->progress_cond);
pthread_mutex_unlock(&s->progress_mutex);
}
static void vp9_await_tile_progress(VP9Context *s, int field, int n) {
if (atomic_load_explicit(&s->entries[field], memory_order_acquire) >= n)
return;
pthread_mutex_lock(&s->progress_mutex);
while (atomic_load_explicit(&s->entries[field], memory_order_relaxed) != n)
pthread_cond_wait(&s->progress_cond, &s->progress_mutex);
pthread_mutex_unlock(&s->progress_mutex);
}
#else
static void vp9_free_entries(AVCodecContext *avctx) {}
static int vp9_alloc_entries(AVCodecContext *avctx, int n) { return 0; }
#endif
static void vp9_frame_unref(AVCodecContext *avctx, VP9Frame *f)
{
ff_thread_release_buffer(avctx, &f->tf);
av_buffer_unref(&f->extradata);
av_buffer_unref(&f->hwaccel_priv_buf);
f->segmentation_map = NULL;
f->hwaccel_picture_private = NULL;
}
static int vp9_frame_alloc(AVCodecContext *avctx, VP9Frame *f)
{
VP9Context *s = avctx->priv_data;
int ret, sz;
ret = ff_thread_get_buffer(avctx, &f->tf, AV_GET_BUFFER_FLAG_REF);
if (ret < 0)
return ret;
sz = 64 * s->sb_cols * s->sb_rows;
f->extradata = av_buffer_allocz(sz * (1 + sizeof(VP9mvrefPair)));
if (!f->extradata) {
goto fail;
}
f->segmentation_map = f->extradata->data;
f->mv = (VP9mvrefPair *) (f->extradata->data + sz);
if (avctx->hwaccel) {
const AVHWAccel *hwaccel = avctx->hwaccel;
av_assert0(!f->hwaccel_picture_private);
if (hwaccel->frame_priv_data_size) {
f->hwaccel_priv_buf = av_buffer_allocz(hwaccel->frame_priv_data_size);
if (!f->hwaccel_priv_buf)
goto fail;
f->hwaccel_picture_private = f->hwaccel_priv_buf->data;
}
}
return 0;
fail:
vp9_frame_unref(avctx, f);
return AVERROR(ENOMEM);
}
static int vp9_frame_ref(AVCodecContext *avctx, VP9Frame *dst, VP9Frame *src)
{
int ret;
ret = ff_thread_ref_frame(&dst->tf, &src->tf);
if (ret < 0)
return ret;
dst->extradata = av_buffer_ref(src->extradata);
if (!dst->extradata)
goto fail;
dst->segmentation_map = src->segmentation_map;
dst->mv = src->mv;
dst->uses_2pass = src->uses_2pass;
if (src->hwaccel_picture_private) {
dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
if (!dst->hwaccel_priv_buf)
goto fail;
dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
}
return 0;
fail:
vp9_frame_unref(avctx, dst);
return AVERROR(ENOMEM);
}
static int update_size(AVCodecContext *avctx, int w, int h)
{
#define HWACCEL_MAX (CONFIG_VP9_DXVA2_HWACCEL + \
CONFIG_VP9_D3D11VA_HWACCEL * 2 + \
CONFIG_VP9_NVDEC_HWACCEL + \
CONFIG_VP9_VAAPI_HWACCEL)
enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmtp = pix_fmts;
VP9Context *s = avctx->priv_data;
uint8_t *p;
int bytesperpixel = s->bytesperpixel, ret, cols, rows;
int lflvl_len, i;
av_assert0(w > 0 && h > 0);
if (!(s->pix_fmt == s->gf_fmt && w == s->w && h == s->h)) {
if ((ret = ff_set_dimensions(avctx, w, h)) < 0)
return ret;
switch (s->pix_fmt) {
case AV_PIX_FMT_YUV420P:
case AV_PIX_FMT_YUV420P10:
#if CONFIG_VP9_DXVA2_HWACCEL
*fmtp++ = AV_PIX_FMT_DXVA2_VLD;
#endif
#if CONFIG_VP9_D3D11VA_HWACCEL
*fmtp++ = AV_PIX_FMT_D3D11VA_VLD;
*fmtp++ = AV_PIX_FMT_D3D11;
#endif
#if CONFIG_VP9_NVDEC_HWACCEL
*fmtp++ = AV_PIX_FMT_CUDA;
#endif
#if CONFIG_VP9_VAAPI_HWACCEL
*fmtp++ = AV_PIX_FMT_VAAPI;
#endif
break;
case AV_PIX_FMT_YUV420P12:
#if CONFIG_VP9_NVDEC_HWACCEL
*fmtp++ = AV_PIX_FMT_CUDA;
#endif
#if CONFIG_VP9_VAAPI_HWACCEL
*fmtp++ = AV_PIX_FMT_VAAPI;
#endif
break;
}
*fmtp++ = s->pix_fmt;
*fmtp = AV_PIX_FMT_NONE;
ret = ff_thread_get_format(avctx, pix_fmts);
if (ret < 0)
return ret;
avctx->pix_fmt = ret;
s->gf_fmt = s->pix_fmt;
s->w = w;
s->h = h;
}
cols = (w + 7) >> 3;
rows = (h + 7) >> 3;
if (s->intra_pred_data[0] && cols == s->cols && rows == s->rows && s->pix_fmt == s->last_fmt)
return 0;
s->last_fmt = s->pix_fmt;
s->sb_cols = (w + 63) >> 6;
s->sb_rows = (h + 63) >> 6;
s->cols = (w + 7) >> 3;
s->rows = (h + 7) >> 3;
lflvl_len = avctx->active_thread_type == FF_THREAD_SLICE ? s->sb_rows : 1;
#define assign(var, type, n) var = (type) p; p += s->sb_cols * (n) * sizeof(*var)
av_freep(&s->intra_pred_data[0]);
// FIXME we slightly over-allocate here for subsampled chroma, but a little
// bit of padding shouldn't affect performance...
p = av_malloc(s->sb_cols * (128 + 192 * bytesperpixel +
lflvl_len * sizeof(*s->lflvl) + 16 * sizeof(*s->above_mv_ctx)));
if (!p)
return AVERROR(ENOMEM);
assign(s->intra_pred_data[0], uint8_t *, 64 * bytesperpixel);
assign(s->intra_pred_data[1], uint8_t *, 64 * bytesperpixel);
assign(s->intra_pred_data[2], uint8_t *, 64 * bytesperpixel);
assign(s->above_y_nnz_ctx, uint8_t *, 16);
assign(s->above_mode_ctx, uint8_t *, 16);
assign(s->above_mv_ctx, VP56mv(*)[2], 16);
assign(s->above_uv_nnz_ctx[0], uint8_t *, 16);
assign(s->above_uv_nnz_ctx[1], uint8_t *, 16);
assign(s->above_partition_ctx, uint8_t *, 8);
assign(s->above_skip_ctx, uint8_t *, 8);
assign(s->above_txfm_ctx, uint8_t *, 8);
assign(s->above_segpred_ctx, uint8_t *, 8);
assign(s->above_intra_ctx, uint8_t *, 8);
assign(s->above_comp_ctx, uint8_t *, 8);
assign(s->above_ref_ctx, uint8_t *, 8);
assign(s->above_filter_ctx, uint8_t *, 8);
assign(s->lflvl, VP9Filter *, lflvl_len);
#undef assign
if (s->td) {
for (i = 0; i < s->active_tile_cols; i++) {
av_freep(&s->td[i].b_base);
av_freep(&s->td[i].block_base);
}
}
if (s->s.h.bpp != s->last_bpp) {
ff_vp9dsp_init(&s->dsp, s->s.h.bpp, avctx->flags & AV_CODEC_FLAG_BITEXACT);
ff_videodsp_init(&s->vdsp, s->s.h.bpp);
s->last_bpp = s->s.h.bpp;
}
return 0;
}
static int update_block_buffers(AVCodecContext *avctx)
{
int i;
VP9Context *s = avctx->priv_data;
int chroma_blocks, chroma_eobs, bytesperpixel = s->bytesperpixel;
VP9TileData *td = &s->td[0];
if (td->b_base && td->block_base && s->block_alloc_using_2pass == s->s.frames[CUR_FRAME].uses_2pass)
return 0;
av_free(td->b_base);
av_free(td->block_base);
chroma_blocks = 64 * 64 >> (s->ss_h + s->ss_v);
chroma_eobs = 16 * 16 >> (s->ss_h + s->ss_v);
if (s->s.frames[CUR_FRAME].uses_2pass) {
int sbs = s->sb_cols * s->sb_rows;
td->b_base = av_malloc_array(s->cols * s->rows, sizeof(VP9Block));
td->block_base = av_mallocz(((64 * 64 + 2 * chroma_blocks) * bytesperpixel * sizeof(int16_t) +
16 * 16 + 2 * chroma_eobs) * sbs);
if (!td->b_base || !td->block_base)
return AVERROR(ENOMEM);
td->uvblock_base[0] = td->block_base + sbs * 64 * 64 * bytesperpixel;
td->uvblock_base[1] = td->uvblock_base[0] + sbs * chroma_blocks * bytesperpixel;
td->eob_base = (uint8_t *) (td->uvblock_base[1] + sbs * chroma_blocks * bytesperpixel);
td->uveob_base[0] = td->eob_base + 16 * 16 * sbs;
td->uveob_base[1] = td->uveob_base[0] + chroma_eobs * sbs;
} else {
for (i = 1; i < s->active_tile_cols; i++) {
if (s->td[i].b_base && s->td[i].block_base) {
av_free(s->td[i].b_base);
av_free(s->td[i].block_base);
}
}
for (i = 0; i < s->active_tile_cols; i++) {
s->td[i].b_base = av_malloc(sizeof(VP9Block));
s->td[i].block_base = av_mallocz((64 * 64 + 2 * chroma_blocks) * bytesperpixel * sizeof(int16_t) +
16 * 16 + 2 * chroma_eobs);
if (!s->td[i].b_base || !s->td[i].block_base)
return AVERROR(ENOMEM);
s->td[i].uvblock_base[0] = s->td[i].block_base + 64 * 64 * bytesperpixel;
s->td[i].uvblock_base[1] = s->td[i].uvblock_base[0] + chroma_blocks * bytesperpixel;
s->td[i].eob_base = (uint8_t *) (s->td[i].uvblock_base[1] + chroma_blocks * bytesperpixel);
s->td[i].uveob_base[0] = s->td[i].eob_base + 16 * 16;
s->td[i].uveob_base[1] = s->td[i].uveob_base[0] + chroma_eobs;
}
}
s->block_alloc_using_2pass = s->s.frames[CUR_FRAME].uses_2pass;
return 0;
}
// The sign bit is at the end, not the start, of a bit sequence
static av_always_inline int get_sbits_inv(GetBitContext *gb, int n)
{
int v = get_bits(gb, n);
return get_bits1(gb) ? -v : v;
}
static av_always_inline int inv_recenter_nonneg(int v, int m)
{
if (v > 2 * m)
return v;
if (v & 1)
return m - ((v + 1) >> 1);
return m + (v >> 1);
}
// differential forward probability updates
static int update_prob(VP56RangeCoder *c, int p)
{
static const uint8_t inv_map_table[255] = {
7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176,
189, 202, 215, 228, 241, 254, 1, 2, 3, 4, 5, 6, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 129, 130,
131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143, 144, 145,
146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175,
177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 190, 191,
192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206,
207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 220, 221,
222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236,
237, 238, 239, 240, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251,
252, 253, 253,
};
int d;
/* This code is trying to do a differential probability update. For a
* current probability A in the range [1, 255], the difference to a new
* probability of any value can be expressed differentially as 1-A, 255-A
* where some part of this (absolute range) exists both in positive as
* well as the negative part, whereas another part only exists in one
* half. We're trying to code this shared part differentially, i.e.
* times two where the value of the lowest bit specifies the sign, and
* the single part is then coded on top of this. This absolute difference
* then again has a value of [0, 254], but a bigger value in this range
* indicates that we're further away from the original value A, so we
* can code this as a VLC code, since higher values are increasingly
* unlikely. The first 20 values in inv_map_table[] allow 'cheap, rough'
* updates vs. the 'fine, exact' updates further down the range, which
* adds one extra dimension to this differential update model. */
if (!vp8_rac_get(c)) {
d = vp8_rac_get_uint(c, 4) + 0;
} else if (!vp8_rac_get(c)) {
d = vp8_rac_get_uint(c, 4) + 16;
} else if (!vp8_rac_get(c)) {
d = vp8_rac_get_uint(c, 5) + 32;
} else {
d = vp8_rac_get_uint(c, 7);
if (d >= 65)
d = (d << 1) - 65 + vp8_rac_get(c);
d += 64;
av_assert2(d < FF_ARRAY_ELEMS(inv_map_table));
}
return p <= 128 ? 1 + inv_recenter_nonneg(inv_map_table[d], p - 1) :
255 - inv_recenter_nonneg(inv_map_table[d], 255 - p);
}
static int read_colorspace_details(AVCodecContext *avctx)
{
static const enum AVColorSpace colorspaces[8] = {
AVCOL_SPC_UNSPECIFIED, AVCOL_SPC_BT470BG, AVCOL_SPC_BT709, AVCOL_SPC_SMPTE170M,
AVCOL_SPC_SMPTE240M, AVCOL_SPC_BT2020_NCL, AVCOL_SPC_RESERVED, AVCOL_SPC_RGB,
};
VP9Context *s = avctx->priv_data;
int bits = avctx->profile <= 1 ? 0 : 1 + get_bits1(&s->gb); // 0:8, 1:10, 2:12
s->bpp_index = bits;
s->s.h.bpp = 8 + bits * 2;
s->bytesperpixel = (7 + s->s.h.bpp) >> 3;
avctx->colorspace = colorspaces[get_bits(&s->gb, 3)];
if (avctx->colorspace == AVCOL_SPC_RGB) { // RGB = profile 1
static const enum AVPixelFormat pix_fmt_rgb[3] = {
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12
};
s->ss_h = s->ss_v = 0;
avctx->color_range = AVCOL_RANGE_JPEG;
s->pix_fmt = pix_fmt_rgb[bits];
if (avctx->profile & 1) {
if (get_bits1(&s->gb)) {
av_log(avctx, AV_LOG_ERROR, "Reserved bit set in RGB\n");
return AVERROR_INVALIDDATA;
}
} else {
av_log(avctx, AV_LOG_ERROR, "RGB not supported in profile %d\n",
avctx->profile);
return AVERROR_INVALIDDATA;
}
} else {
static const enum AVPixelFormat pix_fmt_for_ss[3][2 /* v */][2 /* h */] = {
{ { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P },
{ AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV420P } },
{ { AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV422P10 },
{ AV_PIX_FMT_YUV440P10, AV_PIX_FMT_YUV420P10 } },
{ { AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12 },
{ AV_PIX_FMT_YUV440P12, AV_PIX_FMT_YUV420P12 } }
};
avctx->color_range = get_bits1(&s->gb) ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
if (avctx->profile & 1) {
s->ss_h = get_bits1(&s->gb);
s->ss_v = get_bits1(&s->gb);
s->pix_fmt = pix_fmt_for_ss[bits][s->ss_v][s->ss_h];
if (s->pix_fmt == AV_PIX_FMT_YUV420P) {
av_log(avctx, AV_LOG_ERROR, "YUV 4:2:0 not supported in profile %d\n",
avctx->profile);
return AVERROR_INVALIDDATA;
} else if (get_bits1(&s->gb)) {
av_log(avctx, AV_LOG_ERROR, "Profile %d color details reserved bit set\n",
avctx->profile);
return AVERROR_INVALIDDATA;
}
} else {
s->ss_h = s->ss_v = 1;
s->pix_fmt = pix_fmt_for_ss[bits][1][1];
}
}
return 0;
}
static int decode_frame_header(AVCodecContext *avctx,
const uint8_t *data, int size, int *ref)
{
VP9Context *s = avctx->priv_data;
int c, i, j, k, l, m, n, w, h, max, size2, ret, sharp;
int last_invisible;
const uint8_t *data2;
/* general header */
if ((ret = init_get_bits8(&s->gb, data, size)) < 0) {
av_log(avctx, AV_LOG_ERROR, "Failed to initialize bitstream reader\n");
return ret;
}
if (get_bits(&s->gb, 2) != 0x2) { // frame marker
av_log(avctx, AV_LOG_ERROR, "Invalid frame marker\n");
return AVERROR_INVALIDDATA;
}
avctx->profile = get_bits1(&s->gb);
avctx->profile |= get_bits1(&s->gb) << 1;
if (avctx->profile == 3) avctx->profile += get_bits1(&s->gb);
if (avctx->profile > 3) {
av_log(avctx, AV_LOG_ERROR, "Profile %d is not yet supported\n", avctx->profile);
return AVERROR_INVALIDDATA;
}
s->s.h.profile = avctx->profile;
if (get_bits1(&s->gb)) {
*ref = get_bits(&s->gb, 3);
return 0;
}
s->last_keyframe = s->s.h.keyframe;
s->s.h.keyframe = !get_bits1(&s->gb);
last_invisible = s->s.h.invisible;
s->s.h.invisible = !get_bits1(&s->gb);
s->s.h.errorres = get_bits1(&s->gb);
s->s.h.use_last_frame_mvs = !s->s.h.errorres && !last_invisible;
if (s->s.h.keyframe) {
if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode
av_log(avctx, AV_LOG_ERROR, "Invalid sync code\n");
return AVERROR_INVALIDDATA;
}
if ((ret = read_colorspace_details(avctx)) < 0)
return ret;
// for profile 1, here follows the subsampling bits
s->s.h.refreshrefmask = 0xff;
w = get_bits(&s->gb, 16) + 1;
h = get_bits(&s->gb, 16) + 1;
if (get_bits1(&s->gb)) // display size
skip_bits(&s->gb, 32);
} else {
s->s.h.intraonly = s->s.h.invisible ? get_bits1(&s->gb) : 0;
s->s.h.resetctx = s->s.h.errorres ? 0 : get_bits(&s->gb, 2);
if (s->s.h.intraonly) {
if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode
av_log(avctx, AV_LOG_ERROR, "Invalid sync code\n");
return AVERROR_INVALIDDATA;
}
if (avctx->profile >= 1) {
if ((ret = read_colorspace_details(avctx)) < 0)
return ret;
} else {
s->ss_h = s->ss_v = 1;
s->s.h.bpp = 8;
s->bpp_index = 0;
s->bytesperpixel = 1;
s->pix_fmt = AV_PIX_FMT_YUV420P;
avctx->colorspace = AVCOL_SPC_BT470BG;
avctx->color_range = AVCOL_RANGE_MPEG;
}
s->s.h.refreshrefmask = get_bits(&s->gb, 8);
w = get_bits(&s->gb, 16) + 1;
h = get_bits(&s->gb, 16) + 1;
if (get_bits1(&s->gb)) // display size
skip_bits(&s->gb, 32);
} else {
s->s.h.refreshrefmask = get_bits(&s->gb, 8);
s->s.h.refidx[0] = get_bits(&s->gb, 3);
s->s.h.signbias[0] = get_bits1(&s->gb) && !s->s.h.errorres;
s->s.h.refidx[1] = get_bits(&s->gb, 3);
s->s.h.signbias[1] = get_bits1(&s->gb) && !s->s.h.errorres;
s->s.h.refidx[2] = get_bits(&s->gb, 3);
s->s.h.signbias[2] = get_bits1(&s->gb) && !s->s.h.errorres;
if (!s->s.refs[s->s.h.refidx[0]].f->buf[0] ||
!s->s.refs[s->s.h.refidx[1]].f->buf[0] ||
!s->s.refs[s->s.h.refidx[2]].f->buf[0]) {
av_log(avctx, AV_LOG_ERROR, "Not all references are available\n");
return AVERROR_INVALIDDATA;
}
if (get_bits1(&s->gb)) {
w = s->s.refs[s->s.h.refidx[0]].f->width;
h = s->s.refs[s->s.h.refidx[0]].f->height;
} else if (get_bits1(&s->gb)) {
w = s->s.refs[s->s.h.refidx[1]].f->width;
h = s->s.refs[s->s.h.refidx[1]].f->height;
} else if (get_bits1(&s->gb)) {
w = s->s.refs[s->s.h.refidx[2]].f->width;
h = s->s.refs[s->s.h.refidx[2]].f->height;
} else {
w = get_bits(&s->gb, 16) + 1;
h = get_bits(&s->gb, 16) + 1;
}
// Note that in this code, "CUR_FRAME" is actually before we
// have formally allocated a frame, and thus actually represents
// the _last_ frame
s->s.h.use_last_frame_mvs &= s->s.frames[CUR_FRAME].tf.f->width == w &&
s->s.frames[CUR_FRAME].tf.f->height == h;
if (get_bits1(&s->gb)) // display size
skip_bits(&s->gb, 32);
s->s.h.highprecisionmvs = get_bits1(&s->gb);
s->s.h.filtermode = get_bits1(&s->gb) ? FILTER_SWITCHABLE :
get_bits(&s->gb, 2);
s->s.h.allowcompinter = s->s.h.signbias[0] != s->s.h.signbias[1] ||
s->s.h.signbias[0] != s->s.h.signbias[2];
if (s->s.h.allowcompinter) {
if (s->s.h.signbias[0] == s->s.h.signbias[1]) {
s->s.h.fixcompref = 2;
s->s.h.varcompref[0] = 0;
s->s.h.varcompref[1] = 1;
} else if (s->s.h.signbias[0] == s->s.h.signbias[2]) {
s->s.h.fixcompref = 1;
s->s.h.varcompref[0] = 0;
s->s.h.varcompref[1] = 2;
} else {
s->s.h.fixcompref = 0;
s->s.h.varcompref[0] = 1;
s->s.h.varcompref[1] = 2;
}
}
}
}
s->s.h.refreshctx = s->s.h.errorres ? 0 : get_bits1(&s->gb);
s->s.h.parallelmode = s->s.h.errorres ? 1 : get_bits1(&s->gb);
s->s.h.framectxid = c = get_bits(&s->gb, 2);
if (s->s.h.keyframe || s->s.h.intraonly)
s->s.h.framectxid = 0; // BUG: libvpx ignores this field in keyframes
/* loopfilter header data */
if (s->s.h.keyframe || s->s.h.errorres || s->s.h.intraonly) {
// reset loopfilter defaults
s->s.h.lf_delta.ref[0] = 1;
s->s.h.lf_delta.ref[1] = 0;
s->s.h.lf_delta.ref[2] = -1;
s->s.h.lf_delta.ref[3] = -1;
s->s.h.lf_delta.mode[0] = 0;
s->s.h.lf_delta.mode[1] = 0;
memset(s->s.h.segmentation.feat, 0, sizeof(s->s.h.segmentation.feat));
}
s->s.h.filter.level = get_bits(&s->gb, 6);
sharp = get_bits(&s->gb, 3);
// if sharpness changed, reinit lim/mblim LUTs. if it didn't change, keep
// the old cache values since they are still valid
if (s->s.h.filter.sharpness != sharp) {
for (i = 1; i <= 63; i++) {
int limit = i;
if (sharp > 0) {
limit >>= (sharp + 3) >> 2;
limit = FFMIN(limit, 9 - sharp);
}
limit = FFMAX(limit, 1);
s->filter_lut.lim_lut[i] = limit;
s->filter_lut.mblim_lut[i] = 2 * (i + 2) + limit;
}
}
s->s.h.filter.sharpness = sharp;
if ((s->s.h.lf_delta.enabled = get_bits1(&s->gb))) {
if ((s->s.h.lf_delta.updated = get_bits1(&s->gb))) {
for (i = 0; i < 4; i++)
if (get_bits1(&s->gb))
s->s.h.lf_delta.ref[i] = get_sbits_inv(&s->gb, 6);
for (i = 0; i < 2; i++)
if (get_bits1(&s->gb))
s->s.h.lf_delta.mode[i] = get_sbits_inv(&s->gb, 6);
}
}
/* quantization header data */
s->s.h.yac_qi = get_bits(&s->gb, 8);
s->s.h.ydc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
s->s.h.uvdc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
s->s.h.uvac_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
s->s.h.lossless = s->s.h.yac_qi == 0 && s->s.h.ydc_qdelta == 0 &&
s->s.h.uvdc_qdelta == 0 && s->s.h.uvac_qdelta == 0;
if (s->s.h.lossless)
avctx->properties |= FF_CODEC_PROPERTY_LOSSLESS;
/* segmentation header info */
if ((s->s.h.segmentation.enabled = get_bits1(&s->gb))) {
if ((s->s.h.segmentation.update_map = get_bits1(&s->gb))) {
for (i = 0; i < 7; i++)
s->s.h.segmentation.prob[i] = get_bits1(&s->gb) ?
get_bits(&s->gb, 8) : 255;
if ((s->s.h.segmentation.temporal = get_bits1(&s->gb)))
for (i = 0; i < 3; i++)
s->s.h.segmentation.pred_prob[i] = get_bits1(&s->gb) ?
get_bits(&s->gb, 8) : 255;
}
if (get_bits1(&s->gb)) {
s->s.h.segmentation.absolute_vals = get_bits1(&s->gb);
for (i = 0; i < 8; i++) {
if ((s->s.h.segmentation.feat[i].q_enabled = get_bits1(&s->gb)))
s->s.h.segmentation.feat[i].q_val = get_sbits_inv(&s->gb, 8);
if ((s->s.h.segmentation.feat[i].lf_enabled = get_bits1(&s->gb)))
s->s.h.segmentation.feat[i].lf_val = get_sbits_inv(&s->gb, 6);
if ((s->s.h.segmentation.feat[i].ref_enabled = get_bits1(&s->gb)))
s->s.h.segmentation.feat[i].ref_val = get_bits(&s->gb, 2);
s->s.h.segmentation.feat[i].skip_enabled = get_bits1(&s->gb);
}
}
}
// set qmul[] based on Y/UV, AC/DC and segmentation Q idx deltas
for (i = 0; i < (s->s.h.segmentation.enabled ? 8 : 1); i++) {
int qyac, qydc, quvac, quvdc, lflvl, sh;
if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[i].q_enabled) {
if (s->s.h.segmentation.absolute_vals)
qyac = av_clip_uintp2(s->s.h.segmentation.feat[i].q_val, 8);
else
qyac = av_clip_uintp2(s->s.h.yac_qi + s->s.h.segmentation.feat[i].q_val, 8);
} else {
qyac = s->s.h.yac_qi;
}
qydc = av_clip_uintp2(qyac + s->s.h.ydc_qdelta, 8);
quvdc = av_clip_uintp2(qyac + s->s.h.uvdc_qdelta, 8);
quvac = av_clip_uintp2(qyac + s->s.h.uvac_qdelta, 8);
qyac = av_clip_uintp2(qyac, 8);
s->s.h.segmentation.feat[i].qmul[0][0] = ff_vp9_dc_qlookup[s->bpp_index][qydc];
s->s.h.segmentation.feat[i].qmul[0][1] = ff_vp9_ac_qlookup[s->bpp_index][qyac];
s->s.h.segmentation.feat[i].qmul[1][0] = ff_vp9_dc_qlookup[s->bpp_index][quvdc];
s->s.h.segmentation.feat[i].qmul[1][1] = ff_vp9_ac_qlookup[s->bpp_index][quvac];
sh = s->s.h.filter.level >= 32;
if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[i].lf_enabled) {
if (s->s.h.segmentation.absolute_vals)
lflvl = av_clip_uintp2(s->s.h.segmentation.feat[i].lf_val, 6);
else
lflvl = av_clip_uintp2(s->s.h.filter.level + s->s.h.segmentation.feat[i].lf_val, 6);
} else {
lflvl = s->s.h.filter.level;
}
if (s->s.h.lf_delta.enabled) {
s->s.h.segmentation.feat[i].lflvl[0][0] =
s->s.h.segmentation.feat[i].lflvl[0][1] =
av_clip_uintp2(lflvl + (s->s.h.lf_delta.ref[0] * (1 << sh)), 6);
for (j = 1; j < 4; j++) {
s->s.h.segmentation.feat[i].lflvl[j][0] =
av_clip_uintp2(lflvl + ((s->s.h.lf_delta.ref[j] +
s->s.h.lf_delta.mode[0]) * (1 << sh)), 6);
s->s.h.segmentation.feat[i].lflvl[j][1] =
av_clip_uintp2(lflvl + ((s->s.h.lf_delta.ref[j] +
s->s.h.lf_delta.mode[1]) * (1 << sh)), 6);
}
} else {
memset(s->s.h.segmentation.feat[i].lflvl, lflvl,
sizeof(s->s.h.segmentation.feat[i].lflvl));
}
}
/* tiling info */
if ((ret = update_size(avctx, w, h)) < 0) {
av_log(avctx, AV_LOG_ERROR, "Failed to initialize decoder for %dx%d @ %d\n",
w, h, s->pix_fmt);
return ret;
}
for (s->s.h.tiling.log2_tile_cols = 0;
s->sb_cols > (64 << s->s.h.tiling.log2_tile_cols);
s->s.h.tiling.log2_tile_cols++) ;
for (max = 0; (s->sb_cols >> max) >= 4; max++) ;
max = FFMAX(0, max - 1);
while (max > s->s.h.tiling.log2_tile_cols) {
if (get_bits1(&s->gb))
s->s.h.tiling.log2_tile_cols++;
else
break;
}
s->s.h.tiling.log2_tile_rows = decode012(&s->gb);
s->s.h.tiling.tile_rows = 1 << s->s.h.tiling.log2_tile_rows;
if (s->s.h.tiling.tile_cols != (1 << s->s.h.tiling.log2_tile_cols)) {
int n_range_coders;
VP56RangeCoder *rc;
if (s->td) {
for (i = 0; i < s->active_tile_cols; i++) {
av_free(s->td[i].b_base);
av_free(s->td[i].block_base);
}
av_free(s->td);
}
s->s.h.tiling.tile_cols = 1 << s->s.h.tiling.log2_tile_cols;
vp9_free_entries(avctx);
s->active_tile_cols = avctx->active_thread_type == FF_THREAD_SLICE ?
s->s.h.tiling.tile_cols : 1;
vp9_alloc_entries(avctx, s->sb_rows);
if (avctx->active_thread_type == FF_THREAD_SLICE) {
n_range_coders = 4; // max_tile_rows
} else {
n_range_coders = s->s.h.tiling.tile_cols;
}
s->td = av_mallocz_array(s->active_tile_cols, sizeof(VP9TileData) +
n_range_coders * sizeof(VP56RangeCoder));
if (!s->td)
return AVERROR(ENOMEM);
rc = (VP56RangeCoder *) &s->td[s->active_tile_cols];
for (i = 0; i < s->active_tile_cols; i++) {
s->td[i].s = s;
s->td[i].c_b = rc;
rc += n_range_coders;
}
}
/* check reference frames */
if (!s->s.h.keyframe && !s->s.h.intraonly) {
for (i = 0; i < 3; i++) {
AVFrame *ref = s->s.refs[s->s.h.refidx[i]].f;
int refw = ref->width, refh = ref->height;
if (ref->format != avctx->pix_fmt) {
av_log(avctx, AV_LOG_ERROR,
"Ref pixfmt (%s) did not match current frame (%s)",
av_get_pix_fmt_name(ref->format),
av_get_pix_fmt_name(avctx->pix_fmt));
return AVERROR_INVALIDDATA;
} else if (refw == w && refh == h) {
s->mvscale[i][0] = s->mvscale[i][1] = 0;
} else {
if (w * 2 < refw || h * 2 < refh || w > 16 * refw || h > 16 * refh) {
av_log(avctx, AV_LOG_ERROR,
"Invalid ref frame dimensions %dx%d for frame size %dx%d\n",
refw, refh, w, h);
return AVERROR_INVALIDDATA;
}
s->mvscale[i][0] = (refw << 14) / w;
s->mvscale[i][1] = (refh << 14) / h;
s->mvstep[i][0] = 16 * s->mvscale[i][0] >> 14;
s->mvstep[i][1] = 16 * s->mvscale[i][1] >> 14;
}
}
}
if (s->s.h.keyframe || s->s.h.errorres || (s->s.h.intraonly && s->s.h.resetctx == 3)) {
s->prob_ctx[0].p = s->prob_ctx[1].p = s->prob_ctx[2].p =
s->prob_ctx[3].p = ff_vp9_default_probs;
memcpy(s->prob_ctx[0].coef, ff_vp9_default_coef_probs,
sizeof(ff_vp9_default_coef_probs));
memcpy(s->prob_ctx[1].coef, ff_vp9_default_coef_probs,
sizeof(ff_vp9_default_coef_probs));
memcpy(s->prob_ctx[2].coef, ff_vp9_default_coef_probs,
sizeof(ff_vp9_default_coef_probs));
memcpy(s->prob_ctx[3].coef, ff_vp9_default_coef_probs,
sizeof(ff_vp9_default_coef_probs));
} else if (s->s.h.intraonly && s->s.h.resetctx == 2) {
s->prob_ctx[c].p = ff_vp9_default_probs;
memcpy(s->prob_ctx[c].coef, ff_vp9_default_coef_probs,
sizeof(ff_vp9_default_coef_probs));
}
// next 16 bits is size of the rest of the header (arith-coded)
s->s.h.compressed_header_size = size2 = get_bits(&s->gb, 16);
s->s.h.uncompressed_header_size = (get_bits_count(&s->gb) + 7) / 8;
data2 = align_get_bits(&s->gb);
if (size2 > size - (data2 - data)) {
av_log(avctx, AV_LOG_ERROR, "Invalid compressed header size\n");
return AVERROR_INVALIDDATA;
}
ret = ff_vp56_init_range_decoder(&s->c, data2, size2);
if (ret < 0)
return ret;
if (vp56_rac_get_prob_branchy(&s->c, 128)) { // marker bit
av_log(avctx, AV_LOG_ERROR, "Marker bit was set\n");
return AVERROR_INVALIDDATA;
}
for (i = 0; i < s->active_tile_cols; i++) {
if (s->s.h.keyframe || s->s.h.intraonly) {
memset(s->td[i].counts.coef, 0, sizeof(s->td[0].counts.coef));
memset(s->td[i].counts.eob, 0, sizeof(s->td[0].counts.eob));
} else {
memset(&s->td[i].counts, 0, sizeof(s->td[0].counts));
}
}
/* FIXME is it faster to not copy here, but do it down in the fw updates
* as explicit copies if the fw update is missing (and skip the copy upon
* fw update)? */
s->prob.p = s->prob_ctx[c].p;
// txfm updates
if (s->s.h.lossless) {
s->s.h.txfmmode = TX_4X4;
} else {
s->s.h.txfmmode = vp8_rac_get_uint(&s->c, 2);
if (s->s.h.txfmmode == 3)
s->s.h.txfmmode += vp8_rac_get(&s->c);
if (s->s.h.txfmmode == TX_SWITCHABLE) {
for (i = 0; i < 2; i++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.tx8p[i] = update_prob(&s->c, s->prob.p.tx8p[i]);
for (i = 0; i < 2; i++)
for (j = 0; j < 2; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.tx16p[i][j] =
update_prob(&s->c, s->prob.p.tx16p[i][j]);
for (i = 0; i < 2; i++)
for (j = 0; j < 3; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.tx32p[i][j] =
update_prob(&s->c, s->prob.p.tx32p[i][j]);
}
}
// coef updates
for (i = 0; i < 4; i++) {
uint8_t (*ref)[2][6][6][3] = s->prob_ctx[c].coef[i];
if (vp8_rac_get(&s->c)) {
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
for (l = 0; l < 6; l++)
for (m = 0; m < 6; m++) {
uint8_t *p = s->prob.coef[i][j][k][l][m];
uint8_t *r = ref[j][k][l][m];
if (m >= 3 && l == 0) // dc only has 3 pt
break;
for (n = 0; n < 3; n++) {
if (vp56_rac_get_prob_branchy(&s->c, 252))
p[n] = update_prob(&s->c, r[n]);
else
p[n] = r[n];
}
memcpy(&p[3], ff_vp9_model_pareto8[p[2]], 8);
}
} else {
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
for (l = 0; l < 6; l++)
for (m = 0; m < 6; m++) {
uint8_t *p = s->prob.coef[i][j][k][l][m];
uint8_t *r = ref[j][k][l][m];
if (m > 3 && l == 0) // dc only has 3 pt
break;
memcpy(p, r, 3);
memcpy(&p[3], ff_vp9_model_pareto8[p[2]], 8);
}
}
if (s->s.h.txfmmode == i)
break;
}
// mode updates
for (i = 0; i < 3; i++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.skip[i] = update_prob(&s->c, s->prob.p.skip[i]);
if (!s->s.h.keyframe && !s->s.h.intraonly) {
for (i = 0; i < 7; i++)
for (j = 0; j < 3; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_mode[i][j] =
update_prob(&s->c, s->prob.p.mv_mode[i][j]);
if (s->s.h.filtermode == FILTER_SWITCHABLE)
for (i = 0; i < 4; i++)
for (j = 0; j < 2; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.filter[i][j] =
update_prob(&s->c, s->prob.p.filter[i][j]);
for (i = 0; i < 4; i++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.intra[i] = update_prob(&s->c, s->prob.p.intra[i]);
if (s->s.h.allowcompinter) {
s->s.h.comppredmode = vp8_rac_get(&s->c);
if (s->s.h.comppredmode)
s->s.h.comppredmode += vp8_rac_get(&s->c);
if (s->s.h.comppredmode == PRED_SWITCHABLE)
for (i = 0; i < 5; i++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.comp[i] =
update_prob(&s->c, s->prob.p.comp[i]);
} else {
s->s.h.comppredmode = PRED_SINGLEREF;
}
if (s->s.h.comppredmode != PRED_COMPREF) {
for (i = 0; i < 5; i++) {
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.single_ref[i][0] =
update_prob(&s->c, s->prob.p.single_ref[i][0]);
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.single_ref[i][1] =
update_prob(&s->c, s->prob.p.single_ref[i][1]);
}
}
if (s->s.h.comppredmode != PRED_SINGLEREF) {
for (i = 0; i < 5; i++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.comp_ref[i] =
update_prob(&s->c, s->prob.p.comp_ref[i]);
}
for (i = 0; i < 4; i++)
for (j = 0; j < 9; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.y_mode[i][j] =
update_prob(&s->c, s->prob.p.y_mode[i][j]);
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
for (k = 0; k < 3; k++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.partition[3 - i][j][k] =
update_prob(&s->c,
s->prob.p.partition[3 - i][j][k]);
// mv fields don't use the update_prob subexp model for some reason
for (i = 0; i < 3; i++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_joint[i] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
for (i = 0; i < 2; i++) {
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].sign =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
for (j = 0; j < 10; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].classes[j] =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].class0 =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
for (j = 0; j < 10; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].bits[j] =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
}
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++)
for (k = 0; k < 3; k++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].class0_fp[j][k] =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
for (j = 0; j < 3; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].fp[j] =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
}
if (s->s.h.highprecisionmvs) {
for (i = 0; i < 2; i++) {
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].class0_hp =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].hp =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
}
}
}
return (data2 - data) + size2;
}
static void decode_sb(VP9TileData *td, int row, int col, VP9Filter *lflvl,
ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl)
{
const VP9Context *s = td->s;
int c = ((s->above_partition_ctx[col] >> (3 - bl)) & 1) |
(((td->left_partition_ctx[row & 0x7] >> (3 - bl)) & 1) << 1);
const uint8_t *p = s->s.h.keyframe || s->s.h.intraonly ? ff_vp9_default_kf_partition_probs[bl][c] :
s->prob.p.partition[bl][c];
enum BlockPartition bp;
ptrdiff_t hbs = 4 >> bl;
AVFrame *f = s->s.frames[CUR_FRAME].tf.f;
ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1];
int bytesperpixel = s->bytesperpixel;
if (bl == BL_8X8) {
bp = vp8_rac_get_tree(td->c, ff_vp9_partition_tree, p);
ff_vp9_decode_block(td, row, col, lflvl, yoff, uvoff, bl, bp);
} else if (col + hbs < s->cols) { // FIXME why not <=?
if (row + hbs < s->rows) { // FIXME why not <=?
bp = vp8_rac_get_tree(td->c, ff_vp9_partition_tree, p);
switch (bp) {
case PARTITION_NONE:
ff_vp9_decode_block(td, row, col, lflvl, yoff, uvoff, bl, bp);
break;
case PARTITION_H:
ff_vp9_decode_block(td, row, col, lflvl, yoff, uvoff, bl, bp);
yoff += hbs * 8 * y_stride;
uvoff += hbs * 8 * uv_stride >> s->ss_v;
ff_vp9_decode_block(td, row + hbs, col, lflvl, yoff, uvoff, bl, bp);
break;
case PARTITION_V:
ff_vp9_decode_block(td, row, col, lflvl, yoff, uvoff, bl, bp);
yoff += hbs * 8 * bytesperpixel;
uvoff += hbs * 8 * bytesperpixel >> s->ss_h;
ff_vp9_decode_block(td, row, col + hbs, lflvl, yoff, uvoff, bl, bp);
break;
case PARTITION_SPLIT:
decode_sb(td, row, col, lflvl, yoff, uvoff, bl + 1);
decode_sb(td, row, col + hbs, lflvl,
yoff + 8 * hbs * bytesperpixel,
uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
yoff += hbs * 8 * y_stride;
uvoff += hbs * 8 * uv_stride >> s->ss_v;
decode_sb(td, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
decode_sb(td, row + hbs, col + hbs, lflvl,
yoff + 8 * hbs * bytesperpixel,
uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
break;
default:
av_assert0(0);
}
} else if (vp56_rac_get_prob_branchy(td->c, p[1])) {
bp = PARTITION_SPLIT;
decode_sb(td, row, col, lflvl, yoff, uvoff, bl + 1);
decode_sb(td, row, col + hbs, lflvl,
yoff + 8 * hbs * bytesperpixel,
uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
} else {
bp = PARTITION_H;
ff_vp9_decode_block(td, row, col, lflvl, yoff, uvoff, bl, bp);
}
} else if (row + hbs < s->rows) { // FIXME why not <=?
if (vp56_rac_get_prob_branchy(td->c, p[2])) {
bp = PARTITION_SPLIT;
decode_sb(td, row, col, lflvl, yoff, uvoff, bl + 1);
yoff += hbs * 8 * y_stride;
uvoff += hbs * 8 * uv_stride >> s->ss_v;
decode_sb(td, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
} else {
bp = PARTITION_V;
ff_vp9_decode_block(td, row, col, lflvl, yoff, uvoff, bl, bp);
}
} else {
bp = PARTITION_SPLIT;
decode_sb(td, row, col, lflvl, yoff, uvoff, bl + 1);
}
td->counts.partition[bl][c][bp]++;
}
static void decode_sb_mem(VP9TileData *td, int row, int col, VP9Filter *lflvl,
ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl)
{
const VP9Context *s = td->s;
VP9Block *b = td->b;
ptrdiff_t hbs = 4 >> bl;
AVFrame *f = s->s.frames[CUR_FRAME].tf.f;
ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1];
int bytesperpixel = s->bytesperpixel;
if (bl == BL_8X8) {
av_assert2(b->bl == BL_8X8);
ff_vp9_decode_block(td, row, col, lflvl, yoff, uvoff, b->bl, b->bp);
} else if (td->b->bl == bl) {
ff_vp9_decode_block(td, row, col, lflvl, yoff, uvoff, b->bl, b->bp);
if (b->bp == PARTITION_H && row + hbs < s->rows) {
yoff += hbs * 8 * y_stride;
uvoff += hbs * 8 * uv_stride >> s->ss_v;
ff_vp9_decode_block(td, row + hbs, col, lflvl, yoff, uvoff, b->bl, b->bp);
} else if (b->bp == PARTITION_V && col + hbs < s->cols) {
yoff += hbs * 8 * bytesperpixel;
uvoff += hbs * 8 * bytesperpixel >> s->ss_h;
ff_vp9_decode_block(td, row, col + hbs, lflvl, yoff, uvoff, b->bl, b->bp);
}
} else {
decode_sb_mem(td, row, col, lflvl, yoff, uvoff, bl + 1);
if (col + hbs < s->cols) { // FIXME why not <=?
if (row + hbs < s->rows) {
decode_sb_mem(td, row, col + hbs, lflvl, yoff + 8 * hbs * bytesperpixel,
uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
yoff += hbs * 8 * y_stride;
uvoff += hbs * 8 * uv_stride >> s->ss_v;
decode_sb_mem(td, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
decode_sb_mem(td, row + hbs, col + hbs, lflvl,
yoff + 8 * hbs * bytesperpixel,
uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
} else {
yoff += hbs * 8 * bytesperpixel;
uvoff += hbs * 8 * bytesperpixel >> s->ss_h;
decode_sb_mem(td, row, col + hbs, lflvl, yoff, uvoff, bl + 1);
}
} else if (row + hbs < s->rows) {
yoff += hbs * 8 * y_stride;
uvoff += hbs * 8 * uv_stride >> s->ss_v;
decode_sb_mem(td, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
}
}
}
static void set_tile_offset(int *start, int *end, int idx, int log2_n, int n)
{
int sb_start = ( idx * n) >> log2_n;
int sb_end = ((idx + 1) * n) >> log2_n;
*start = FFMIN(sb_start, n) << 3;
*end = FFMIN(sb_end, n) << 3;
}
static void free_buffers(VP9Context *s)
{
int i;
av_freep(&s->intra_pred_data[0]);
for (i = 0; i < s->active_tile_cols; i++) {
av_freep(&s->td[i].b_base);
av_freep(&s->td[i].block_base);
}
}
static av_cold int vp9_decode_free(AVCodecContext *avctx)
{
VP9Context *s = avctx->priv_data;
int i;
for (i = 0; i < 3; i++) {
if (s->s.frames[i].tf.f->buf[0])
vp9_frame_unref(avctx, &s->s.frames[i]);
av_frame_free(&s->s.frames[i].tf.f);
}
for (i = 0; i < 8; i++) {
if (s->s.refs[i].f->buf[0])
ff_thread_release_buffer(avctx, &s->s.refs[i]);
av_frame_free(&s->s.refs[i].f);
if (s->next_refs[i].f->buf[0])
ff_thread_release_buffer(avctx, &s->next_refs[i]);
av_frame_free(&s->next_refs[i].f);
}
free_buffers(s);
vp9_free_entries(avctx);
av_freep(&s->td);
return 0;
}
static int decode_tiles(AVCodecContext *avctx,
const uint8_t *data, int size)
{
VP9Context *s = avctx->priv_data;
VP9TileData *td = &s->td[0];
int row, col, tile_row, tile_col, ret;
int bytesperpixel;
int tile_row_start, tile_row_end, tile_col_start, tile_col_end;
AVFrame *f;
ptrdiff_t yoff, uvoff, ls_y, ls_uv;
f = s->s.frames[CUR_FRAME].tf.f;
ls_y = f->linesize[0];
ls_uv =f->linesize[1];
bytesperpixel = s->bytesperpixel;
yoff = uvoff = 0;
for (tile_row = 0; tile_row < s->s.h.tiling.tile_rows; tile_row++) {
set_tile_offset(&tile_row_start, &tile_row_end,
tile_row, s->s.h.tiling.log2_tile_rows, s->sb_rows);
for (tile_col = 0; tile_col < s->s.h.tiling.tile_cols; tile_col++) {
int64_t tile_size;
if (tile_col == s->s.h.tiling.tile_cols - 1 &&
tile_row == s->s.h.tiling.tile_rows - 1) {
tile_size = size;
} else {
tile_size = AV_RB32(data);
data += 4;
size -= 4;
}
if (tile_size > size) {
ff_thread_report_progress(&s->s.frames[CUR_FRAME].tf, INT_MAX, 0);
return AVERROR_INVALIDDATA;
}
ret = ff_vp56_init_range_decoder(&td->c_b[tile_col], data, tile_size);
if (ret < 0)
return ret;
if (vp56_rac_get_prob_branchy(&td->c_b[tile_col], 128)) { // marker bit
ff_thread_report_progress(&s->s.frames[CUR_FRAME].tf, INT_MAX, 0);
return AVERROR_INVALIDDATA;
}
data += tile_size;
size -= tile_size;
}
for (row = tile_row_start; row < tile_row_end;
row += 8, yoff += ls_y * 64, uvoff += ls_uv * 64 >> s->ss_v) {
VP9Filter *lflvl_ptr = s->lflvl;
ptrdiff_t yoff2 = yoff, uvoff2 = uvoff;
for (tile_col = 0; tile_col < s->s.h.tiling.tile_cols; tile_col++) {
set_tile_offset(&tile_col_start, &tile_col_end,
tile_col, s->s.h.tiling.log2_tile_cols, s->sb_cols);
td->tile_col_start = tile_col_start;
if (s->pass != 2) {
memset(td->left_partition_ctx, 0, 8);
memset(td->left_skip_ctx, 0, 8);
if (s->s.h.keyframe || s->s.h.intraonly) {
memset(td->left_mode_ctx, DC_PRED, 16);
} else {
memset(td->left_mode_ctx, NEARESTMV, 8);
}
memset(td->left_y_nnz_ctx, 0, 16);
memset(td->left_uv_nnz_ctx, 0, 32);
memset(td->left_segpred_ctx, 0, 8);
td->c = &td->c_b[tile_col];
}
for (col = tile_col_start;
col < tile_col_end;
col += 8, yoff2 += 64 * bytesperpixel,
uvoff2 += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) {
// FIXME integrate with lf code (i.e. zero after each
// use, similar to invtxfm coefficients, or similar)
if (s->pass != 1) {
memset(lflvl_ptr->mask, 0, sizeof(lflvl_ptr->mask));
}
if (s->pass == 2) {
decode_sb_mem(td, row, col, lflvl_ptr,
yoff2, uvoff2, BL_64X64);
} else {
if (vpX_rac_is_end(td->c)) {
return AVERROR_INVALIDDATA;
}
decode_sb(td, row, col, lflvl_ptr,
yoff2, uvoff2, BL_64X64);
}
}
}
if (s->pass == 1)
continue;
// backup pre-loopfilter reconstruction data for intra
// prediction of next row of sb64s
if (row + 8 < s->rows) {
memcpy(s->intra_pred_data[0],
f->data[0] + yoff + 63 * ls_y,
8 * s->cols * bytesperpixel);
memcpy(s->intra_pred_data[1],
f->data[1] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv,
8 * s->cols * bytesperpixel >> s->ss_h);
memcpy(s->intra_pred_data[2],
f->data[2] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv,
8 * s->cols * bytesperpixel >> s->ss_h);
}
// loopfilter one row
if (s->s.h.filter.level) {
yoff2 = yoff;
uvoff2 = uvoff;
lflvl_ptr = s->lflvl;
for (col = 0; col < s->cols;
col += 8, yoff2 += 64 * bytesperpixel,
uvoff2 += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) {
ff_vp9_loopfilter_sb(avctx, lflvl_ptr, row, col,
yoff2, uvoff2);
}
}
// FIXME maybe we can make this more finegrained by running the
// loopfilter per-block instead of after each sbrow
// In fact that would also make intra pred left preparation easier?
ff_thread_report_progress(&s->s.frames[CUR_FRAME].tf, row >> 3, 0);
}
}
return 0;
}
#if HAVE_THREADS
static av_always_inline
int decode_tiles_mt(AVCodecContext *avctx, void *tdata, int jobnr,
int threadnr)
{
VP9Context *s = avctx->priv_data;
VP9TileData *td = &s->td[jobnr];
ptrdiff_t uvoff, yoff, ls_y, ls_uv;
int bytesperpixel = s->bytesperpixel, row, col, tile_row;
unsigned tile_cols_len;
int tile_row_start, tile_row_end, tile_col_start, tile_col_end;
VP9Filter *lflvl_ptr_base;
AVFrame *f;
f = s->s.frames[CUR_FRAME].tf.f;
ls_y = f->linesize[0];
ls_uv =f->linesize[1];
set_tile_offset(&tile_col_start, &tile_col_end,
jobnr, s->s.h.tiling.log2_tile_cols, s->sb_cols);
td->tile_col_start = tile_col_start;
uvoff = (64 * bytesperpixel >> s->ss_h)*(tile_col_start >> 3);
yoff = (64 * bytesperpixel)*(tile_col_start >> 3);
lflvl_ptr_base = s->lflvl+(tile_col_start >> 3);
for (tile_row = 0; tile_row < s->s.h.tiling.tile_rows; tile_row++) {
set_tile_offset(&tile_row_start, &tile_row_end,
tile_row, s->s.h.tiling.log2_tile_rows, s->sb_rows);
td->c = &td->c_b[tile_row];
for (row = tile_row_start; row < tile_row_end;
row += 8, yoff += ls_y * 64, uvoff += ls_uv * 64 >> s->ss_v) {
ptrdiff_t yoff2 = yoff, uvoff2 = uvoff;
VP9Filter *lflvl_ptr = lflvl_ptr_base+s->sb_cols*(row >> 3);
memset(td->left_partition_ctx, 0, 8);
memset(td->left_skip_ctx, 0, 8);
if (s->s.h.keyframe || s->s.h.intraonly) {
memset(td->left_mode_ctx, DC_PRED, 16);
} else {
memset(td->left_mode_ctx, NEARESTMV, 8);
}
memset(td->left_y_nnz_ctx, 0, 16);
memset(td->left_uv_nnz_ctx, 0, 32);
memset(td->left_segpred_ctx, 0, 8);
for (col = tile_col_start;
col < tile_col_end;
col += 8, yoff2 += 64 * bytesperpixel,
uvoff2 += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) {
// FIXME integrate with lf code (i.e. zero after each
// use, similar to invtxfm coefficients, or similar)
memset(lflvl_ptr->mask, 0, sizeof(lflvl_ptr->mask));
decode_sb(td, row, col, lflvl_ptr,
yoff2, uvoff2, BL_64X64);
}
// backup pre-loopfilter reconstruction data for intra
// prediction of next row of sb64s
tile_cols_len = tile_col_end - tile_col_start;
if (row + 8 < s->rows) {
memcpy(s->intra_pred_data[0] + (tile_col_start * 8 * bytesperpixel),
f->data[0] + yoff + 63 * ls_y,
8 * tile_cols_len * bytesperpixel);
memcpy(s->intra_pred_data[1] + (tile_col_start * 8 * bytesperpixel >> s->ss_h),
f->data[1] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv,
8 * tile_cols_len * bytesperpixel >> s->ss_h);
memcpy(s->intra_pred_data[2] + (tile_col_start * 8 * bytesperpixel >> s->ss_h),
f->data[2] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv,
8 * tile_cols_len * bytesperpixel >> s->ss_h);
}
vp9_report_tile_progress(s, row >> 3, 1);
}
}
return 0;
}
static av_always_inline
int loopfilter_proc(AVCodecContext *avctx)
{
VP9Context *s = avctx->priv_data;
ptrdiff_t uvoff, yoff, ls_y, ls_uv;
VP9Filter *lflvl_ptr;
int bytesperpixel = s->bytesperpixel, col, i;
AVFrame *f;
f = s->s.frames[CUR_FRAME].tf.f;
ls_y = f->linesize[0];
ls_uv =f->linesize[1];
for (i = 0; i < s->sb_rows; i++) {
vp9_await_tile_progress(s, i, s->s.h.tiling.tile_cols);
if (s->s.h.filter.level) {
yoff = (ls_y * 64)*i;
uvoff = (ls_uv * 64 >> s->ss_v)*i;
lflvl_ptr = s->lflvl+s->sb_cols*i;
for (col = 0; col < s->cols;
col += 8, yoff += 64 * bytesperpixel,
uvoff += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) {
ff_vp9_loopfilter_sb(avctx, lflvl_ptr, i << 3, col,
yoff, uvoff);
}
}
}
return 0;
}
#endif
static int vp9_decode_frame(AVCodecContext *avctx, void *frame,
int *got_frame, AVPacket *pkt)
{
const uint8_t *data = pkt->data;
int size = pkt->size;
VP9Context *s = avctx->priv_data;
int ret, i, j, ref;
int retain_segmap_ref = s->s.frames[REF_FRAME_SEGMAP].segmentation_map &&
(!s->s.h.segmentation.enabled || !s->s.h.segmentation.update_map);
AVFrame *f;
if ((ret = decode_frame_header(avctx, data, size, &ref)) < 0) {
return ret;
} else if (ret == 0) {
if (!s->s.refs[ref].f->buf[0]) {
av_log(avctx, AV_LOG_ERROR, "Requested reference %d not available\n", ref);
return AVERROR_INVALIDDATA;
}
if ((ret = av_frame_ref(frame, s->s.refs[ref].f)) < 0)
return ret;
((AVFrame *)frame)->pts = pkt->pts;
#if FF_API_PKT_PTS
FF_DISABLE_DEPRECATION_WARNINGS
((AVFrame *)frame)->pkt_pts = pkt->pts;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
((AVFrame *)frame)->pkt_dts = pkt->dts;
for (i = 0; i < 8; i++) {
if (s->next_refs[i].f->buf[0])
ff_thread_release_buffer(avctx, &s->next_refs[i]);
if (s->s.refs[i].f->buf[0] &&
(ret = ff_thread_ref_frame(&s->next_refs[i], &s->s.refs[i])) < 0)
return ret;
}
*got_frame = 1;
return pkt->size;
}
data += ret;
size -= ret;
if (!retain_segmap_ref || s->s.h.keyframe || s->s.h.intraonly) {
if (s->s.frames[REF_FRAME_SEGMAP].tf.f->buf[0])
vp9_frame_unref(avctx, &s->s.frames[REF_FRAME_SEGMAP]);
if (!s->s.h.keyframe && !s->s.h.intraonly && !s->s.h.errorres && s->s.frames[CUR_FRAME].tf.f->buf[0] &&
(ret = vp9_frame_ref(avctx, &s->s.frames[REF_FRAME_SEGMAP], &s->s.frames[CUR_FRAME])) < 0)
return ret;
}
if (s->s.frames[REF_FRAME_MVPAIR].tf.f->buf[0])
vp9_frame_unref(avctx, &s->s.frames[REF_FRAME_MVPAIR]);
if (!s->s.h.intraonly && !s->s.h.keyframe && !s->s.h.errorres && s->s.frames[CUR_FRAME].tf.f->buf[0] &&
(ret = vp9_frame_ref(avctx, &s->s.frames[REF_FRAME_MVPAIR], &s->s.frames[CUR_FRAME])) < 0)
return ret;
if (s->s.frames[CUR_FRAME].tf.f->buf[0])
vp9_frame_unref(avctx, &s->s.frames[CUR_FRAME]);
if ((ret = vp9_frame_alloc(avctx, &s->s.frames[CUR_FRAME])) < 0)
return ret;
f = s->s.frames[CUR_FRAME].tf.f;
f->key_frame = s->s.h.keyframe;
f->pict_type = (s->s.h.keyframe || s->s.h.intraonly) ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
if (s->s.frames[REF_FRAME_SEGMAP].tf.f->buf[0] &&
(s->s.frames[REF_FRAME_MVPAIR].tf.f->width != s->s.frames[CUR_FRAME].tf.f->width ||
s->s.frames[REF_FRAME_MVPAIR].tf.f->height != s->s.frames[CUR_FRAME].tf.f->height)) {
vp9_frame_unref(avctx, &s->s.frames[REF_FRAME_SEGMAP]);
}
// ref frame setup
for (i = 0; i < 8; i++) {
if (s->next_refs[i].f->buf[0])
ff_thread_release_buffer(avctx, &s->next_refs[i]);
if (s->s.h.refreshrefmask & (1 << i)) {
ret = ff_thread_ref_frame(&s->next_refs[i], &s->s.frames[CUR_FRAME].tf);
} else if (s->s.refs[i].f->buf[0]) {
ret = ff_thread_ref_frame(&s->next_refs[i], &s->s.refs[i]);
}
if (ret < 0)
return ret;
}
if (avctx->hwaccel) {
ret = avctx->hwaccel->start_frame(avctx, NULL, 0);
if (ret < 0)
return ret;
ret = avctx->hwaccel->decode_slice(avctx, pkt->data, pkt->size);
if (ret < 0)
return ret;
ret = avctx->hwaccel->end_frame(avctx);
if (ret < 0)
return ret;
goto finish;
}
// main tile decode loop
memset(s->above_partition_ctx, 0, s->cols);
memset(s->above_skip_ctx, 0, s->cols);
if (s->s.h.keyframe || s->s.h.intraonly) {
memset(s->above_mode_ctx, DC_PRED, s->cols * 2);
} else {
memset(s->above_mode_ctx, NEARESTMV, s->cols);
}
memset(s->above_y_nnz_ctx, 0, s->sb_cols * 16);
memset(s->above_uv_nnz_ctx[0], 0, s->sb_cols * 16 >> s->ss_h);
memset(s->above_uv_nnz_ctx[1], 0, s->sb_cols * 16 >> s->ss_h);
memset(s->above_segpred_ctx, 0, s->cols);
s->pass = s->s.frames[CUR_FRAME].uses_2pass =
avctx->active_thread_type == FF_THREAD_FRAME && s->s.h.refreshctx && !s->s.h.parallelmode;
if ((ret = update_block_buffers(avctx)) < 0) {
av_log(avctx, AV_LOG_ERROR,
"Failed to allocate block buffers\n");
return ret;
}
if (s->s.h.refreshctx && s->s.h.parallelmode) {
int j, k, l, m;
for (i = 0; i < 4; i++) {
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
for (l = 0; l < 6; l++)
for (m = 0; m < 6; m++)
memcpy(s->prob_ctx[s->s.h.framectxid].coef[i][j][k][l][m],
s->prob.coef[i][j][k][l][m], 3);
if (s->s.h.txfmmode == i)
break;
}
s->prob_ctx[s->s.h.framectxid].p = s->prob.p;
ff_thread_finish_setup(avctx);
} else if (!s->s.h.refreshctx) {
ff_thread_finish_setup(avctx);
}
#if HAVE_THREADS
if (avctx->active_thread_type & FF_THREAD_SLICE) {
for (i = 0; i < s->sb_rows; i++)
atomic_store(&s->entries[i], 0);
}
#endif
do {
for (i = 0; i < s->active_tile_cols; i++) {
s->td[i].b = s->td[i].b_base;
s->td[i].block = s->td[i].block_base;
s->td[i].uvblock[0] = s->td[i].uvblock_base[0];
s->td[i].uvblock[1] = s->td[i].uvblock_base[1];
s->td[i].eob = s->td[i].eob_base;
s->td[i].uveob[0] = s->td[i].uveob_base[0];
s->td[i].uveob[1] = s->td[i].uveob_base[1];
}
#if HAVE_THREADS
if (avctx->active_thread_type == FF_THREAD_SLICE) {
int tile_row, tile_col;
av_assert1(!s->pass);
for (tile_row = 0; tile_row < s->s.h.tiling.tile_rows; tile_row++) {
for (tile_col = 0; tile_col < s->s.h.tiling.tile_cols; tile_col++) {
int64_t tile_size;
if (tile_col == s->s.h.tiling.tile_cols - 1 &&
tile_row == s->s.h.tiling.tile_rows - 1) {
tile_size = size;
} else {
tile_size = AV_RB32(data);
data += 4;
size -= 4;
}
if (tile_size > size)
return AVERROR_INVALIDDATA;
ret = ff_vp56_init_range_decoder(&s->td[tile_col].c_b[tile_row], data, tile_size);
if (ret < 0)
return ret;
if (vp56_rac_get_prob_branchy(&s->td[tile_col].c_b[tile_row], 128)) // marker bit
return AVERROR_INVALIDDATA;
data += tile_size;
size -= tile_size;
}
}
ff_slice_thread_execute_with_mainfunc(avctx, decode_tiles_mt, loopfilter_proc, s->td, NULL, s->s.h.tiling.tile_cols);
} else
#endif
{
ret = decode_tiles(avctx, data, size);
if (ret < 0) {
ff_thread_report_progress(&s->s.frames[CUR_FRAME].tf, INT_MAX, 0);
return ret;
}
}
// Sum all counts fields into td[0].counts for tile threading
if (avctx->active_thread_type == FF_THREAD_SLICE)
for (i = 1; i < s->s.h.tiling.tile_cols; i++)
for (j = 0; j < sizeof(s->td[i].counts) / sizeof(unsigned); j++)
((unsigned *)&s->td[0].counts)[j] += ((unsigned *)&s->td[i].counts)[j];
if (s->pass < 2 && s->s.h.refreshctx && !s->s.h.parallelmode) {
ff_vp9_adapt_probs(s);
ff_thread_finish_setup(avctx);
}
} while (s->pass++ == 1);
ff_thread_report_progress(&s->s.frames[CUR_FRAME].tf, INT_MAX, 0);
finish:
// ref frame setup
for (i = 0; i < 8; i++) {
if (s->s.refs[i].f->buf[0])
ff_thread_release_buffer(avctx, &s->s.refs[i]);
if (s->next_refs[i].f->buf[0] &&
(ret = ff_thread_ref_frame(&s->s.refs[i], &s->next_refs[i])) < 0)
return ret;
}
if (!s->s.h.invisible) {
if ((ret = av_frame_ref(frame, s->s.frames[CUR_FRAME].tf.f)) < 0)
return ret;
*got_frame = 1;
}
return pkt->size;
}
static void vp9_decode_flush(AVCodecContext *avctx)
{
VP9Context *s = avctx->priv_data;
int i;
for (i = 0; i < 3; i++)
vp9_frame_unref(avctx, &s->s.frames[i]);
for (i = 0; i < 8; i++)
ff_thread_release_buffer(avctx, &s->s.refs[i]);
}
static int init_frames(AVCodecContext *avctx)
{
VP9Context *s = avctx->priv_data;
int i;
for (i = 0; i < 3; i++) {
s->s.frames[i].tf.f = av_frame_alloc();
if (!s->s.frames[i].tf.f) {
vp9_decode_free(avctx);
av_log(avctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i);
return AVERROR(ENOMEM);
}
}
for (i = 0; i < 8; i++) {
s->s.refs[i].f = av_frame_alloc();
s->next_refs[i].f = av_frame_alloc();
if (!s->s.refs[i].f || !s->next_refs[i].f) {
vp9_decode_free(avctx);
av_log(avctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i);
return AVERROR(ENOMEM);
}
}
return 0;
}
static av_cold int vp9_decode_init(AVCodecContext *avctx)
{
VP9Context *s = avctx->priv_data;
avctx->internal->allocate_progress = 1;
s->last_bpp = 0;
s->s.h.filter.sharpness = -1;
return init_frames(avctx);
}
#if HAVE_THREADS
static av_cold int vp9_decode_init_thread_copy(AVCodecContext *avctx)
{
return init_frames(avctx);
}
static int vp9_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
{
int i, ret;
VP9Context *s = dst->priv_data, *ssrc = src->priv_data;
for (i = 0; i < 3; i++) {
if (s->s.frames[i].tf.f->buf[0])
vp9_frame_unref(dst, &s->s.frames[i]);
if (ssrc->s.frames[i].tf.f->buf[0]) {
if ((ret = vp9_frame_ref(dst, &s->s.frames[i], &ssrc->s.frames[i])) < 0)
return ret;
}
}
for (i = 0; i < 8; i++) {
if (s->s.refs[i].f->buf[0])
ff_thread_release_buffer(dst, &s->s.refs[i]);
if (ssrc->next_refs[i].f->buf[0]) {
if ((ret = ff_thread_ref_frame(&s->s.refs[i], &ssrc->next_refs[i])) < 0)
return ret;
}
}
s->s.h.invisible = ssrc->s.h.invisible;
s->s.h.keyframe = ssrc->s.h.keyframe;
s->s.h.intraonly = ssrc->s.h.intraonly;
s->ss_v = ssrc->ss_v;
s->ss_h = ssrc->ss_h;
s->s.h.segmentation.enabled = ssrc->s.h.segmentation.enabled;
s->s.h.segmentation.update_map = ssrc->s.h.segmentation.update_map;
s->s.h.segmentation.absolute_vals = ssrc->s.h.segmentation.absolute_vals;
s->bytesperpixel = ssrc->bytesperpixel;
s->gf_fmt = ssrc->gf_fmt;
s->w = ssrc->w;
s->h = ssrc->h;
s->s.h.bpp = ssrc->s.h.bpp;
s->bpp_index = ssrc->bpp_index;
s->pix_fmt = ssrc->pix_fmt;
memcpy(&s->prob_ctx, &ssrc->prob_ctx, sizeof(s->prob_ctx));
memcpy(&s->s.h.lf_delta, &ssrc->s.h.lf_delta, sizeof(s->s.h.lf_delta));
memcpy(&s->s.h.segmentation.feat, &ssrc->s.h.segmentation.feat,
sizeof(s->s.h.segmentation.feat));
return 0;
}
#endif
AVCodec ff_vp9_decoder = {
.name = "vp9",
.long_name = NULL_IF_CONFIG_SMALL("Google VP9"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_VP9,
.priv_data_size = sizeof(VP9Context),
.init = vp9_decode_init,
.close = vp9_decode_free,
.decode = vp9_decode_frame,
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_SLICE_THREADS,
.caps_internal = FF_CODEC_CAP_SLICE_THREAD_HAS_MF,
.flush = vp9_decode_flush,
.init_thread_copy = ONLY_IF_THREADS_ENABLED(vp9_decode_init_thread_copy),
.update_thread_context = ONLY_IF_THREADS_ENABLED(vp9_decode_update_thread_context),
.profiles = NULL_IF_CONFIG_SMALL(ff_vp9_profiles),
.bsfs = "vp9_superframe_split",
.hw_configs = (const AVCodecHWConfigInternal*[]) {
#if CONFIG_VP9_DXVA2_HWACCEL
HWACCEL_DXVA2(vp9),
#endif
#if CONFIG_VP9_D3D11VA_HWACCEL
HWACCEL_D3D11VA(vp9),
#endif
#if CONFIG_VP9_D3D11VA2_HWACCEL
HWACCEL_D3D11VA2(vp9),
#endif
#if CONFIG_VP9_NVDEC_HWACCEL
HWACCEL_NVDEC(vp9),
#endif
#if CONFIG_VP9_VAAPI_HWACCEL
HWACCEL_VAAPI(vp9),
#endif
NULL
},
};