1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavfilter/vf_guided.c
Andreas Rheinhardt 7fac6efa97 avfilter/vf_guided: Add missing const
Forgotten in f8d910e90f.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-05-11 00:29:16 +02:00

430 lines
20 KiB
C

/*
* Copyright (c) 2021 Xuewei Meng
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "formats.h"
#include "framesync.h"
#include "internal.h"
#include "video.h"
typedef struct GuidedContext {
const AVClass *class;
FFFrameSync fs;
int radius;
float eps;
int planes;
int width;
int height;
int nb_planes;
int depth;
int planewidth[4];
int planeheight[4];
int (*box_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
} GuidedContext;
#define OFFSET(x) offsetof(GuidedContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption guided_options[] = {
{ "radius", "set the box radius", OFFSET(radius), AV_OPT_TYPE_INT, {.i64=3 }, 1, 20, FLAGS },
{ "eps", "set the regularization parameter (with square)", OFFSET(eps), AV_OPT_TYPE_FLOAT, {.dbl=0.01 }, 0.0, 1, FLAGS },
{ "planes", "set planes to filter", OFFSET(planes), AV_OPT_TYPE_INT, {.i64=1 }, 0, 0xF, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(guided);
typedef struct ThreadData {
int width;
int height;
float *src;
float *dst;
int srcStride;
int dstStride;
} ThreadData;
static int box_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
GuidedContext *s = ctx->priv;
ThreadData *t = arg;
const int width = t->width;
const int height = t->height;
const int src_stride = t->srcStride;
const int dst_stride = t->dstStride;
const int slice_start = (height * jobnr) / nb_jobs;
const int slice_end = (height * (jobnr + 1)) / nb_jobs;
const int radius = s->radius;
const float *src = t->src;
float *dst = t->dst;
int w;
int numPix;
w = (radius << 1) + 1;
numPix = w * w;
for (int i = slice_start;i < slice_end;i++) {
for (int j = 0;j < width;j++) {
float temp = 0.0;
for (int row = -radius;row <= radius;row++) {
for (int col = -radius;col <= radius;col++) {
int x = i + row;
int y = j + col;
x = (x < 0) ? 0 : (x >= height ? height - 1 : x);
y = (y < 0) ? 0 : (y >= width ? width - 1 : y);
temp += src[x * src_stride + y];
}
}
dst[i * dst_stride + j] = temp / numPix;
}
}
return 0;
}
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P,
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUV420P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14,
AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA444P9,
AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA444P10,
AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_NONE
};
return ff_set_common_formats(ctx, ff_make_format_list(pix_fmts));
}
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
GuidedContext *s = ctx->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
if (ctx->inputs[0]->w != ctx->inputs[1]->w ||
ctx->inputs[0]->h != ctx->inputs[1]->h) {
av_log(ctx, AV_LOG_ERROR, "Width and height of input videos must be same.\n");
return AVERROR(EINVAL);
}
if (ctx->inputs[0]->format != ctx->inputs[1]->format) {
av_log(ctx, AV_LOG_ERROR, "Inputs must be of same pixel format.\n");
return AVERROR(EINVAL);
}
s->depth = desc->comp[0].depth;
s->width = ctx->inputs[0]->w;
s->height = ctx->inputs[0]->h;
s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
s->planewidth[0] = s->planewidth[3] = inlink->w;
s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
s->planeheight[0] = s->planeheight[3] = inlink->h;
s->nb_planes = av_pix_fmt_count_planes(inlink->format);
s->box_slice = box_slice;
return 0;
}
#define GUIDED(type, name) \
static int guided_##name(AVFilterContext *ctx, GuidedContext *s, \
const uint8_t *ssrc, const uint8_t *ssrcRef, \
uint8_t *ddst, int radius, float eps, int width, int height, \
int src_stride, int src_ref_stride, int dst_stride, \
float maxval) \
{ \
int ret = 0; \
type *dst = (type *)ddst; \
const type *src = (const type *)ssrc; \
const type *srcRef = (const type *)ssrcRef; \
\
ThreadData t; \
const int nb_threads = ff_filter_get_nb_threads(ctx); \
float *I; \
float *II; \
float *P; \
float *IP; \
float *meanI; \
float *meanII; \
float *meanP; \
float *meanIP; \
float *A; \
float *B; \
float *meanA; \
float *meanB; \
\
I = av_calloc(width * height, sizeof(float)); \
II = av_calloc(width * height, sizeof(float)); \
P = av_calloc(width * height, sizeof(float)); \
IP = av_calloc(width * height, sizeof(float)); \
meanI = av_calloc(width * height, sizeof(float)); \
meanII = av_calloc(width * height, sizeof(float)); \
meanP = av_calloc(width * height, sizeof(float)); \
meanIP = av_calloc(width * height, sizeof(float)); \
\
A = av_calloc(width * height, sizeof(float)); \
B = av_calloc(width * height, sizeof(float)); \
meanA = av_calloc(width * height, sizeof(float)); \
meanB = av_calloc(width * height, sizeof(float)); \
\
if (!I || !II || !P || !IP || !meanI || !meanII || !meanP || \
!meanIP || !A || !B || !meanA || !meanB){ \
ret = AVERROR(ENOMEM); \
goto end; \
} \
for (int i = 0;i < height;i++) { \
for (int j = 0;j < width;j++) { \
int x = i * width + j; \
I[x] = src[i * src_stride + j] / maxval; \
II[x] = I[x] * I[x]; \
P[x] = srcRef[i * src_ref_stride + j] / maxval; \
IP[x] = I[x] * P[x]; \
} \
} \
\
t.width = width; \
t.height = height; \
t.srcStride = width; \
t.dstStride = width; \
t.src = I; \
t.dst = meanI; \
ctx->internal->execute(ctx, s->box_slice, &t, NULL, FFMIN(height, nb_threads)); \
t.src = II; \
t.dst = meanII; \
ctx->internal->execute(ctx, s->box_slice, &t, NULL, FFMIN(height, nb_threads)); \
t.src = P; \
t.dst = meanP; \
ctx->internal->execute(ctx, s->box_slice, &t, NULL, FFMIN(height, nb_threads)); \
t.src = IP; \
t.dst = meanIP; \
ctx->internal->execute(ctx, s->box_slice, &t, NULL, FFMIN(height, nb_threads)); \
\
for (int i = 0;i < height;i++) { \
for (int j = 0;j < width;j++) { \
int x = i * width + j; \
float varI = meanII[x] - (meanI[x] * meanI[x]); \
float covIP = meanIP[x] - (meanI[x] * meanP[x]); \
A[x] = covIP / (varI + eps); \
B[x] = meanP[x] - A[x] * meanI[x]; \
} \
} \
\
t.src = A; \
t.dst = meanA; \
ctx->internal->execute(ctx, s->box_slice, &t, NULL, FFMIN(height, nb_threads)); \
t.src = B; \
t.dst = meanB; \
ctx->internal->execute(ctx, s->box_slice, &t, NULL, FFMIN(height, nb_threads)); \
\
for (int i = 0;i < height;i++) { \
for (int j = 0;j < width;j++) { \
int x = i * width + j; \
dst[i * dst_stride + j] = meanA[x] * src[i * src_stride + j] + \
meanB[x] * maxval; \
} \
} \
end: \
av_freep(&I); \
av_freep(&II); \
av_freep(&P); \
av_freep(&IP); \
av_freep(&meanI); \
av_freep(&meanII); \
av_freep(&meanP); \
av_freep(&meanIP); \
av_freep(&A); \
av_freep(&B); \
av_freep(&meanA); \
av_freep(&meanB); \
return ret; \
}
GUIDED(uint8_t, byte)
GUIDED(uint16_t, word)
static int process_frame(FFFrameSync *fs)
{
AVFilterContext *ctx = fs->parent;
GuidedContext *s = fs->opaque;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out_frame = NULL, *main_frame = NULL, *ref_frame = NULL;
int ret;
ret = ff_framesync_dualinput_get(fs, &main_frame, &ref_frame);
if (ret < 0)
return ret;
out_frame = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out_frame) {
av_frame_free(&main_frame);
av_frame_free(&ref_frame);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out_frame, main_frame);
if (ctx->is_disabled || !ref_frame) {
av_frame_copy_props(ref_frame, main_frame);
}
for (int plane = 0; plane < s->nb_planes; plane++) {
if (!(s->planes & (1 << plane))) {
av_image_copy_plane(out_frame->data[plane], out_frame->linesize[plane],
main_frame->data[plane], main_frame->linesize[plane],
s->planewidth[plane] * ((s->depth + 7) / 8), s->planeheight[plane]);
continue;
}
if (s->depth <= 8)
guided_byte(ctx, s, main_frame->data[plane], ref_frame->data[plane], out_frame->data[plane], s->radius, s->eps,
s->planewidth[plane], s->planeheight[plane],
main_frame->linesize[plane], ref_frame->linesize[plane], out_frame->linesize[plane], (1 << s->depth) - 1.f);
else
guided_word(ctx, s, main_frame->data[plane], ref_frame->data[plane], out_frame->data[plane], s->radius, s->eps,
s->planewidth[plane], s->planeheight[plane],
main_frame->linesize[plane] / 2, ref_frame->linesize[plane] / 2, out_frame->linesize[plane] / 2, (1 << s->depth) - 1.f);
}
return ff_filter_frame(outlink, out_frame);
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
GuidedContext *s = ctx->priv;
AVFilterLink *mainlink = ctx->inputs[0];
FFFrameSyncIn *in;
int ret;
outlink->w = mainlink->w;
outlink->h = mainlink->h;
outlink->time_base = mainlink->time_base;
outlink->sample_aspect_ratio = mainlink->sample_aspect_ratio;
outlink->frame_rate = mainlink->frame_rate;
if ((ret = ff_framesync_init(&s->fs, ctx, 2)) < 0)
return ret;
outlink->time_base = s->fs.time_base;
in = s->fs.in;
in[0].time_base = mainlink->time_base;
in[1].time_base = ctx->inputs[1]->time_base;
in[0].sync = 2;
in[0].before = EXT_INFINITY;
in[0].after = EXT_INFINITY;
in[1].sync = 1;
in[1].before = EXT_INFINITY;
in[1].after = EXT_INFINITY;
s->fs.opaque = s;
s->fs.on_event = process_frame;
return ff_framesync_configure(&s->fs);
}
static int activate(AVFilterContext *ctx)
{
GuidedContext *s = ctx->priv;
return ff_framesync_activate(&s->fs);
}
static av_cold int init(AVFilterContext *ctx)
{
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
GuidedContext *s = ctx->priv;
ff_framesync_uninit(&s->fs);
return;
}
static int process_command(AVFilterContext *ctx,
const char *cmd,
const char *arg,
char *res,
int res_len,
int flags)
{
int ret = ff_filter_process_command(ctx, cmd, arg, res, res_len, flags);
if (ret < 0)
return ret;
return 0;
}
static const AVFilterPad guided_inputs[] = {
{
.name = "main",
.type = AVMEDIA_TYPE_VIDEO,
},{
.name = "reference",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_input,
},
{ NULL }
};
static const AVFilterPad guided_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
},
{ NULL }
};
const AVFilter ff_vf_guided = {
.name = "guided",
.description = NULL_IF_CONFIG_SMALL("Apply Guided filter."),
.init = init,
.uninit = uninit,
.query_formats = query_formats,
.priv_size = sizeof(GuidedContext),
.priv_class = &guided_class,
.activate = activate,
.inputs = guided_inputs,
.outputs = guided_outputs,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
.process_command = process_command,
};