1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
FFmpeg/libavutil/hwcontext_cuda.c
Lynne 4a6581e968 hwcontext_vulkan: dynamically load functions
This patch allows for alternative loader implementations.
2021-04-30 00:08:37 +02:00

522 lines
15 KiB
C

/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "buffer.h"
#include "common.h"
#include "hwcontext.h"
#include "hwcontext_internal.h"
#include "hwcontext_cuda_internal.h"
#if CONFIG_VULKAN
#include "hwcontext_vulkan.h"
#endif
#include "cuda_check.h"
#include "mem.h"
#include "pixdesc.h"
#include "pixfmt.h"
#include "imgutils.h"
typedef struct CUDAFramesContext {
int shift_width, shift_height;
int tex_alignment;
} CUDAFramesContext;
static const enum AVPixelFormat supported_formats[] = {
AV_PIX_FMT_NV12,
AV_PIX_FMT_YUV420P,
AV_PIX_FMT_YUVA420P,
AV_PIX_FMT_YUV444P,
AV_PIX_FMT_P010,
AV_PIX_FMT_P016,
AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_0RGB32,
AV_PIX_FMT_0BGR32,
#if CONFIG_VULKAN
AV_PIX_FMT_VULKAN,
#endif
};
#define CHECK_CU(x) FF_CUDA_CHECK_DL(device_ctx, cu, x)
static int cuda_frames_get_constraints(AVHWDeviceContext *ctx,
const void *hwconfig,
AVHWFramesConstraints *constraints)
{
int i;
constraints->valid_sw_formats = av_malloc_array(FF_ARRAY_ELEMS(supported_formats) + 1,
sizeof(*constraints->valid_sw_formats));
if (!constraints->valid_sw_formats)
return AVERROR(ENOMEM);
for (i = 0; i < FF_ARRAY_ELEMS(supported_formats); i++)
constraints->valid_sw_formats[i] = supported_formats[i];
constraints->valid_sw_formats[FF_ARRAY_ELEMS(supported_formats)] = AV_PIX_FMT_NONE;
constraints->valid_hw_formats = av_malloc_array(2, sizeof(*constraints->valid_hw_formats));
if (!constraints->valid_hw_formats)
return AVERROR(ENOMEM);
constraints->valid_hw_formats[0] = AV_PIX_FMT_CUDA;
constraints->valid_hw_formats[1] = AV_PIX_FMT_NONE;
return 0;
}
static void cuda_buffer_free(void *opaque, uint8_t *data)
{
AVHWFramesContext *ctx = opaque;
AVHWDeviceContext *device_ctx = ctx->device_ctx;
AVCUDADeviceContext *hwctx = device_ctx->hwctx;
CudaFunctions *cu = hwctx->internal->cuda_dl;
CUcontext dummy;
CHECK_CU(cu->cuCtxPushCurrent(hwctx->cuda_ctx));
CHECK_CU(cu->cuMemFree((CUdeviceptr)data));
CHECK_CU(cu->cuCtxPopCurrent(&dummy));
}
static AVBufferRef *cuda_pool_alloc(void *opaque, size_t size)
{
AVHWFramesContext *ctx = opaque;
AVHWDeviceContext *device_ctx = ctx->device_ctx;
AVCUDADeviceContext *hwctx = device_ctx->hwctx;
CudaFunctions *cu = hwctx->internal->cuda_dl;
AVBufferRef *ret = NULL;
CUcontext dummy = NULL;
CUdeviceptr data;
int err;
err = CHECK_CU(cu->cuCtxPushCurrent(hwctx->cuda_ctx));
if (err < 0)
return NULL;
err = CHECK_CU(cu->cuMemAlloc(&data, size));
if (err < 0)
goto fail;
ret = av_buffer_create((uint8_t*)data, size, cuda_buffer_free, ctx, 0);
if (!ret) {
CHECK_CU(cu->cuMemFree(data));
goto fail;
}
fail:
CHECK_CU(cu->cuCtxPopCurrent(&dummy));
return ret;
}
static int cuda_frames_init(AVHWFramesContext *ctx)
{
AVHWDeviceContext *device_ctx = ctx->device_ctx;
AVCUDADeviceContext *hwctx = device_ctx->hwctx;
CUDAFramesContext *priv = ctx->internal->priv;
CudaFunctions *cu = hwctx->internal->cuda_dl;
int err, i;
for (i = 0; i < FF_ARRAY_ELEMS(supported_formats); i++) {
if (ctx->sw_format == supported_formats[i])
break;
}
if (i == FF_ARRAY_ELEMS(supported_formats)) {
av_log(ctx, AV_LOG_ERROR, "Pixel format '%s' is not supported\n",
av_get_pix_fmt_name(ctx->sw_format));
return AVERROR(ENOSYS);
}
err = CHECK_CU(cu->cuDeviceGetAttribute(&priv->tex_alignment,
14 /* CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT */,
hwctx->internal->cuda_device));
if (err < 0)
return err;
av_log(ctx, AV_LOG_DEBUG, "CUDA texture alignment: %d\n", priv->tex_alignment);
// YUV420P is a special case.
// Since nvenc expects the U/V planes to have half the linesize of the Y plane
// alignment has to be doubled to ensure the U/V planes still end up aligned.
if (ctx->sw_format == AV_PIX_FMT_YUV420P)
priv->tex_alignment *= 2;
av_pix_fmt_get_chroma_sub_sample(ctx->sw_format, &priv->shift_width, &priv->shift_height);
if (!ctx->pool) {
int size = av_image_get_buffer_size(ctx->sw_format, ctx->width, ctx->height, priv->tex_alignment);
if (size < 0)
return size;
ctx->internal->pool_internal = av_buffer_pool_init2(size, ctx, cuda_pool_alloc, NULL);
if (!ctx->internal->pool_internal)
return AVERROR(ENOMEM);
}
return 0;
}
static int cuda_get_buffer(AVHWFramesContext *ctx, AVFrame *frame)
{
CUDAFramesContext *priv = ctx->internal->priv;
int res;
frame->buf[0] = av_buffer_pool_get(ctx->pool);
if (!frame->buf[0])
return AVERROR(ENOMEM);
res = av_image_fill_arrays(frame->data, frame->linesize, frame->buf[0]->data,
ctx->sw_format, ctx->width, ctx->height, priv->tex_alignment);
if (res < 0)
return res;
// YUV420P is a special case.
// Nvenc expects the U/V planes in swapped order from how ffmpeg expects them, also chroma is half-aligned
if (ctx->sw_format == AV_PIX_FMT_YUV420P) {
frame->linesize[1] = frame->linesize[2] = frame->linesize[0] / 2;
frame->data[2] = frame->data[1];
frame->data[1] = frame->data[2] + frame->linesize[2] * (ctx->height / 2);
}
frame->format = AV_PIX_FMT_CUDA;
frame->width = ctx->width;
frame->height = ctx->height;
return 0;
}
static int cuda_transfer_get_formats(AVHWFramesContext *ctx,
enum AVHWFrameTransferDirection dir,
enum AVPixelFormat **formats)
{
enum AVPixelFormat *fmts;
fmts = av_malloc_array(2, sizeof(*fmts));
if (!fmts)
return AVERROR(ENOMEM);
fmts[0] = ctx->sw_format;
fmts[1] = AV_PIX_FMT_NONE;
*formats = fmts;
return 0;
}
static int cuda_transfer_data(AVHWFramesContext *ctx, AVFrame *dst,
const AVFrame *src)
{
CUDAFramesContext *priv = ctx->internal->priv;
AVHWDeviceContext *device_ctx = ctx->device_ctx;
AVCUDADeviceContext *hwctx = device_ctx->hwctx;
CudaFunctions *cu = hwctx->internal->cuda_dl;
CUcontext dummy;
int i, ret;
if ((src->hw_frames_ctx && ((AVHWFramesContext*)src->hw_frames_ctx->data)->format != AV_PIX_FMT_CUDA) ||
(dst->hw_frames_ctx && ((AVHWFramesContext*)dst->hw_frames_ctx->data)->format != AV_PIX_FMT_CUDA))
return AVERROR(ENOSYS);
ret = CHECK_CU(cu->cuCtxPushCurrent(hwctx->cuda_ctx));
if (ret < 0)
return ret;
for (i = 0; i < FF_ARRAY_ELEMS(src->data) && src->data[i]; i++) {
CUDA_MEMCPY2D cpy = {
.srcPitch = src->linesize[i],
.dstPitch = dst->linesize[i],
.WidthInBytes = FFMIN(src->linesize[i], dst->linesize[i]),
.Height = src->height >> ((i == 0 || i == 3) ? 0 : priv->shift_height),
};
if (src->hw_frames_ctx) {
cpy.srcMemoryType = CU_MEMORYTYPE_DEVICE;
cpy.srcDevice = (CUdeviceptr)src->data[i];
} else {
cpy.srcMemoryType = CU_MEMORYTYPE_HOST;
cpy.srcHost = src->data[i];
}
if (dst->hw_frames_ctx) {
cpy.dstMemoryType = CU_MEMORYTYPE_DEVICE;
cpy.dstDevice = (CUdeviceptr)dst->data[i];
} else {
cpy.dstMemoryType = CU_MEMORYTYPE_HOST;
cpy.dstHost = dst->data[i];
}
ret = CHECK_CU(cu->cuMemcpy2DAsync(&cpy, hwctx->stream));
if (ret < 0)
goto exit;
}
if (!dst->hw_frames_ctx) {
ret = CHECK_CU(cu->cuStreamSynchronize(hwctx->stream));
if (ret < 0)
goto exit;
}
exit:
CHECK_CU(cu->cuCtxPopCurrent(&dummy));
return 0;
}
static void cuda_device_uninit(AVHWDeviceContext *device_ctx)
{
AVCUDADeviceContext *hwctx = device_ctx->hwctx;
if (hwctx->internal) {
CudaFunctions *cu = hwctx->internal->cuda_dl;
if (hwctx->internal->is_allocated && hwctx->cuda_ctx) {
if (hwctx->internal->flags & AV_CUDA_USE_PRIMARY_CONTEXT)
CHECK_CU(cu->cuDevicePrimaryCtxRelease(hwctx->internal->cuda_device));
else
CHECK_CU(cu->cuCtxDestroy(hwctx->cuda_ctx));
hwctx->cuda_ctx = NULL;
}
cuda_free_functions(&hwctx->internal->cuda_dl);
}
av_freep(&hwctx->internal);
}
static int cuda_device_init(AVHWDeviceContext *ctx)
{
AVCUDADeviceContext *hwctx = ctx->hwctx;
int ret;
if (!hwctx->internal) {
hwctx->internal = av_mallocz(sizeof(*hwctx->internal));
if (!hwctx->internal)
return AVERROR(ENOMEM);
}
if (!hwctx->internal->cuda_dl) {
ret = cuda_load_functions(&hwctx->internal->cuda_dl, ctx);
if (ret < 0) {
av_log(ctx, AV_LOG_ERROR, "Could not dynamically load CUDA\n");
goto error;
}
}
return 0;
error:
cuda_device_uninit(ctx);
return ret;
}
static int cuda_context_init(AVHWDeviceContext *device_ctx, int flags) {
AVCUDADeviceContext *hwctx = device_ctx->hwctx;
CudaFunctions *cu;
CUcontext dummy;
int ret, dev_active = 0;
unsigned int dev_flags = 0;
const unsigned int desired_flags = CU_CTX_SCHED_BLOCKING_SYNC;
cu = hwctx->internal->cuda_dl;
hwctx->internal->flags = flags;
if (flags & AV_CUDA_USE_PRIMARY_CONTEXT) {
ret = CHECK_CU(cu->cuDevicePrimaryCtxGetState(hwctx->internal->cuda_device,
&dev_flags, &dev_active));
if (ret < 0)
return ret;
if (dev_active && dev_flags != desired_flags) {
av_log(device_ctx, AV_LOG_ERROR, "Primary context already active with incompatible flags.\n");
return AVERROR(ENOTSUP);
} else if (dev_flags != desired_flags) {
ret = CHECK_CU(cu->cuDevicePrimaryCtxSetFlags(hwctx->internal->cuda_device,
desired_flags));
if (ret < 0)
return ret;
}
ret = CHECK_CU(cu->cuDevicePrimaryCtxRetain(&hwctx->cuda_ctx,
hwctx->internal->cuda_device));
if (ret < 0)
return ret;
} else {
ret = CHECK_CU(cu->cuCtxCreate(&hwctx->cuda_ctx, desired_flags,
hwctx->internal->cuda_device));
if (ret < 0)
return ret;
CHECK_CU(cu->cuCtxPopCurrent(&dummy));
}
hwctx->internal->is_allocated = 1;
// Setting stream to NULL will make functions automatically use the default CUstream
hwctx->stream = NULL;
return 0;
}
static int cuda_device_create(AVHWDeviceContext *device_ctx,
const char *device,
AVDictionary *opts, int flags)
{
AVCUDADeviceContext *hwctx = device_ctx->hwctx;
CudaFunctions *cu;
int ret, device_idx = 0;
if (device)
device_idx = strtol(device, NULL, 0);
if (cuda_device_init(device_ctx) < 0)
goto error;
cu = hwctx->internal->cuda_dl;
ret = CHECK_CU(cu->cuInit(0));
if (ret < 0)
goto error;
ret = CHECK_CU(cu->cuDeviceGet(&hwctx->internal->cuda_device, device_idx));
if (ret < 0)
goto error;
ret = cuda_context_init(device_ctx, flags);
if (ret < 0)
goto error;
return 0;
error:
cuda_device_uninit(device_ctx);
return AVERROR_UNKNOWN;
}
static int cuda_device_derive(AVHWDeviceContext *device_ctx,
AVHWDeviceContext *src_ctx, AVDictionary *opts,
int flags) {
AVCUDADeviceContext *hwctx = device_ctx->hwctx;
CudaFunctions *cu;
const char *src_uuid = NULL;
int ret, i, device_count;
#if CONFIG_VULKAN
VkPhysicalDeviceIDProperties vk_idp = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES,
};
#endif
switch (src_ctx->type) {
#if CONFIG_VULKAN
#define TYPE PFN_vkGetPhysicalDeviceProperties2
case AV_HWDEVICE_TYPE_VULKAN: {
AVVulkanDeviceContext *vkctx = src_ctx->hwctx;
TYPE prop_fn = (TYPE)vkctx->get_proc_addr(vkctx->inst, "vkGetPhysicalDeviceProperties2");
VkPhysicalDeviceProperties2 vk_dev_props = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2,
.pNext = &vk_idp,
};
prop_fn(vkctx->phys_dev, &vk_dev_props);
src_uuid = vk_idp.deviceUUID;
break;
}
#undef TYPE
#endif
default:
return AVERROR(ENOSYS);
}
if (!src_uuid) {
av_log(device_ctx, AV_LOG_ERROR,
"Failed to get UUID of source device.\n");
goto error;
}
if (cuda_device_init(device_ctx) < 0)
goto error;
cu = hwctx->internal->cuda_dl;
ret = CHECK_CU(cu->cuInit(0));
if (ret < 0)
goto error;
ret = CHECK_CU(cu->cuDeviceGetCount(&device_count));
if (ret < 0)
goto error;
hwctx->internal->cuda_device = -1;
for (i = 0; i < device_count; i++) {
CUdevice dev;
CUuuid uuid;
ret = CHECK_CU(cu->cuDeviceGet(&dev, i));
if (ret < 0)
goto error;
ret = CHECK_CU(cu->cuDeviceGetUuid(&uuid, dev));
if (ret < 0)
goto error;
if (memcmp(src_uuid, uuid.bytes, sizeof (uuid.bytes)) == 0) {
hwctx->internal->cuda_device = dev;
break;
}
}
if (hwctx->internal->cuda_device == -1) {
av_log(device_ctx, AV_LOG_ERROR, "Could not derive CUDA device.\n");
goto error;
}
ret = cuda_context_init(device_ctx, flags);
if (ret < 0)
goto error;
return 0;
error:
cuda_device_uninit(device_ctx);
return AVERROR_UNKNOWN;
}
const HWContextType ff_hwcontext_type_cuda = {
.type = AV_HWDEVICE_TYPE_CUDA,
.name = "CUDA",
.device_hwctx_size = sizeof(AVCUDADeviceContext),
.frames_priv_size = sizeof(CUDAFramesContext),
.device_create = cuda_device_create,
.device_derive = cuda_device_derive,
.device_init = cuda_device_init,
.device_uninit = cuda_device_uninit,
.frames_get_constraints = cuda_frames_get_constraints,
.frames_init = cuda_frames_init,
.frames_get_buffer = cuda_get_buffer,
.transfer_get_formats = cuda_transfer_get_formats,
.transfer_data_to = cuda_transfer_data,
.transfer_data_from = cuda_transfer_data,
.pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_CUDA, AV_PIX_FMT_NONE },
};