1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-08 13:22:53 +02:00
FFmpeg/libavfilter/avfiltergraph.c
Michael Niedermayer 9a4199c71b
avfilter/avfiltergraph: return value of ff_request_frame() is unused
Fixes: CID1397741 Unchecked return value

Sponsored-by: Sovereign Tech Fund
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
(cherry picked from commit e757726e89)
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2024-05-22 22:04:32 +02:00

1434 lines
52 KiB
C

/*
* filter graphs
* Copyright (c) 2008 Vitor Sessak
* Copyright (c) 2007 Bobby Bingham
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "config.h"
#include <string.h>
#include "libavutil/avassert.h"
#include "libavutil/bprint.h"
#include "libavutil/channel_layout.h"
#include "libavutil/hwcontext.h"
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "avfilter_internal.h"
#include "buffersink.h"
#include "formats.h"
#include "framequeue.h"
#include "internal.h"
#define OFFSET(x) offsetof(AVFilterGraph, x)
#define F AV_OPT_FLAG_FILTERING_PARAM
#define V AV_OPT_FLAG_VIDEO_PARAM
#define A AV_OPT_FLAG_AUDIO_PARAM
static const AVOption filtergraph_options[] = {
{ "thread_type", "Allowed thread types", OFFSET(thread_type), AV_OPT_TYPE_FLAGS,
{ .i64 = AVFILTER_THREAD_SLICE }, 0, INT_MAX, F|V|A, .unit = "thread_type" },
{ "slice", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AVFILTER_THREAD_SLICE }, .flags = F|V|A, .unit = "thread_type" },
{ "threads", "Maximum number of threads", OFFSET(nb_threads), AV_OPT_TYPE_INT,
{ .i64 = 0 }, 0, INT_MAX, F|V|A, .unit = "threads"},
{"auto", "autodetect a suitable number of threads to use", 0, AV_OPT_TYPE_CONST, {.i64 = 0 }, .flags = F|V|A, .unit = "threads"},
{"scale_sws_opts" , "default scale filter options" , OFFSET(scale_sws_opts) ,
AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, F|V },
{"aresample_swr_opts" , "default aresample filter options" , OFFSET(aresample_swr_opts) ,
AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, F|A },
{ NULL },
};
static const AVClass filtergraph_class = {
.class_name = "AVFilterGraph",
.item_name = av_default_item_name,
.version = LIBAVUTIL_VERSION_INT,
.option = filtergraph_options,
.category = AV_CLASS_CATEGORY_FILTER,
};
#if !HAVE_THREADS
void ff_graph_thread_free(FFFilterGraph *graph)
{
}
int ff_graph_thread_init(FFFilterGraph *graph)
{
graph->p.thread_type = 0;
graph->p.nb_threads = 1;
return 0;
}
#endif
AVFilterGraph *avfilter_graph_alloc(void)
{
FFFilterGraph *graph = av_mallocz(sizeof(*graph));
AVFilterGraph *ret;
if (!graph)
return NULL;
ret = &graph->p;
ret->av_class = &filtergraph_class;
av_opt_set_defaults(ret);
ff_framequeue_global_init(&graph->frame_queues);
return ret;
}
void ff_filter_graph_remove_filter(AVFilterGraph *graph, AVFilterContext *filter)
{
int i, j;
for (i = 0; i < graph->nb_filters; i++) {
if (graph->filters[i] == filter) {
FFSWAP(AVFilterContext*, graph->filters[i],
graph->filters[graph->nb_filters - 1]);
graph->nb_filters--;
filter->graph = NULL;
for (j = 0; j<filter->nb_outputs; j++)
if (filter->outputs[j])
filter->outputs[j]->graph = NULL;
return;
}
}
}
void avfilter_graph_free(AVFilterGraph **graphp)
{
AVFilterGraph *graph = *graphp;
FFFilterGraph *graphi = fffiltergraph(graph);
if (!graph)
return;
while (graph->nb_filters)
avfilter_free(graph->filters[0]);
ff_graph_thread_free(graphi);
av_freep(&graphi->sink_links);
av_opt_free(graph);
av_freep(&graph->filters);
av_freep(graphp);
}
int avfilter_graph_create_filter(AVFilterContext **filt_ctx, const AVFilter *filt,
const char *name, const char *args, void *opaque,
AVFilterGraph *graph_ctx)
{
int ret;
*filt_ctx = avfilter_graph_alloc_filter(graph_ctx, filt, name);
if (!*filt_ctx)
return AVERROR(ENOMEM);
ret = avfilter_init_str(*filt_ctx, args);
if (ret < 0)
goto fail;
return 0;
fail:
avfilter_free(*filt_ctx);
*filt_ctx = NULL;
return ret;
}
void avfilter_graph_set_auto_convert(AVFilterGraph *graph, unsigned flags)
{
fffiltergraph(graph)->disable_auto_convert = flags;
}
AVFilterContext *avfilter_graph_alloc_filter(AVFilterGraph *graph,
const AVFilter *filter,
const char *name)
{
AVFilterContext **filters, *s;
FFFilterGraph *graphi = fffiltergraph(graph);
if (graph->thread_type && !graphi->thread_execute) {
if (graph->execute) {
graphi->thread_execute = graph->execute;
} else {
int ret = ff_graph_thread_init(graphi);
if (ret < 0) {
av_log(graph, AV_LOG_ERROR, "Error initializing threading: %s.\n", av_err2str(ret));
return NULL;
}
}
}
filters = av_realloc_array(graph->filters, graph->nb_filters + 1, sizeof(*filters));
if (!filters)
return NULL;
graph->filters = filters;
s = ff_filter_alloc(filter, name);
if (!s)
return NULL;
graph->filters[graph->nb_filters++] = s;
s->graph = graph;
return s;
}
/**
* Check for the validity of graph.
*
* A graph is considered valid if all its input and output pads are
* connected.
*
* @return >= 0 in case of success, a negative value otherwise
*/
static int graph_check_validity(AVFilterGraph *graph, void *log_ctx)
{
AVFilterContext *filt;
int i, j;
for (i = 0; i < graph->nb_filters; i++) {
const AVFilterPad *pad;
filt = graph->filters[i];
for (j = 0; j < filt->nb_inputs; j++) {
if (!filt->inputs[j] || !filt->inputs[j]->src) {
pad = &filt->input_pads[j];
av_log(log_ctx, AV_LOG_ERROR,
"Input pad \"%s\" with type %s of the filter instance \"%s\" of %s not connected to any source\n",
pad->name, av_get_media_type_string(pad->type), filt->name, filt->filter->name);
return AVERROR(EINVAL);
}
}
for (j = 0; j < filt->nb_outputs; j++) {
if (!filt->outputs[j] || !filt->outputs[j]->dst) {
pad = &filt->output_pads[j];
av_log(log_ctx, AV_LOG_ERROR,
"Output pad \"%s\" with type %s of the filter instance \"%s\" of %s not connected to any destination\n",
pad->name, av_get_media_type_string(pad->type), filt->name, filt->filter->name);
return AVERROR(EINVAL);
}
}
}
return 0;
}
/**
* Configure all the links of graphctx.
*
* @return >= 0 in case of success, a negative value otherwise
*/
static int graph_config_links(AVFilterGraph *graph, void *log_ctx)
{
AVFilterContext *filt;
int i, ret;
for (i = 0; i < graph->nb_filters; i++) {
filt = graph->filters[i];
if (!filt->nb_outputs) {
if ((ret = ff_filter_config_links(filt)))
return ret;
}
}
return 0;
}
static int graph_check_links(AVFilterGraph *graph, void *log_ctx)
{
AVFilterContext *f;
AVFilterLink *l;
unsigned i, j;
int ret;
for (i = 0; i < graph->nb_filters; i++) {
f = graph->filters[i];
for (j = 0; j < f->nb_outputs; j++) {
l = f->outputs[j];
if (l->type == AVMEDIA_TYPE_VIDEO) {
ret = av_image_check_size2(l->w, l->h, INT64_MAX, l->format, 0, f);
if (ret < 0)
return ret;
}
}
}
return 0;
}
AVFilterContext *avfilter_graph_get_filter(AVFilterGraph *graph, const char *name)
{
int i;
for (i = 0; i < graph->nb_filters; i++)
if (graph->filters[i]->name && !strcmp(name, graph->filters[i]->name))
return graph->filters[i];
return NULL;
}
static int filter_link_check_formats(void *log, AVFilterLink *link, AVFilterFormatsConfig *cfg)
{
int ret;
switch (link->type) {
case AVMEDIA_TYPE_VIDEO:
if ((ret = ff_formats_check_pixel_formats(log, cfg->formats)) < 0 ||
(ret = ff_formats_check_color_spaces(log, cfg->color_spaces)) < 0 ||
(ret = ff_formats_check_color_ranges(log, cfg->color_ranges)) < 0)
return ret;
break;
case AVMEDIA_TYPE_AUDIO:
if ((ret = ff_formats_check_sample_formats(log, cfg->formats)) < 0 ||
(ret = ff_formats_check_sample_rates(log, cfg->samplerates)) < 0 ||
(ret = ff_formats_check_channel_layouts(log, cfg->channel_layouts)) < 0)
return ret;
break;
default:
av_assert0(!"reached");
}
return 0;
}
/**
* Check the validity of the formats / etc. lists set by query_formats().
*
* In particular, check they do not contain any redundant element.
*/
static int filter_check_formats(AVFilterContext *ctx)
{
unsigned i;
int ret;
for (i = 0; i < ctx->nb_inputs; i++) {
ret = filter_link_check_formats(ctx, ctx->inputs[i], &ctx->inputs[i]->outcfg);
if (ret < 0)
return ret;
}
for (i = 0; i < ctx->nb_outputs; i++) {
ret = filter_link_check_formats(ctx, ctx->outputs[i], &ctx->outputs[i]->incfg);
if (ret < 0)
return ret;
}
return 0;
}
static int filter_query_formats(AVFilterContext *ctx)
{
int ret;
if (ctx->filter->formats_state == FF_FILTER_FORMATS_QUERY_FUNC) {
if ((ret = ctx->filter->formats.query_func(ctx)) < 0) {
if (ret != AVERROR(EAGAIN))
av_log(ctx, AV_LOG_ERROR, "Query format failed for '%s': %s\n",
ctx->name, av_err2str(ret));
return ret;
}
ret = filter_check_formats(ctx);
if (ret < 0)
return ret;
}
return ff_default_query_formats(ctx);
}
static int formats_declared(AVFilterContext *f)
{
int i;
for (i = 0; i < f->nb_inputs; i++) {
if (!f->inputs[i]->outcfg.formats)
return 0;
if (f->inputs[i]->type == AVMEDIA_TYPE_VIDEO &&
!(f->inputs[i]->outcfg.color_ranges &&
f->inputs[i]->outcfg.color_spaces))
return 0;
if (f->inputs[i]->type == AVMEDIA_TYPE_AUDIO &&
!(f->inputs[i]->outcfg.samplerates &&
f->inputs[i]->outcfg.channel_layouts))
return 0;
}
for (i = 0; i < f->nb_outputs; i++) {
if (!f->outputs[i]->incfg.formats)
return 0;
if (f->outputs[i]->type == AVMEDIA_TYPE_VIDEO &&
!(f->outputs[i]->incfg.color_ranges &&
f->outputs[i]->incfg.color_spaces))
return 0;
if (f->outputs[i]->type == AVMEDIA_TYPE_AUDIO &&
!(f->outputs[i]->incfg.samplerates &&
f->outputs[i]->incfg.channel_layouts))
return 0;
}
return 1;
}
/**
* Perform one round of query_formats() and merging formats lists on the
* filter graph.
* @return >=0 if all links formats lists could be queried and merged;
* AVERROR(EAGAIN) some progress was made in the queries or merging
* and a later call may succeed;
* AVERROR(EIO) (may be changed) plus a log message if no progress
* was made and the negotiation is stuck;
* a negative error code if some other error happened
*/
static int query_formats(AVFilterGraph *graph, void *log_ctx)
{
int i, j, ret;
int converter_count = 0;
int count_queried = 0; /* successful calls to query_formats() */
int count_merged = 0; /* successful merge of formats lists */
int count_already_merged = 0; /* lists already merged */
int count_delayed = 0; /* lists that need to be merged later */
for (i = 0; i < graph->nb_filters; i++) {
AVFilterContext *f = graph->filters[i];
if (formats_declared(f))
continue;
ret = filter_query_formats(f);
if (ret < 0 && ret != AVERROR(EAGAIN))
return ret;
/* note: EAGAIN could indicate a partial success, not counted yet */
count_queried += ret >= 0;
}
/* go through and merge as many format lists as possible */
for (i = 0; i < graph->nb_filters; i++) {
AVFilterContext *filter = graph->filters[i];
for (j = 0; j < filter->nb_inputs; j++) {
AVFilterLink *link = filter->inputs[j];
const AVFilterNegotiation *neg;
unsigned neg_step;
int convert_needed = 0;
if (!link)
continue;
neg = ff_filter_get_negotiation(link);
av_assert0(neg);
for (neg_step = 0; neg_step < neg->nb_mergers; neg_step++) {
const AVFilterFormatsMerger *m = &neg->mergers[neg_step];
void *a = FF_FIELD_AT(void *, m->offset, link->incfg);
void *b = FF_FIELD_AT(void *, m->offset, link->outcfg);
if (a && b && a != b && !m->can_merge(a, b)) {
convert_needed = 1;
break;
}
}
for (neg_step = 0; neg_step < neg->nb_mergers; neg_step++) {
const AVFilterFormatsMerger *m = &neg->mergers[neg_step];
void *a = FF_FIELD_AT(void *, m->offset, link->incfg);
void *b = FF_FIELD_AT(void *, m->offset, link->outcfg);
if (!(a && b)) {
count_delayed++;
} else if (a == b) {
count_already_merged++;
} else if (!convert_needed) {
count_merged++;
ret = m->merge(a, b);
if (ret < 0)
return ret;
if (!ret)
convert_needed = 1;
}
}
if (convert_needed) {
AVFilterContext *convert;
const AVFilter *filter;
AVFilterLink *inlink, *outlink;
char inst_name[30];
const char *opts;
if (fffiltergraph(graph)->disable_auto_convert) {
av_log(log_ctx, AV_LOG_ERROR,
"The filters '%s' and '%s' do not have a common format "
"and automatic conversion is disabled.\n",
link->src->name, link->dst->name);
return AVERROR(EINVAL);
}
/* couldn't merge format lists. auto-insert conversion filter */
if (!(filter = avfilter_get_by_name(neg->conversion_filter))) {
av_log(log_ctx, AV_LOG_ERROR,
"'%s' filter not present, cannot convert formats.\n",
neg->conversion_filter);
return AVERROR(EINVAL);
}
snprintf(inst_name, sizeof(inst_name), "auto_%s_%d",
neg->conversion_filter, converter_count++);
opts = FF_FIELD_AT(char *, neg->conversion_opts_offset, *graph);
ret = avfilter_graph_create_filter(&convert, filter, inst_name, opts, NULL, graph);
if (ret < 0)
return ret;
if ((ret = avfilter_insert_filter(link, convert, 0, 0)) < 0)
return ret;
if ((ret = filter_query_formats(convert)) < 0)
return ret;
inlink = convert->inputs[0];
outlink = convert->outputs[0];
av_assert0( inlink->incfg.formats->refcount > 0);
av_assert0( inlink->outcfg.formats->refcount > 0);
av_assert0(outlink->incfg.formats->refcount > 0);
av_assert0(outlink->outcfg.formats->refcount > 0);
if (outlink->type == AVMEDIA_TYPE_VIDEO) {
av_assert0( inlink-> incfg.color_spaces->refcount > 0);
av_assert0( inlink->outcfg.color_spaces->refcount > 0);
av_assert0(outlink-> incfg.color_spaces->refcount > 0);
av_assert0(outlink->outcfg.color_spaces->refcount > 0);
av_assert0( inlink-> incfg.color_ranges->refcount > 0);
av_assert0( inlink->outcfg.color_ranges->refcount > 0);
av_assert0(outlink-> incfg.color_ranges->refcount > 0);
av_assert0(outlink->outcfg.color_ranges->refcount > 0);
} else if (outlink->type == AVMEDIA_TYPE_AUDIO) {
av_assert0( inlink-> incfg.samplerates->refcount > 0);
av_assert0( inlink->outcfg.samplerates->refcount > 0);
av_assert0(outlink-> incfg.samplerates->refcount > 0);
av_assert0(outlink->outcfg.samplerates->refcount > 0);
av_assert0( inlink-> incfg.channel_layouts->refcount > 0);
av_assert0( inlink->outcfg.channel_layouts->refcount > 0);
av_assert0(outlink-> incfg.channel_layouts->refcount > 0);
av_assert0(outlink->outcfg.channel_layouts->refcount > 0);
}
#define MERGE(merger, link) \
((merger)->merge(FF_FIELD_AT(void *, (merger)->offset, (link)->incfg), \
FF_FIELD_AT(void *, (merger)->offset, (link)->outcfg)))
for (neg_step = 0; neg_step < neg->nb_mergers; neg_step++) {
const AVFilterFormatsMerger *m = &neg->mergers[neg_step];
if ((ret = MERGE(m, inlink)) <= 0 ||
(ret = MERGE(m, outlink)) <= 0) {
if (ret < 0)
return ret;
av_log(log_ctx, AV_LOG_ERROR,
"Impossible to convert between the formats supported by the filter "
"'%s' and the filter '%s'\n", link->src->name, link->dst->name);
return AVERROR(ENOSYS);
}
}
}
}
}
av_log(graph, AV_LOG_DEBUG, "query_formats: "
"%d queried, %d merged, %d already done, %d delayed\n",
count_queried, count_merged, count_already_merged, count_delayed);
if (count_delayed) {
AVBPrint bp;
/* if count_queried > 0, one filter at least did set its formats,
that will give additional information to its neighbour;
if count_merged > 0, one pair of formats lists at least was merged,
that will give additional information to all connected filters;
in both cases, progress was made and a new round must be done */
if (count_queried || count_merged)
return AVERROR(EAGAIN);
av_bprint_init(&bp, 0, AV_BPRINT_SIZE_AUTOMATIC);
for (i = 0; i < graph->nb_filters; i++)
if (!formats_declared(graph->filters[i]))
av_bprintf(&bp, "%s%s", bp.len ? ", " : "",
graph->filters[i]->name);
av_log(graph, AV_LOG_ERROR,
"The following filters could not choose their formats: %s\n"
"Consider inserting the (a)format filter near their input or "
"output.\n", bp.str);
return AVERROR(EIO);
}
return 0;
}
static int get_fmt_score(enum AVSampleFormat dst_fmt, enum AVSampleFormat src_fmt)
{
int score = 0;
if (av_sample_fmt_is_planar(dst_fmt) != av_sample_fmt_is_planar(src_fmt))
score ++;
if (av_get_bytes_per_sample(dst_fmt) < av_get_bytes_per_sample(src_fmt)) {
score += 100 * (av_get_bytes_per_sample(src_fmt) - av_get_bytes_per_sample(dst_fmt));
}else
score += 10 * (av_get_bytes_per_sample(dst_fmt) - av_get_bytes_per_sample(src_fmt));
if (av_get_packed_sample_fmt(dst_fmt) == AV_SAMPLE_FMT_S32 &&
av_get_packed_sample_fmt(src_fmt) == AV_SAMPLE_FMT_FLT)
score += 20;
if (av_get_packed_sample_fmt(dst_fmt) == AV_SAMPLE_FMT_FLT &&
av_get_packed_sample_fmt(src_fmt) == AV_SAMPLE_FMT_S32)
score += 2;
return score;
}
static enum AVSampleFormat find_best_sample_fmt_of_2(enum AVSampleFormat dst_fmt1, enum AVSampleFormat dst_fmt2,
enum AVSampleFormat src_fmt)
{
int score1, score2;
score1 = get_fmt_score(dst_fmt1, src_fmt);
score2 = get_fmt_score(dst_fmt2, src_fmt);
return score1 < score2 ? dst_fmt1 : dst_fmt2;
}
int ff_fmt_is_regular_yuv(enum AVPixelFormat fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(fmt);
if (!desc)
return 0;
if (desc->nb_components < 3)
return 0; /* Grayscale is explicitly full-range in swscale */
av_assert1(!(desc->flags & AV_PIX_FMT_FLAG_HWACCEL));
if (desc->flags & (AV_PIX_FMT_FLAG_RGB | AV_PIX_FMT_FLAG_PAL |
AV_PIX_FMT_FLAG_XYZ | AV_PIX_FMT_FLAG_FLOAT))
return 0;
switch (fmt) {
case AV_PIX_FMT_YUVJ420P:
case AV_PIX_FMT_YUVJ422P:
case AV_PIX_FMT_YUVJ444P:
case AV_PIX_FMT_YUVJ440P:
case AV_PIX_FMT_YUVJ411P:
return 0;
default:
return 1;
}
}
static int pick_format(AVFilterLink *link, AVFilterLink *ref)
{
if (!link || !link->incfg.formats)
return 0;
if (link->type == AVMEDIA_TYPE_VIDEO) {
if(ref && ref->type == AVMEDIA_TYPE_VIDEO){
//FIXME: This should check for AV_PIX_FMT_FLAG_ALPHA after PAL8 pixel format without alpha is implemented
int has_alpha= av_pix_fmt_desc_get(ref->format)->nb_components % 2 == 0;
enum AVPixelFormat best= AV_PIX_FMT_NONE;
int i;
for (i = 0; i < link->incfg.formats->nb_formats; i++) {
enum AVPixelFormat p = link->incfg.formats->formats[i];
best= av_find_best_pix_fmt_of_2(best, p, ref->format, has_alpha, NULL);
}
av_log(link->src,AV_LOG_DEBUG, "picking %s out of %d ref:%s alpha:%d\n",
av_get_pix_fmt_name(best), link->incfg.formats->nb_formats,
av_get_pix_fmt_name(ref->format), has_alpha);
link->incfg.formats->formats[0] = best;
}
} else if (link->type == AVMEDIA_TYPE_AUDIO) {
if(ref && ref->type == AVMEDIA_TYPE_AUDIO){
enum AVSampleFormat best= AV_SAMPLE_FMT_NONE;
int i;
for (i = 0; i < link->incfg.formats->nb_formats; i++) {
enum AVSampleFormat p = link->incfg.formats->formats[i];
best = find_best_sample_fmt_of_2(best, p, ref->format);
}
av_log(link->src,AV_LOG_DEBUG, "picking %s out of %d ref:%s\n",
av_get_sample_fmt_name(best), link->incfg.formats->nb_formats,
av_get_sample_fmt_name(ref->format));
link->incfg.formats->formats[0] = best;
}
}
link->incfg.formats->nb_formats = 1;
link->format = link->incfg.formats->formats[0];
if (link->type == AVMEDIA_TYPE_VIDEO) {
enum AVPixelFormat swfmt = link->format;
if (av_pix_fmt_desc_get(swfmt)->flags & AV_PIX_FMT_FLAG_HWACCEL) {
// FIXME: this is a hack - we'd like to use the sw_format of
// link->hw_frames_ctx here, but it is not yet available.
// To make this work properly we will need to either reorder
// things so that it is available here or somehow negotiate
// sw_format separately.
swfmt = AV_PIX_FMT_YUV420P;
}
if (!ff_fmt_is_regular_yuv(swfmt)) {
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(swfmt);
/* These fields are explicitly documented as affecting YUV only,
* so set them to sane values for other formats. */
if (desc->flags & AV_PIX_FMT_FLAG_FLOAT)
link->color_range = AVCOL_RANGE_UNSPECIFIED;
else
link->color_range = AVCOL_RANGE_JPEG;
if (desc->flags & (AV_PIX_FMT_FLAG_RGB | AV_PIX_FMT_FLAG_XYZ)) {
link->colorspace = AVCOL_SPC_RGB;
} else {
link->colorspace = AVCOL_SPC_UNSPECIFIED;
}
} else {
if (!link->incfg.color_spaces->nb_formats) {
av_log(link->src, AV_LOG_ERROR, "Cannot select color space for"
" the link between filters %s and %s.\n", link->src->name,
link->dst->name);
return AVERROR(EINVAL);
}
link->incfg.color_spaces->nb_formats = 1;
link->colorspace = link->incfg.color_spaces->formats[0];
if (!link->incfg.color_ranges->nb_formats) {
av_log(link->src, AV_LOG_ERROR, "Cannot select color range for"
" the link between filters %s and %s.\n", link->src->name,
link->dst->name);
return AVERROR(EINVAL);
}
link->incfg.color_ranges->nb_formats = 1;
link->color_range = link->incfg.color_ranges->formats[0];
}
} else if (link->type == AVMEDIA_TYPE_AUDIO) {
int ret;
if (!link->incfg.samplerates->nb_formats) {
av_log(link->src, AV_LOG_ERROR, "Cannot select sample rate for"
" the link between filters %s and %s.\n", link->src->name,
link->dst->name);
return AVERROR(EINVAL);
}
link->incfg.samplerates->nb_formats = 1;
link->sample_rate = link->incfg.samplerates->formats[0];
if (link->incfg.channel_layouts->all_layouts) {
av_log(link->src, AV_LOG_ERROR, "Cannot select channel layout for"
" the link between filters %s and %s.\n", link->src->name,
link->dst->name);
if (!link->incfg.channel_layouts->all_counts)
av_log(link->src, AV_LOG_ERROR, "Unknown channel layouts not "
"supported, try specifying a channel layout using "
"'aformat=channel_layouts=something'.\n");
return AVERROR(EINVAL);
}
link->incfg.channel_layouts->nb_channel_layouts = 1;
ret = av_channel_layout_copy(&link->ch_layout, &link->incfg.channel_layouts->channel_layouts[0]);
if (ret < 0)
return ret;
}
ff_formats_unref(&link->incfg.formats);
ff_formats_unref(&link->outcfg.formats);
ff_formats_unref(&link->incfg.samplerates);
ff_formats_unref(&link->outcfg.samplerates);
ff_channel_layouts_unref(&link->incfg.channel_layouts);
ff_channel_layouts_unref(&link->outcfg.channel_layouts);
ff_formats_unref(&link->incfg.color_spaces);
ff_formats_unref(&link->outcfg.color_spaces);
ff_formats_unref(&link->incfg.color_ranges);
ff_formats_unref(&link->outcfg.color_ranges);
return 0;
}
#define REDUCE_FORMATS(fmt_type, list_type, list, var, nb, add_format) \
do { \
for (i = 0; i < filter->nb_inputs; i++) { \
AVFilterLink *link = filter->inputs[i]; \
fmt_type fmt; \
\
if (!link->outcfg.list || link->outcfg.list->nb != 1) \
continue; \
fmt = link->outcfg.list->var[0]; \
\
for (j = 0; j < filter->nb_outputs; j++) { \
AVFilterLink *out_link = filter->outputs[j]; \
list_type *fmts; \
\
if (link->type != out_link->type || \
out_link->incfg.list->nb == 1) \
continue; \
fmts = out_link->incfg.list; \
\
if (!out_link->incfg.list->nb) { \
if ((ret = add_format(&out_link->incfg.list, fmt)) < 0)\
return ret; \
ret = 1; \
break; \
} \
\
for (k = 0; k < out_link->incfg.list->nb; k++) \
if (fmts->var[k] == fmt) { \
fmts->var[0] = fmt; \
fmts->nb = 1; \
ret = 1; \
break; \
} \
} \
} \
} while (0)
static int reduce_formats_on_filter(AVFilterContext *filter)
{
int i, j, k, ret = 0;
REDUCE_FORMATS(int, AVFilterFormats, formats, formats,
nb_formats, ff_add_format);
REDUCE_FORMATS(int, AVFilterFormats, samplerates, formats,
nb_formats, ff_add_format);
REDUCE_FORMATS(int, AVFilterFormats, color_spaces, formats,
nb_formats, ff_add_format);
REDUCE_FORMATS(int, AVFilterFormats, color_ranges, formats,
nb_formats, ff_add_format);
/* reduce channel layouts */
for (i = 0; i < filter->nb_inputs; i++) {
AVFilterLink *inlink = filter->inputs[i];
const AVChannelLayout *fmt;
if (!inlink->outcfg.channel_layouts ||
inlink->outcfg.channel_layouts->nb_channel_layouts != 1)
continue;
fmt = &inlink->outcfg.channel_layouts->channel_layouts[0];
for (j = 0; j < filter->nb_outputs; j++) {
AVFilterLink *outlink = filter->outputs[j];
AVFilterChannelLayouts *fmts;
fmts = outlink->incfg.channel_layouts;
if (inlink->type != outlink->type || fmts->nb_channel_layouts == 1)
continue;
if (fmts->all_layouts &&
(KNOWN(fmt) || fmts->all_counts)) {
/* Turn the infinite list into a singleton */
fmts->all_layouts = fmts->all_counts = 0;
ret = ff_add_channel_layout(&outlink->incfg.channel_layouts, fmt);
if (ret < 0)
return ret;
ret = 1;
break;
}
for (k = 0; k < outlink->incfg.channel_layouts->nb_channel_layouts; k++) {
if (!av_channel_layout_compare(&fmts->channel_layouts[k], fmt)) {
ret = av_channel_layout_copy(&fmts->channel_layouts[0], fmt);
if (ret < 0)
return ret;
fmts->nb_channel_layouts = 1;
ret = 1;
break;
}
}
}
}
return ret;
}
static int reduce_formats(AVFilterGraph *graph)
{
int i, reduced, ret;
do {
reduced = 0;
for (i = 0; i < graph->nb_filters; i++) {
if ((ret = reduce_formats_on_filter(graph->filters[i])) < 0)
return ret;
reduced |= ret;
}
} while (reduced);
return 0;
}
static void swap_samplerates_on_filter(AVFilterContext *filter)
{
AVFilterLink *link = NULL;
int sample_rate;
int i, j;
for (i = 0; i < filter->nb_inputs; i++) {
link = filter->inputs[i];
if (link->type == AVMEDIA_TYPE_AUDIO &&
link->outcfg.samplerates->nb_formats== 1)
break;
}
if (i == filter->nb_inputs)
return;
sample_rate = link->outcfg.samplerates->formats[0];
for (i = 0; i < filter->nb_outputs; i++) {
AVFilterLink *outlink = filter->outputs[i];
int best_idx, best_diff = INT_MAX;
if (outlink->type != AVMEDIA_TYPE_AUDIO ||
outlink->incfg.samplerates->nb_formats < 2)
continue;
for (j = 0; j < outlink->incfg.samplerates->nb_formats; j++) {
int diff = abs(sample_rate - outlink->incfg.samplerates->formats[j]);
av_assert0(diff < INT_MAX); // This would lead to the use of uninitialized best_diff but is only possible with invalid sample rates
if (diff < best_diff) {
best_diff = diff;
best_idx = j;
}
}
FFSWAP(int, outlink->incfg.samplerates->formats[0],
outlink->incfg.samplerates->formats[best_idx]);
}
}
static void swap_samplerates(AVFilterGraph *graph)
{
int i;
for (i = 0; i < graph->nb_filters; i++)
swap_samplerates_on_filter(graph->filters[i]);
}
#define CH_CENTER_PAIR (AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER)
#define CH_FRONT_PAIR (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT)
#define CH_STEREO_PAIR (AV_CH_STEREO_LEFT | AV_CH_STEREO_RIGHT)
#define CH_WIDE_PAIR (AV_CH_WIDE_LEFT | AV_CH_WIDE_RIGHT)
#define CH_SIDE_PAIR (AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT)
#define CH_DIRECT_PAIR (AV_CH_SURROUND_DIRECT_LEFT | AV_CH_SURROUND_DIRECT_RIGHT)
#define CH_BACK_PAIR (AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT)
/* allowable substitutions for channel pairs when comparing layouts,
* ordered by priority for both values */
static const uint64_t ch_subst[][2] = {
{ CH_FRONT_PAIR, CH_CENTER_PAIR },
{ CH_FRONT_PAIR, CH_WIDE_PAIR },
{ CH_FRONT_PAIR, AV_CH_FRONT_CENTER },
{ CH_CENTER_PAIR, CH_FRONT_PAIR },
{ CH_CENTER_PAIR, CH_WIDE_PAIR },
{ CH_CENTER_PAIR, AV_CH_FRONT_CENTER },
{ CH_WIDE_PAIR, CH_FRONT_PAIR },
{ CH_WIDE_PAIR, CH_CENTER_PAIR },
{ CH_WIDE_PAIR, AV_CH_FRONT_CENTER },
{ AV_CH_FRONT_CENTER, CH_FRONT_PAIR },
{ AV_CH_FRONT_CENTER, CH_CENTER_PAIR },
{ AV_CH_FRONT_CENTER, CH_WIDE_PAIR },
{ CH_SIDE_PAIR, CH_DIRECT_PAIR },
{ CH_SIDE_PAIR, CH_BACK_PAIR },
{ CH_SIDE_PAIR, AV_CH_BACK_CENTER },
{ CH_BACK_PAIR, CH_DIRECT_PAIR },
{ CH_BACK_PAIR, CH_SIDE_PAIR },
{ CH_BACK_PAIR, AV_CH_BACK_CENTER },
{ AV_CH_BACK_CENTER, CH_BACK_PAIR },
{ AV_CH_BACK_CENTER, CH_DIRECT_PAIR },
{ AV_CH_BACK_CENTER, CH_SIDE_PAIR },
};
static void swap_channel_layouts_on_filter(AVFilterContext *filter)
{
AVFilterLink *link = NULL;
int i, j, k;
for (i = 0; i < filter->nb_inputs; i++) {
link = filter->inputs[i];
if (link->type == AVMEDIA_TYPE_AUDIO &&
link->outcfg.channel_layouts->nb_channel_layouts == 1)
break;
}
if (i == filter->nb_inputs)
return;
for (i = 0; i < filter->nb_outputs; i++) {
AVFilterLink *outlink = filter->outputs[i];
int best_idx = -1, best_score = INT_MIN, best_count_diff = INT_MAX;
if (outlink->type != AVMEDIA_TYPE_AUDIO ||
outlink->incfg.channel_layouts->nb_channel_layouts < 2)
continue;
for (j = 0; j < outlink->incfg.channel_layouts->nb_channel_layouts; j++) {
AVChannelLayout in_chlayout = { 0 }, out_chlayout = { 0 };
int in_channels;
int out_channels;
int count_diff;
int matched_channels, extra_channels;
int score = 100000;
av_channel_layout_copy(&in_chlayout, &link->outcfg.channel_layouts->channel_layouts[0]);
av_channel_layout_copy(&out_chlayout, &outlink->incfg.channel_layouts->channel_layouts[j]);
in_channels = in_chlayout.nb_channels;
out_channels = out_chlayout.nb_channels;
count_diff = out_channels - in_channels;
if (!KNOWN(&in_chlayout) || !KNOWN(&out_chlayout)) {
/* Compute score in case the input or output layout encodes
a channel count; in this case the score is not altered by
the computation afterwards, as in_chlayout and
out_chlayout have both been set to 0 */
if (!KNOWN(&in_chlayout))
in_channels = FF_LAYOUT2COUNT(&in_chlayout);
if (!KNOWN(&out_chlayout))
out_channels = FF_LAYOUT2COUNT(&out_chlayout);
score -= 10000 + FFABS(out_channels - in_channels) +
(in_channels > out_channels ? 10000 : 0);
av_channel_layout_uninit(&in_chlayout);
av_channel_layout_uninit(&out_chlayout);
/* Let the remaining computation run, even if the score
value is not altered */
}
/* channel substitution */
for (k = 0; k < FF_ARRAY_ELEMS(ch_subst); k++) {
uint64_t cmp0 = ch_subst[k][0];
uint64_t cmp1 = ch_subst[k][1];
if ( av_channel_layout_subset(& in_chlayout, cmp0) &&
!av_channel_layout_subset(&out_chlayout, cmp0) &&
av_channel_layout_subset(&out_chlayout, cmp1) &&
!av_channel_layout_subset(& in_chlayout, cmp1)) {
av_channel_layout_from_mask(&in_chlayout, av_channel_layout_subset(& in_chlayout, ~cmp0));
av_channel_layout_from_mask(&out_chlayout, av_channel_layout_subset(&out_chlayout, ~cmp1));
/* add score for channel match, minus a deduction for
having to do the substitution */
score += 10 * av_popcount64(cmp1) - 2;
}
}
/* no penalty for LFE channel mismatch */
if (av_channel_layout_channel_from_index(&in_chlayout, AV_CHAN_LOW_FREQUENCY) >= 0 &&
av_channel_layout_channel_from_index(&out_chlayout, AV_CHAN_LOW_FREQUENCY) >= 0)
score += 10;
av_channel_layout_from_mask(&in_chlayout, av_channel_layout_subset(&in_chlayout, ~AV_CH_LOW_FREQUENCY));
av_channel_layout_from_mask(&out_chlayout, av_channel_layout_subset(&out_chlayout, ~AV_CH_LOW_FREQUENCY));
matched_channels = av_popcount64(in_chlayout.u.mask & out_chlayout.u.mask);
extra_channels = av_popcount64(out_chlayout.u.mask & (~in_chlayout.u.mask));
score += 10 * matched_channels - 5 * extra_channels;
if (score > best_score ||
(count_diff < best_count_diff && score == best_score)) {
best_score = score;
best_idx = j;
best_count_diff = count_diff;
}
}
av_assert0(best_idx >= 0);
FFSWAP(AVChannelLayout, outlink->incfg.channel_layouts->channel_layouts[0],
outlink->incfg.channel_layouts->channel_layouts[best_idx]);
}
}
static void swap_channel_layouts(AVFilterGraph *graph)
{
int i;
for (i = 0; i < graph->nb_filters; i++)
swap_channel_layouts_on_filter(graph->filters[i]);
}
static void swap_sample_fmts_on_filter(AVFilterContext *filter)
{
AVFilterLink *link = NULL;
int format, bps;
int i, j;
for (i = 0; i < filter->nb_inputs; i++) {
link = filter->inputs[i];
if (link->type == AVMEDIA_TYPE_AUDIO &&
link->outcfg.formats->nb_formats == 1)
break;
}
if (i == filter->nb_inputs)
return;
format = link->outcfg.formats->formats[0];
bps = av_get_bytes_per_sample(format);
for (i = 0; i < filter->nb_outputs; i++) {
AVFilterLink *outlink = filter->outputs[i];
int best_idx = -1, best_score = INT_MIN;
if (outlink->type != AVMEDIA_TYPE_AUDIO ||
outlink->incfg.formats->nb_formats < 2)
continue;
for (j = 0; j < outlink->incfg.formats->nb_formats; j++) {
int out_format = outlink->incfg.formats->formats[j];
int out_bps = av_get_bytes_per_sample(out_format);
int score;
if (av_get_packed_sample_fmt(out_format) == format ||
av_get_planar_sample_fmt(out_format) == format) {
best_idx = j;
break;
}
/* for s32 and float prefer double to prevent loss of information */
if (bps == 4 && out_bps == 8) {
best_idx = j;
break;
}
/* prefer closest higher or equal bps */
score = -abs(out_bps - bps);
if (out_bps >= bps)
score += INT_MAX/2;
if (score > best_score) {
best_score = score;
best_idx = j;
}
}
av_assert0(best_idx >= 0);
FFSWAP(int, outlink->incfg.formats->formats[0],
outlink->incfg.formats->formats[best_idx]);
}
}
static void swap_sample_fmts(AVFilterGraph *graph)
{
int i;
for (i = 0; i < graph->nb_filters; i++)
swap_sample_fmts_on_filter(graph->filters[i]);
}
static int pick_formats(AVFilterGraph *graph)
{
int i, j, ret;
int change;
do{
change = 0;
for (i = 0; i < graph->nb_filters; i++) {
AVFilterContext *filter = graph->filters[i];
if (filter->nb_inputs){
for (j = 0; j < filter->nb_inputs; j++){
if (filter->inputs[j]->incfg.formats && filter->inputs[j]->incfg.formats->nb_formats == 1) {
if ((ret = pick_format(filter->inputs[j], NULL)) < 0)
return ret;
change = 1;
}
}
}
if (filter->nb_outputs){
for (j = 0; j < filter->nb_outputs; j++){
if (filter->outputs[j]->incfg.formats && filter->outputs[j]->incfg.formats->nb_formats == 1) {
if ((ret = pick_format(filter->outputs[j], NULL)) < 0)
return ret;
change = 1;
}
}
}
if (filter->nb_inputs && filter->nb_outputs && filter->inputs[0]->format>=0) {
for (j = 0; j < filter->nb_outputs; j++) {
if (filter->outputs[j]->format<0) {
if ((ret = pick_format(filter->outputs[j], filter->inputs[0])) < 0)
return ret;
change = 1;
}
}
}
}
}while(change);
for (i = 0; i < graph->nb_filters; i++) {
AVFilterContext *filter = graph->filters[i];
for (j = 0; j < filter->nb_inputs; j++)
if ((ret = pick_format(filter->inputs[j], NULL)) < 0)
return ret;
for (j = 0; j < filter->nb_outputs; j++)
if ((ret = pick_format(filter->outputs[j], NULL)) < 0)
return ret;
}
return 0;
}
/**
* Configure the formats of all the links in the graph.
*/
static int graph_config_formats(AVFilterGraph *graph, void *log_ctx)
{
int ret;
/* find supported formats from sub-filters, and merge along links */
while ((ret = query_formats(graph, log_ctx)) == AVERROR(EAGAIN))
av_log(graph, AV_LOG_DEBUG, "query_formats not finished\n");
if (ret < 0)
return ret;
/* Once everything is merged, it's possible that we'll still have
* multiple valid media format choices. We try to minimize the amount
* of format conversion inside filters */
if ((ret = reduce_formats(graph)) < 0)
return ret;
/* for audio filters, ensure the best format, sample rate and channel layout
* is selected */
swap_sample_fmts(graph);
swap_samplerates(graph);
swap_channel_layouts(graph);
if ((ret = pick_formats(graph)) < 0)
return ret;
return 0;
}
static int graph_config_pointers(AVFilterGraph *graph, void *log_ctx)
{
unsigned i, j;
int sink_links_count = 0, n = 0;
AVFilterContext *f;
FilterLinkInternal **sinks;
for (i = 0; i < graph->nb_filters; i++) {
f = graph->filters[i];
for (j = 0; j < f->nb_inputs; j++) {
f->inputs[j]->graph = graph;
ff_link_internal(f->inputs[j])->age_index = -1;
}
for (j = 0; j < f->nb_outputs; j++) {
f->outputs[j]->graph = graph;
ff_link_internal(f->outputs[j])->age_index = -1;
}
if (!f->nb_outputs) {
if (f->nb_inputs > INT_MAX - sink_links_count)
return AVERROR(EINVAL);
sink_links_count += f->nb_inputs;
}
}
sinks = av_calloc(sink_links_count, sizeof(*sinks));
if (!sinks)
return AVERROR(ENOMEM);
for (i = 0; i < graph->nb_filters; i++) {
f = graph->filters[i];
if (!f->nb_outputs) {
for (j = 0; j < f->nb_inputs; j++) {
sinks[n] = ff_link_internal(f->inputs[j]);
sinks[n]->age_index = n;
n++;
}
}
}
av_assert0(n == sink_links_count);
fffiltergraph(graph)->sink_links = sinks;
fffiltergraph(graph)->sink_links_count = sink_links_count;
return 0;
}
int avfilter_graph_config(AVFilterGraph *graphctx, void *log_ctx)
{
int ret;
if ((ret = graph_check_validity(graphctx, log_ctx)))
return ret;
if ((ret = graph_config_formats(graphctx, log_ctx)))
return ret;
if ((ret = graph_config_links(graphctx, log_ctx)))
return ret;
if ((ret = graph_check_links(graphctx, log_ctx)))
return ret;
if ((ret = graph_config_pointers(graphctx, log_ctx)))
return ret;
return 0;
}
int avfilter_graph_send_command(AVFilterGraph *graph, const char *target, const char *cmd, const char *arg, char *res, int res_len, int flags)
{
int i, r = AVERROR(ENOSYS);
if (!graph)
return r;
if ((flags & AVFILTER_CMD_FLAG_ONE) && !(flags & AVFILTER_CMD_FLAG_FAST)) {
r = avfilter_graph_send_command(graph, target, cmd, arg, res, res_len, flags | AVFILTER_CMD_FLAG_FAST);
if (r != AVERROR(ENOSYS))
return r;
}
if (res_len && res)
res[0] = 0;
for (i = 0; i < graph->nb_filters; i++) {
AVFilterContext *filter = graph->filters[i];
if (!strcmp(target, "all") || (filter->name && !strcmp(target, filter->name)) || !strcmp(target, filter->filter->name)) {
r = avfilter_process_command(filter, cmd, arg, res, res_len, flags);
if (r != AVERROR(ENOSYS)) {
if ((flags & AVFILTER_CMD_FLAG_ONE) || r < 0)
return r;
}
}
}
return r;
}
int avfilter_graph_queue_command(AVFilterGraph *graph, const char *target, const char *command, const char *arg, int flags, double ts)
{
int i;
if(!graph)
return 0;
for (i = 0; i < graph->nb_filters; i++) {
AVFilterContext *filter = graph->filters[i];
if(filter && (!strcmp(target, "all") || !strcmp(target, filter->name) || !strcmp(target, filter->filter->name))){
AVFilterCommand **queue = &filter->command_queue, *next;
while (*queue && (*queue)->time <= ts)
queue = &(*queue)->next;
next = *queue;
*queue = av_mallocz(sizeof(AVFilterCommand));
if (!*queue)
return AVERROR(ENOMEM);
(*queue)->command = av_strdup(command);
(*queue)->arg = av_strdup(arg);
(*queue)->time = ts;
(*queue)->flags = flags;
(*queue)->next = next;
if(flags & AVFILTER_CMD_FLAG_ONE)
return 0;
}
}
return 0;
}
static void heap_bubble_up(FFFilterGraph *graph,
FilterLinkInternal *li, int index)
{
FilterLinkInternal **links = graph->sink_links;
av_assert0(index >= 0);
while (index) {
int parent = (index - 1) >> 1;
if (links[parent]->l.current_pts_us >= li->l.current_pts_us)
break;
links[index] = links[parent];
links[index]->age_index = index;
index = parent;
}
links[index] = li;
li->age_index = index;
}
static void heap_bubble_down(FFFilterGraph *graph,
FilterLinkInternal *li, int index)
{
FilterLinkInternal **links = graph->sink_links;
av_assert0(index >= 0);
while (1) {
int child = 2 * index + 1;
if (child >= graph->sink_links_count)
break;
if (child + 1 < graph->sink_links_count &&
links[child + 1]->l.current_pts_us < links[child]->l.current_pts_us)
child++;
if (li->l.current_pts_us < links[child]->l.current_pts_us)
break;
links[index] = links[child];
links[index]->age_index = index;
index = child;
}
links[index] = li;
li->age_index = index;
}
void ff_avfilter_graph_update_heap(AVFilterGraph *graph, FilterLinkInternal *li)
{
FFFilterGraph *graphi = fffiltergraph(graph);
heap_bubble_up (graphi, li, li->age_index);
heap_bubble_down(graphi, li, li->age_index);
}
int avfilter_graph_request_oldest(AVFilterGraph *graph)
{
FFFilterGraph *graphi = fffiltergraph(graph);
FilterLinkInternal *oldesti = graphi->sink_links[0];
AVFilterLink *oldest = &oldesti->l;
int64_t frame_count;
int r;
while (graphi->sink_links_count) {
oldesti = graphi->sink_links[0];
oldest = &oldesti->l;
if (oldest->dst->filter->activate) {
r = av_buffersink_get_frame_flags(oldest->dst, NULL,
AV_BUFFERSINK_FLAG_PEEK);
if (r != AVERROR_EOF)
return r;
} else {
r = ff_request_frame(oldest);
}
if (r != AVERROR_EOF)
break;
av_log(oldest->dst, AV_LOG_DEBUG, "EOF on sink link %s:%s.\n",
oldest->dst->name,
oldest->dstpad->name);
/* EOF: remove the link from the heap */
if (oldesti->age_index < --graphi->sink_links_count)
heap_bubble_down(graphi, graphi->sink_links[graphi->sink_links_count],
oldesti->age_index);
oldesti->age_index = -1;
}
if (!graphi->sink_links_count)
return AVERROR_EOF;
av_assert1(!oldest->dst->filter->activate);
av_assert1(oldesti->age_index >= 0);
frame_count = oldest->frame_count_out;
while (frame_count == oldest->frame_count_out) {
r = ff_filter_graph_run_once(graph);
if (r == AVERROR(EAGAIN) &&
!oldest->frame_wanted_out && !oldesti->frame_blocked_in &&
!oldesti->status_in)
(void)ff_request_frame(oldest);
else if (r < 0)
return r;
}
return 0;
}
int ff_filter_graph_run_once(AVFilterGraph *graph)
{
AVFilterContext *filter;
unsigned i;
av_assert0(graph->nb_filters);
filter = graph->filters[0];
for (i = 1; i < graph->nb_filters; i++)
if (graph->filters[i]->ready > filter->ready)
filter = graph->filters[i];
if (!filter->ready)
return AVERROR(EAGAIN);
return ff_filter_activate(filter);
}