1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/dsputil.h
Loren Merritt 2833fc4646 approximate qpel functions: sacrifice some quality for some decoding speed. enabled on B-frames with -lavdopts fast.
Originally committed as revision 6412 to svn://svn.ffmpeg.org/ffmpeg/trunk
2006-10-01 21:25:17 +00:00

700 lines
26 KiB
C

/*
* DSP utils
* Copyright (c) 2000, 2001, 2002 Fabrice Bellard.
* Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file dsputil.h
* DSP utils.
* note, many functions in here may use MMX which trashes the FPU state, it is
* absolutely necessary to call emms_c() between dsp & float/double code
*/
#ifndef DSPUTIL_H
#define DSPUTIL_H
#include "common.h"
#include "avcodec.h"
//#define DEBUG
/* dct code */
typedef short DCTELEM;
typedef int DWTELEM;
void fdct_ifast (DCTELEM *data);
void fdct_ifast248 (DCTELEM *data);
void ff_jpeg_fdct_islow (DCTELEM *data);
void ff_fdct248_islow (DCTELEM *data);
void j_rev_dct (DCTELEM *data);
void j_rev_dct4 (DCTELEM *data);
void j_rev_dct2 (DCTELEM *data);
void j_rev_dct1 (DCTELEM *data);
void ff_fdct_mmx(DCTELEM *block);
void ff_fdct_mmx2(DCTELEM *block);
void ff_fdct_sse2(DCTELEM *block);
void ff_h264_idct8_add_c(uint8_t *dst, DCTELEM *block, int stride);
void ff_h264_idct_add_c(uint8_t *dst, DCTELEM *block, int stride);
void ff_h264_idct8_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
void ff_h264_idct_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
void ff_h264_lowres_idct_add_c(uint8_t *dst, int stride, DCTELEM *block);
void ff_h264_lowres_idct_put_c(uint8_t *dst, int stride, DCTELEM *block);
void ff_vector_fmul_add_add_c(float *dst, const float *src0, const float *src1,
const float *src2, int src3, int blocksize, int step);
void ff_float_to_int16_c(int16_t *dst, const float *src, int len);
/* encoding scans */
extern const uint8_t ff_alternate_horizontal_scan[64];
extern const uint8_t ff_alternate_vertical_scan[64];
extern const uint8_t ff_zigzag_direct[64];
extern const uint8_t ff_zigzag248_direct[64];
/* pixel operations */
#define MAX_NEG_CROP 1024
/* temporary */
extern uint32_t squareTbl[512];
extern uint8_t cropTbl[256 + 2 * MAX_NEG_CROP];
/* VP3 DSP functions */
void ff_vp3_idct_c(DCTELEM *block/* align 16*/);
void ff_vp3_idct_put_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
void ff_vp3_idct_add_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
/* 1/2^n downscaling functions from imgconvert.c */
void ff_img_copy_plane(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
void ff_shrink22(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
void ff_shrink44(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
void ff_shrink88(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
void ff_gmc_c(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy,
int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
/* minimum alignment rules ;)
if u notice errors in the align stuff, need more alignment for some asm code for some cpu
or need to use a function with less aligned data then send a mail to the ffmpeg-dev list, ...
!warning these alignments might not match reallity, (missing attribute((align)) stuff somewhere possible)
i (michael) didnt check them, these are just the alignents which i think could be reached easily ...
!future video codecs might need functions with less strict alignment
*/
/*
void get_pixels_c(DCTELEM *block, const uint8_t *pixels, int line_size);
void diff_pixels_c(DCTELEM *block, const uint8_t *s1, const uint8_t *s2, int stride);
void put_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
void add_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
void clear_blocks_c(DCTELEM *blocks);
*/
/* add and put pixel (decoding) */
// blocksizes for op_pixels_func are 8x4,8x8 16x8 16x16
//h for op_pixels_func is limited to {width/2, width} but never larger than 16 and never smaller then 4
typedef void (*op_pixels_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int h);
typedef void (*tpel_mc_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int w, int h);
typedef void (*qpel_mc_func)(uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
typedef void (*h264_chroma_mc_func)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x, int y);
typedef void (*h264_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int offset);
typedef void (*h264_biweight_func)(uint8_t *dst, uint8_t *src, int stride, int log2_denom, int weightd, int weights, int offset);
#define DEF_OLD_QPEL(name)\
void ff_put_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
void ff_put_no_rnd_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
void ff_avg_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
DEF_OLD_QPEL(qpel16_mc11_old_c)
DEF_OLD_QPEL(qpel16_mc31_old_c)
DEF_OLD_QPEL(qpel16_mc12_old_c)
DEF_OLD_QPEL(qpel16_mc32_old_c)
DEF_OLD_QPEL(qpel16_mc13_old_c)
DEF_OLD_QPEL(qpel16_mc33_old_c)
DEF_OLD_QPEL(qpel8_mc11_old_c)
DEF_OLD_QPEL(qpel8_mc31_old_c)
DEF_OLD_QPEL(qpel8_mc12_old_c)
DEF_OLD_QPEL(qpel8_mc32_old_c)
DEF_OLD_QPEL(qpel8_mc13_old_c)
DEF_OLD_QPEL(qpel8_mc33_old_c)
#define CALL_2X_PIXELS(a, b, n)\
static void a(uint8_t *block, const uint8_t *pixels, int line_size, int h){\
b(block , pixels , line_size, h);\
b(block+n, pixels+n, line_size, h);\
}
/* motion estimation */
// h is limited to {width/2, width, 2*width} but never larger than 16 and never smaller then 2
// allthough currently h<4 is not used as functions with width <8 are not used and neither implemented
typedef int (*me_cmp_func)(void /*MpegEncContext*/ *s, uint8_t *blk1/*align width (8 or 16)*/, uint8_t *blk2/*align 1*/, int line_size, int h)/* __attribute__ ((const))*/;
// for snow slices
typedef struct slice_buffer_s slice_buffer;
/**
* DSPContext.
*/
typedef struct DSPContext {
/* pixel ops : interface with DCT */
void (*get_pixels)(DCTELEM *block/*align 16*/, const uint8_t *pixels/*align 8*/, int line_size);
void (*diff_pixels)(DCTELEM *block/*align 16*/, const uint8_t *s1/*align 8*/, const uint8_t *s2/*align 8*/, int stride);
void (*put_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
void (*put_signed_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
void (*add_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
void (*add_pixels8)(uint8_t *pixels, DCTELEM *block, int line_size);
void (*add_pixels4)(uint8_t *pixels, DCTELEM *block, int line_size);
/**
* translational global motion compensation.
*/
void (*gmc1)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x16, int y16, int rounder);
/**
* global motion compensation.
*/
void (*gmc )(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int ox, int oy,
int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
void (*clear_blocks)(DCTELEM *blocks/*align 16*/);
int (*pix_sum)(uint8_t * pix, int line_size);
int (*pix_norm1)(uint8_t * pix, int line_size);
// 16x16 8x8 4x4 2x2 16x8 8x4 4x2 8x16 4x8 2x4
me_cmp_func sad[5]; /* identical to pix_absAxA except additional void * */
me_cmp_func sse[5];
me_cmp_func hadamard8_diff[5];
me_cmp_func dct_sad[5];
me_cmp_func quant_psnr[5];
me_cmp_func bit[5];
me_cmp_func rd[5];
me_cmp_func vsad[5];
me_cmp_func vsse[5];
me_cmp_func nsse[5];
me_cmp_func w53[5];
me_cmp_func w97[5];
me_cmp_func dct_max[5];
me_cmp_func dct264_sad[5];
me_cmp_func me_pre_cmp[5];
me_cmp_func me_cmp[5];
me_cmp_func me_sub_cmp[5];
me_cmp_func mb_cmp[5];
me_cmp_func ildct_cmp[5]; //only width 16 used
me_cmp_func frame_skip_cmp[5]; //only width 8 used
/**
* Halfpel motion compensation with rounding (a+b+1)>>1.
* this is an array[4][4] of motion compensation funcions for 4
* horizontal blocksizes (8,16) and the 4 halfpel positions<br>
* *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
* @param block destination where the result is stored
* @param pixels source
* @param line_size number of bytes in a horizontal line of block
* @param h height
*/
op_pixels_func put_pixels_tab[4][4];
/**
* Halfpel motion compensation with rounding (a+b+1)>>1.
* This is an array[4][4] of motion compensation functions for 4
* horizontal blocksizes (8,16) and the 4 halfpel positions<br>
* *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
* @param block destination into which the result is averaged (a+b+1)>>1
* @param pixels source
* @param line_size number of bytes in a horizontal line of block
* @param h height
*/
op_pixels_func avg_pixels_tab[4][4];
/**
* Halfpel motion compensation with no rounding (a+b)>>1.
* this is an array[2][4] of motion compensation funcions for 2
* horizontal blocksizes (8,16) and the 4 halfpel positions<br>
* *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
* @param block destination where the result is stored
* @param pixels source
* @param line_size number of bytes in a horizontal line of block
* @param h height
*/
op_pixels_func put_no_rnd_pixels_tab[4][4];
/**
* Halfpel motion compensation with no rounding (a+b)>>1.
* this is an array[2][4] of motion compensation funcions for 2
* horizontal blocksizes (8,16) and the 4 halfpel positions<br>
* *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
* @param block destination into which the result is averaged (a+b)>>1
* @param pixels source
* @param line_size number of bytes in a horizontal line of block
* @param h height
*/
op_pixels_func avg_no_rnd_pixels_tab[4][4];
void (*put_no_rnd_pixels_l2[2])(uint8_t *block/*align width (8 or 16)*/, const uint8_t *a/*align 1*/, const uint8_t *b/*align 1*/, int line_size, int h);
/**
* Thirdpel motion compensation with rounding (a+b+1)>>1.
* this is an array[12] of motion compensation funcions for the 9 thirdpel positions<br>
* *pixels_tab[ xthirdpel + 4*ythirdpel ]
* @param block destination where the result is stored
* @param pixels source
* @param line_size number of bytes in a horizontal line of block
* @param h height
*/
tpel_mc_func put_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
tpel_mc_func avg_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
qpel_mc_func put_qpel_pixels_tab[2][16];
qpel_mc_func avg_qpel_pixels_tab[2][16];
qpel_mc_func put_no_rnd_qpel_pixels_tab[2][16];
qpel_mc_func avg_no_rnd_qpel_pixels_tab[2][16];
qpel_mc_func put_mspel_pixels_tab[8];
/**
* h264 Chram MC
*/
h264_chroma_mc_func put_h264_chroma_pixels_tab[3];
/* This is really one func used in VC-1 decoding */
h264_chroma_mc_func put_no_rnd_h264_chroma_pixels_tab[3];
h264_chroma_mc_func avg_h264_chroma_pixels_tab[3];
qpel_mc_func put_h264_qpel_pixels_tab[4][16];
qpel_mc_func avg_h264_qpel_pixels_tab[4][16];
qpel_mc_func put_2tap_qpel_pixels_tab[4][16];
qpel_mc_func avg_2tap_qpel_pixels_tab[4][16];
h264_weight_func weight_h264_pixels_tab[10];
h264_biweight_func biweight_h264_pixels_tab[10];
/* AVS specific */
qpel_mc_func put_cavs_qpel_pixels_tab[2][16];
qpel_mc_func avg_cavs_qpel_pixels_tab[2][16];
void (*cavs_filter_lv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
void (*cavs_filter_lh)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
void (*cavs_filter_cv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
void (*cavs_filter_ch)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
void (*cavs_idct8_add)(uint8_t *dst, DCTELEM *block, int stride);
me_cmp_func pix_abs[2][4];
/* huffyuv specific */
void (*add_bytes)(uint8_t *dst/*align 16*/, uint8_t *src/*align 16*/, int w);
void (*diff_bytes)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 1*/,int w);
/**
* subtract huffyuv's variant of median prediction
* note, this might read from src1[-1], src2[-1]
*/
void (*sub_hfyu_median_prediction)(uint8_t *dst, uint8_t *src1, uint8_t *src2, int w, int *left, int *left_top);
void (*bswap_buf)(uint32_t *dst, uint32_t *src, int w);
void (*h264_v_loop_filter_luma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0);
void (*h264_h_loop_filter_luma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0);
void (*h264_v_loop_filter_chroma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0);
void (*h264_h_loop_filter_chroma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0);
void (*h264_v_loop_filter_chroma_intra)(uint8_t *pix, int stride, int alpha, int beta);
void (*h264_h_loop_filter_chroma_intra)(uint8_t *pix, int stride, int alpha, int beta);
// h264_loop_filter_strength: simd only. the C version is inlined in h264.c
void (*h264_loop_filter_strength)(int16_t bS[2][4][4], uint8_t nnz[40], int8_t ref[2][40], int16_t mv[2][40][2],
int bidir, int edges, int step, int mask_mv0, int mask_mv1);
void (*h263_v_loop_filter)(uint8_t *src, int stride, int qscale);
void (*h263_h_loop_filter)(uint8_t *src, int stride, int qscale);
void (*h261_loop_filter)(uint8_t *src, int stride);
/* assume len is a multiple of 4, and arrays are 16-byte aligned */
void (*vorbis_inverse_coupling)(float *mag, float *ang, int blocksize);
/* assume len is a multiple of 8, and arrays are 16-byte aligned */
void (*vector_fmul)(float *dst, const float *src, int len);
void (*vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len);
/* assume len is a multiple of 8, and src arrays are 16-byte aligned */
void (*vector_fmul_add_add)(float *dst, const float *src0, const float *src1, const float *src2, int src3, int len, int step);
/* C version: convert floats from the range [384.0,386.0] to ints in [-32768,32767]
* simd versions: convert floats from [-32768.0,32767.0] without rescaling and arrays are 16byte aligned */
void (*float_to_int16)(int16_t *dst, const float *src, int len);
/* (I)DCT */
void (*fdct)(DCTELEM *block/* align 16*/);
void (*fdct248)(DCTELEM *block/* align 16*/);
/* IDCT really*/
void (*idct)(DCTELEM *block/* align 16*/);
/**
* block -> idct -> clip to unsigned 8 bit -> dest.
* (-1392, 0, 0, ...) -> idct -> (-174, -174, ...) -> put -> (0, 0, ...)
* @param line_size size in bytes of a horizotal line of dest
*/
void (*idct_put)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
/**
* block -> idct -> add dest -> clip to unsigned 8 bit -> dest.
* @param line_size size in bytes of a horizotal line of dest
*/
void (*idct_add)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
/**
* idct input permutation.
* several optimized IDCTs need a permutated input (relative to the normal order of the reference
* IDCT)
* this permutation must be performed before the idct_put/add, note, normally this can be merged
* with the zigzag/alternate scan<br>
* an example to avoid confusion:
* - (->decode coeffs -> zigzag reorder -> dequant -> reference idct ->...)
* - (x -> referece dct -> reference idct -> x)
* - (x -> referece dct -> simple_mmx_perm = idct_permutation -> simple_idct_mmx -> x)
* - (->decode coeffs -> zigzag reorder -> simple_mmx_perm -> dequant -> simple_idct_mmx ->...)
*/
uint8_t idct_permutation[64];
int idct_permutation_type;
#define FF_NO_IDCT_PERM 1
#define FF_LIBMPEG2_IDCT_PERM 2
#define FF_SIMPLE_IDCT_PERM 3
#define FF_TRANSPOSE_IDCT_PERM 4
#define FF_PARTTRANS_IDCT_PERM 5
int (*try_8x8basis)(int16_t rem[64], int16_t weight[64], int16_t basis[64], int scale);
void (*add_8x8basis)(int16_t rem[64], int16_t basis[64], int scale);
#define BASIS_SHIFT 16
#define RECON_SHIFT 6
void (*h264_idct_add)(uint8_t *dst, DCTELEM *block, int stride);
void (*h264_idct8_add)(uint8_t *dst, DCTELEM *block, int stride);
void (*h264_idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
void (*h264_idct8_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
/* snow wavelet */
void (*vertical_compose97i)(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, DWTELEM *b3, DWTELEM *b4, DWTELEM *b5, int width);
void (*horizontal_compose97i)(DWTELEM *b, int width);
void (*inner_add_yblock)(uint8_t *obmc, const int obmc_stride, uint8_t * * block, int b_w, int b_h, int src_x, int src_y, int src_stride, slice_buffer * sb, int add, uint8_t * dst8);
void (*prefetch)(void *mem, int stride, int h);
void (*shrink[4])(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
/* vc1 functions */
void (*vc1_inv_trans_8x8)(DCTELEM *b);
void (*vc1_inv_trans_8x4)(DCTELEM *b, int n);
void (*vc1_inv_trans_4x8)(DCTELEM *b, int n);
void (*vc1_inv_trans_4x4)(DCTELEM *b, int n);
void (*vc1_v_overlap)(uint8_t* src, int stride, int rnd);
void (*vc1_h_overlap)(uint8_t* src, int stride, int rnd);
/* put 8x8 block with bicubic interpolation and quarterpel precision
* last argument is actually round value instead of height
*/
op_pixels_func put_vc1_mspel_pixels_tab[16];
} DSPContext;
void dsputil_static_init(void);
void dsputil_init(DSPContext* p, AVCodecContext *avctx);
/**
* permute block according to permuatation.
* @param last last non zero element in scantable order
*/
void ff_block_permute(DCTELEM *block, uint8_t *permutation, const uint8_t *scantable, int last);
void ff_set_cmp(DSPContext* c, me_cmp_func *cmp, int type);
#define BYTE_VEC32(c) ((c)*0x01010101UL)
static inline uint32_t rnd_avg32(uint32_t a, uint32_t b)
{
return (a | b) - (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
}
static inline uint32_t no_rnd_avg32(uint32_t a, uint32_t b)
{
return (a & b) + (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
}
static inline int get_penalty_factor(int lambda, int lambda2, int type){
switch(type&0xFF){
default:
case FF_CMP_SAD:
return lambda>>FF_LAMBDA_SHIFT;
case FF_CMP_DCT:
return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
case FF_CMP_W53:
return (4*lambda)>>(FF_LAMBDA_SHIFT);
case FF_CMP_W97:
return (2*lambda)>>(FF_LAMBDA_SHIFT);
case FF_CMP_SATD:
case FF_CMP_DCT264:
return (2*lambda)>>FF_LAMBDA_SHIFT;
case FF_CMP_RD:
case FF_CMP_PSNR:
case FF_CMP_SSE:
case FF_CMP_NSSE:
return lambda2>>FF_LAMBDA_SHIFT;
case FF_CMP_BIT:
return 1;
}
}
/**
* Empty mmx state.
* this must be called between any dsp function and float/double code.
* for example sin(); dsp->idct_put(); emms_c(); cos()
*/
#define emms_c()
/* should be defined by architectures supporting
one or more MultiMedia extension */
int mm_support(void);
#ifdef __GNUC__
#define DECLARE_ALIGNED_16(t,v) t v __attribute__ ((aligned (16)))
#else
#define DECLARE_ALIGNED_16(t,v) __declspec(align(16)) t v
#endif
#if defined(HAVE_MMX)
#undef emms_c
#define MM_MMX 0x0001 /* standard MMX */
#define MM_3DNOW 0x0004 /* AMD 3DNOW */
#define MM_MMXEXT 0x0002 /* SSE integer functions or AMD MMX ext */
#define MM_SSE 0x0008 /* SSE functions */
#define MM_SSE2 0x0010 /* PIV SSE2 functions */
#define MM_3DNOWEXT 0x0020 /* AMD 3DNowExt */
#define MM_SSE3 0x0040 /* Prescott SSE3 functions */
extern int mm_flags;
void add_pixels_clamped_mmx(const DCTELEM *block, uint8_t *pixels, int line_size);
void put_pixels_clamped_mmx(const DCTELEM *block, uint8_t *pixels, int line_size);
void put_signed_pixels_clamped_mmx(const DCTELEM *block, uint8_t *pixels, int line_size);
static inline void emms(void)
{
__asm __volatile ("emms;":::"memory");
}
#define emms_c() \
{\
if (mm_flags & MM_MMX)\
emms();\
}
#ifdef __GNUC__
#define DECLARE_ALIGNED_8(t,v) t v __attribute__ ((aligned (8)))
#else
#define DECLARE_ALIGNED_8(t,v) __declspec(align(8)) t v
#endif
#define STRIDE_ALIGN 8
void dsputil_init_mmx(DSPContext* c, AVCodecContext *avctx);
void dsputil_init_pix_mmx(DSPContext* c, AVCodecContext *avctx);
#elif defined(ARCH_ARMV4L)
/* This is to use 4 bytes read to the IDCT pointers for some 'zero'
line optimizations */
#define DECLARE_ALIGNED_8(t,v) t v __attribute__ ((aligned (4)))
#define STRIDE_ALIGN 4
#define MM_IWMMXT 0x0100 /* XScale IWMMXT */
extern int mm_flags;
void dsputil_init_armv4l(DSPContext* c, AVCodecContext *avctx);
#elif defined(HAVE_MLIB)
/* SPARC/VIS IDCT needs 8-byte aligned DCT blocks */
#define DECLARE_ALIGNED_8(t,v) t v __attribute__ ((aligned (8)))
#define STRIDE_ALIGN 8
void dsputil_init_mlib(DSPContext* c, AVCodecContext *avctx);
#elif defined(ARCH_SPARC)
/* SPARC/VIS IDCT needs 8-byte aligned DCT blocks */
#define DECLARE_ALIGNED_8(t,v) t v __attribute__ ((aligned (8)))
#define STRIDE_ALIGN 8
void dsputil_init_vis(DSPContext* c, AVCodecContext *avctx);
#elif defined(ARCH_ALPHA)
#define DECLARE_ALIGNED_8(t,v) t v __attribute__ ((aligned (8)))
#define STRIDE_ALIGN 8
void dsputil_init_alpha(DSPContext* c, AVCodecContext *avctx);
#elif defined(ARCH_POWERPC)
#define MM_ALTIVEC 0x0001 /* standard AltiVec */
extern int mm_flags;
#if defined(HAVE_ALTIVEC) && !defined(CONFIG_DARWIN)
#define pixel altivec_pixel
#include <altivec.h>
#undef pixel
#endif
#define DECLARE_ALIGNED_8(t,v) t v __attribute__ ((aligned (16)))
#define STRIDE_ALIGN 16
void dsputil_init_ppc(DSPContext* c, AVCodecContext *avctx);
#elif defined(HAVE_MMI)
#define DECLARE_ALIGNED_8(t,v) t v __attribute__ ((aligned (16)))
#define STRIDE_ALIGN 16
void dsputil_init_mmi(DSPContext* c, AVCodecContext *avctx);
#elif defined(ARCH_SH4)
#define DECLARE_ALIGNED_8(t,v) t v __attribute__ ((aligned (8)))
#define STRIDE_ALIGN 8
void dsputil_init_sh4(DSPContext* c, AVCodecContext *avctx);
#elif defined(ARCH_BFIN)
#define DECLARE_ALIGNED_8(t,v) t v __attribute__ ((aligned (8)))
#define STRIDE_ALIGN 8
void dsputil_init_bfin(DSPContext* c, AVCodecContext *avctx);
#else
#define DECLARE_ALIGNED_8(t,v) t v __attribute__ ((aligned (8)))
#define STRIDE_ALIGN 8
#endif
#ifdef __GNUC__
struct unaligned_64 { uint64_t l; } __attribute__((packed));
struct unaligned_32 { uint32_t l; } __attribute__((packed));
struct unaligned_16 { uint16_t l; } __attribute__((packed));
#define LD16(a) (((const struct unaligned_16 *) (a))->l)
#define LD32(a) (((const struct unaligned_32 *) (a))->l)
#define LD64(a) (((const struct unaligned_64 *) (a))->l)
#define ST16(a, b) (((struct unaligned_16 *) (a))->l) = (b)
#define ST32(a, b) (((struct unaligned_32 *) (a))->l) = (b)
#else /* __GNUC__ */
#define LD16(a) (*((uint16_t*)(a)))
#define LD32(a) (*((uint32_t*)(a)))
#define LD64(a) (*((uint64_t*)(a)))
#define ST16(a, b) *((uint16_t*)(a)) = (b)
#define ST32(a, b) *((uint32_t*)(a)) = (b)
#endif /* !__GNUC__ */
/* PSNR */
void get_psnr(uint8_t *orig_image[3], uint8_t *coded_image[3],
int orig_linesize[3], int coded_linesize,
AVCodecContext *avctx);
/* FFT computation */
/* NOTE: soon integer code will be added, so you must use the
FFTSample type */
typedef float FFTSample;
struct MDCTContext;
typedef struct FFTComplex {
FFTSample re, im;
} FFTComplex;
typedef struct FFTContext {
int nbits;
int inverse;
uint16_t *revtab;
FFTComplex *exptab;
FFTComplex *exptab1; /* only used by SSE code */
void (*fft_calc)(struct FFTContext *s, FFTComplex *z);
void (*imdct_calc)(struct MDCTContext *s, FFTSample *output,
const FFTSample *input, FFTSample *tmp);
} FFTContext;
int ff_fft_init(FFTContext *s, int nbits, int inverse);
void ff_fft_permute(FFTContext *s, FFTComplex *z);
void ff_fft_calc_c(FFTContext *s, FFTComplex *z);
void ff_fft_calc_sse(FFTContext *s, FFTComplex *z);
void ff_fft_calc_3dn(FFTContext *s, FFTComplex *z);
void ff_fft_calc_3dn2(FFTContext *s, FFTComplex *z);
void ff_fft_calc_altivec(FFTContext *s, FFTComplex *z);
static inline void ff_fft_calc(FFTContext *s, FFTComplex *z)
{
s->fft_calc(s, z);
}
void ff_fft_end(FFTContext *s);
/* MDCT computation */
typedef struct MDCTContext {
int n; /* size of MDCT (i.e. number of input data * 2) */
int nbits; /* n = 2^nbits */
/* pre/post rotation tables */
FFTSample *tcos;
FFTSample *tsin;
FFTContext fft;
} MDCTContext;
int ff_mdct_init(MDCTContext *s, int nbits, int inverse);
void ff_imdct_calc(MDCTContext *s, FFTSample *output,
const FFTSample *input, FFTSample *tmp);
void ff_imdct_calc_3dn2(MDCTContext *s, FFTSample *output,
const FFTSample *input, FFTSample *tmp);
void ff_imdct_calc_sse(MDCTContext *s, FFTSample *output,
const FFTSample *input, FFTSample *tmp);
void ff_mdct_calc(MDCTContext *s, FFTSample *out,
const FFTSample *input, FFTSample *tmp);
void ff_mdct_end(MDCTContext *s);
#define WARPER8_16(name8, name16)\
static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
return name8(s, dst , src , stride, h)\
+name8(s, dst+8 , src+8 , stride, h);\
}
#define WARPER8_16_SQ(name8, name16)\
static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
int score=0;\
score +=name8(s, dst , src , stride, 8);\
score +=name8(s, dst+8 , src+8 , stride, 8);\
if(h==16){\
dst += 8*stride;\
src += 8*stride;\
score +=name8(s, dst , src , stride, 8);\
score +=name8(s, dst+8 , src+8 , stride, 8);\
}\
return score;\
}
#endif