1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-03 05:10:03 +02:00
FFmpeg/libavcodec/cinepakenc.c
Andreas Rheinhardt a247ac640d avcodec: Constify AVCodecs
Given that the AVCodec.next pointer has now been removed, most of the
AVCodecs are not modified at all any more and can therefore be made
const (as this patch does); the only exceptions are the very few codecs
for external libraries that have a init_static_data callback.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
Signed-off-by: James Almer <jamrial@gmail.com>
2021-04-27 10:43:15 -03:00

1194 lines
47 KiB
C

/*
* Cinepak encoder (c) 2011 Tomas Härdin
* http://titan.codemill.se/~tomhar/cinepakenc.patch
*
* Fixes and improvements, vintage decoders compatibility
* (c) 2013, 2014 Rl, Aetey Global Technologies AB
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* TODO:
* - optimize: color space conversion (move conversion to libswscale), ...
* MAYBE:
* - "optimally" split the frame into several non-regular areas
* using a separate codebook pair for each area and approximating
* the area by several rectangular strips (generally not full width ones)
* (use quadtree splitting? a simple fixed-granularity grid?)
*/
#include <string.h>
#include "libavutil/avassert.h"
#include "libavutil/common.h"
#include "libavutil/internal.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/lfg.h"
#include "libavutil/opt.h"
#include "avcodec.h"
#include "elbg.h"
#include "internal.h"
#define CVID_HEADER_SIZE 10
#define STRIP_HEADER_SIZE 12
#define CHUNK_HEADER_SIZE 4
#define MB_SIZE 4 //4x4 MBs
#define MB_AREA (MB_SIZE * MB_SIZE)
#define VECTOR_MAX 6 // six or four entries per vector depending on format
#define CODEBOOK_MAX 256 // size of a codebook
#define MAX_STRIPS 32 // Note: having fewer choices regarding the number of strips speeds up encoding (obviously)
#define MIN_STRIPS 1 // Note: having more strips speeds up encoding the frame (this is less obvious)
// MAX_STRIPS limits the maximum quality you can reach
// when you want high quality on high resolutions,
// MIN_STRIPS limits the minimum efficiently encodable bit rate
// on low resolutions
// the numbers are only used for brute force optimization for the first frame,
// for the following frames they are adaptively readjusted
// NOTE the decoder in ffmpeg has its own arbitrary limitation on the number
// of strips, currently 32
typedef enum CinepakMode {
MODE_V1_ONLY = 0,
MODE_V1_V4,
MODE_MC,
MODE_COUNT,
} CinepakMode;
typedef enum mb_encoding {
ENC_V1,
ENC_V4,
ENC_SKIP,
ENC_UNCERTAIN
} mb_encoding;
typedef struct mb_info {
int v1_vector; // index into v1 codebook
int v1_error; // error when using V1 encoding
int v4_vector[4]; // indices into v4 codebook
int v4_error; // error when using V4 encoding
int skip_error; // error when block is skipped (aka copied from last frame)
mb_encoding best_encoding; // last result from calculate_mode_score()
} mb_info;
typedef struct strip_info {
int v1_codebook[CODEBOOK_MAX * VECTOR_MAX];
int v4_codebook[CODEBOOK_MAX * VECTOR_MAX];
int v1_size;
int v4_size;
CinepakMode mode;
} strip_info;
typedef struct CinepakEncContext {
const AVClass *class;
AVCodecContext *avctx;
unsigned char *pict_bufs[4], *strip_buf, *frame_buf;
AVFrame *last_frame;
AVFrame *best_frame;
AVFrame *scratch_frame;
AVFrame *input_frame;
enum AVPixelFormat pix_fmt;
int w, h;
int frame_buf_size;
int curframe, keyint;
AVLFG randctx;
uint64_t lambda;
int *codebook_input;
int *codebook_closest;
mb_info *mb; // MB RD state
int min_strips; // the current limit
int max_strips; // the current limit
// options
int max_extra_cb_iterations;
int skip_empty_cb;
int min_min_strips;
int max_max_strips;
int strip_number_delta_range;
} CinepakEncContext;
#define OFFSET(x) offsetof(CinepakEncContext, x)
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
static const AVOption options[] = {
{ "max_extra_cb_iterations", "Max extra codebook recalculation passes, more is better and slower",
OFFSET(max_extra_cb_iterations), AV_OPT_TYPE_INT, { .i64 = 2 }, 0, INT_MAX, VE },
{ "skip_empty_cb", "Avoid wasting bytes, ignore vintage MacOS decoder",
OFFSET(skip_empty_cb), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
{ "max_strips", "Limit strips/frame, vintage compatible is 1..3, otherwise the more the better",
OFFSET(max_max_strips), AV_OPT_TYPE_INT, { .i64 = 3 }, MIN_STRIPS, MAX_STRIPS, VE },
{ "min_strips", "Enforce min strips/frame, more is worse and faster, must be <= max_strips",
OFFSET(min_min_strips), AV_OPT_TYPE_INT, { .i64 = MIN_STRIPS }, MIN_STRIPS, MAX_STRIPS, VE },
{ "strip_number_adaptivity", "How fast the strip number adapts, more is slightly better, much slower",
OFFSET(strip_number_delta_range), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, MAX_STRIPS - MIN_STRIPS, VE },
{ NULL },
};
static const AVClass cinepak_class = {
.class_name = "cinepak",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
static av_cold int cinepak_encode_init(AVCodecContext *avctx)
{
CinepakEncContext *s = avctx->priv_data;
int x, mb_count, strip_buf_size, frame_buf_size;
if (avctx->width & 3 || avctx->height & 3) {
av_log(avctx, AV_LOG_ERROR, "width and height must be multiples of four (got %ix%i)\n",
avctx->width, avctx->height);
return AVERROR(EINVAL);
}
if (s->min_min_strips > s->max_max_strips) {
av_log(avctx, AV_LOG_ERROR, "minimum number of strips must not exceed maximum (got %i and %i)\n",
s->min_min_strips, s->max_max_strips);
return AVERROR(EINVAL);
}
if (!(s->last_frame = av_frame_alloc()))
return AVERROR(ENOMEM);
if (!(s->best_frame = av_frame_alloc()))
return AVERROR(ENOMEM);
if (!(s->scratch_frame = av_frame_alloc()))
return AVERROR(ENOMEM);
if (avctx->pix_fmt == AV_PIX_FMT_RGB24)
if (!(s->input_frame = av_frame_alloc()))
return AVERROR(ENOMEM);
if (!(s->codebook_input = av_malloc_array((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2, sizeof(*s->codebook_input))))
return AVERROR(ENOMEM);
if (!(s->codebook_closest = av_malloc_array((avctx->width * avctx->height) >> 2, sizeof(*s->codebook_closest))))
return AVERROR(ENOMEM);
for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++)
if (!(s->pict_bufs[x] = av_malloc((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2)))
return AVERROR(ENOMEM);
mb_count = avctx->width * avctx->height / MB_AREA;
// the largest possible chunk is 0x31 with all MBs encoded in V4 mode
// and full codebooks being replaced in INTER mode,
// which is 34 bits per MB
// and 2*256 extra flag bits per strip
strip_buf_size = STRIP_HEADER_SIZE + 3 * CHUNK_HEADER_SIZE + 2 * VECTOR_MAX * CODEBOOK_MAX + 4 * (mb_count + (mb_count + 15) / 16) + (2 * CODEBOOK_MAX) / 8;
frame_buf_size = CVID_HEADER_SIZE + s->max_max_strips * strip_buf_size;
if (!(s->strip_buf = av_malloc(strip_buf_size)))
return AVERROR(ENOMEM);
if (!(s->frame_buf = av_malloc(frame_buf_size)))
return AVERROR(ENOMEM);
if (!(s->mb = av_malloc_array(mb_count, sizeof(mb_info))))
return AVERROR(ENOMEM);
av_lfg_init(&s->randctx, 1);
s->avctx = avctx;
s->w = avctx->width;
s->h = avctx->height;
s->frame_buf_size = frame_buf_size;
s->curframe = 0;
s->keyint = avctx->keyint_min;
s->pix_fmt = avctx->pix_fmt;
// set up AVFrames
s->last_frame->data[0] = s->pict_bufs[0];
s->last_frame->linesize[0] = s->w;
s->best_frame->data[0] = s->pict_bufs[1];
s->best_frame->linesize[0] = s->w;
s->scratch_frame->data[0] = s->pict_bufs[2];
s->scratch_frame->linesize[0] = s->w;
if (s->pix_fmt == AV_PIX_FMT_RGB24) {
s->last_frame->data[1] = s->last_frame->data[0] + s->w * s->h;
s->last_frame->data[2] = s->last_frame->data[1] + ((s->w * s->h) >> 2);
s->last_frame->linesize[1] =
s->last_frame->linesize[2] = s->w >> 1;
s->best_frame->data[1] = s->best_frame->data[0] + s->w * s->h;
s->best_frame->data[2] = s->best_frame->data[1] + ((s->w * s->h) >> 2);
s->best_frame->linesize[1] =
s->best_frame->linesize[2] = s->w >> 1;
s->scratch_frame->data[1] = s->scratch_frame->data[0] + s->w * s->h;
s->scratch_frame->data[2] = s->scratch_frame->data[1] + ((s->w * s->h) >> 2);
s->scratch_frame->linesize[1] =
s->scratch_frame->linesize[2] = s->w >> 1;
s->input_frame->data[0] = s->pict_bufs[3];
s->input_frame->linesize[0] = s->w;
s->input_frame->data[1] = s->input_frame->data[0] + s->w * s->h;
s->input_frame->data[2] = s->input_frame->data[1] + ((s->w * s->h) >> 2);
s->input_frame->linesize[1] =
s->input_frame->linesize[2] = s->w >> 1;
}
s->min_strips = s->min_min_strips;
s->max_strips = s->max_max_strips;
return 0;
}
static int64_t calculate_mode_score(CinepakEncContext *s, int h,
strip_info *info, int report,
int *training_set_v1_shrunk,
int *training_set_v4_shrunk)
{
// score = FF_LAMBDA_SCALE * error + lambda * bits
int x;
int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
int mb_count = s->w * h / MB_AREA;
mb_info *mb;
int64_t score1, score2, score3;
int64_t ret = s->lambda * ((info->v1_size ? CHUNK_HEADER_SIZE + info->v1_size * entry_size : 0) +
(info->v4_size ? CHUNK_HEADER_SIZE + info->v4_size * entry_size : 0) +
CHUNK_HEADER_SIZE) << 3;
switch (info->mode) {
case MODE_V1_ONLY:
// one byte per MB
ret += s->lambda * 8 * mb_count;
// while calculating we assume all blocks are ENC_V1
for (x = 0; x < mb_count; x++) {
mb = &s->mb[x];
ret += FF_LAMBDA_SCALE * mb->v1_error;
// this function is never called for report in MODE_V1_ONLY
// if (!report)
mb->best_encoding = ENC_V1;
}
break;
case MODE_V1_V4:
// 9 or 33 bits per MB
if (report) {
// no moves between the corresponding training sets are allowed
*training_set_v1_shrunk = *training_set_v4_shrunk = 0;
for (x = 0; x < mb_count; x++) {
int mberr;
mb = &s->mb[x];
if (mb->best_encoding == ENC_V1)
score1 = s->lambda * 9 + FF_LAMBDA_SCALE * (mberr = mb->v1_error);
else
score1 = s->lambda * 33 + FF_LAMBDA_SCALE * (mberr = mb->v4_error);
ret += score1;
}
} else { // find best mode per block
for (x = 0; x < mb_count; x++) {
mb = &s->mb[x];
score1 = s->lambda * 9 + FF_LAMBDA_SCALE * mb->v1_error;
score2 = s->lambda * 33 + FF_LAMBDA_SCALE * mb->v4_error;
if (score1 <= score2) {
ret += score1;
mb->best_encoding = ENC_V1;
} else {
ret += score2;
mb->best_encoding = ENC_V4;
}
}
}
break;
case MODE_MC:
// 1, 10 or 34 bits per MB
if (report) {
int v1_shrunk = 0, v4_shrunk = 0;
for (x = 0; x < mb_count; x++) {
mb = &s->mb[x];
// it is OK to move blocks to ENC_SKIP here
// but not to any codebook encoding!
score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error;
if (mb->best_encoding == ENC_SKIP) {
ret += score1;
} else if (mb->best_encoding == ENC_V1) {
if ((score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error) >= score1) {
mb->best_encoding = ENC_SKIP;
++v1_shrunk;
ret += score1;
} else {
ret += score2;
}
} else {
if ((score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error) >= score1) {
mb->best_encoding = ENC_SKIP;
++v4_shrunk;
ret += score1;
} else {
ret += score3;
}
}
}
*training_set_v1_shrunk = v1_shrunk;
*training_set_v4_shrunk = v4_shrunk;
} else { // find best mode per block
for (x = 0; x < mb_count; x++) {
mb = &s->mb[x];
score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error;
score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error;
score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error;
if (score1 <= score2 && score1 <= score3) {
ret += score1;
mb->best_encoding = ENC_SKIP;
} else if (score2 <= score3) {
ret += score2;
mb->best_encoding = ENC_V1;
} else {
ret += score3;
mb->best_encoding = ENC_V4;
}
}
}
break;
}
return ret;
}
static int write_chunk_header(unsigned char *buf, int chunk_type, int chunk_size)
{
buf[0] = chunk_type;
AV_WB24(&buf[1], chunk_size + CHUNK_HEADER_SIZE);
return CHUNK_HEADER_SIZE;
}
static int encode_codebook(CinepakEncContext *s, int *codebook, int size,
int chunk_type_yuv, int chunk_type_gray,
unsigned char *buf)
{
int x, y, ret, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
int incremental_codebook_replacement_mode = 0; // hardcoded here,
// the compiler should notice that this is a constant -- rl
ret = write_chunk_header(buf,
s->pix_fmt == AV_PIX_FMT_RGB24 ?
chunk_type_yuv + (incremental_codebook_replacement_mode ? 1 : 0) :
chunk_type_gray + (incremental_codebook_replacement_mode ? 1 : 0),
entry_size * size +
(incremental_codebook_replacement_mode ? (size + 31) / 32 * 4 : 0));
// we do codebook encoding according to the "intra" mode
// but we keep the "dead" code for reference in case we will want
// to use incremental codebook updates (which actually would give us
// "kind of" motion compensation, especially in 1 strip/frame case) -- rl
// (of course, the code will be not useful as-is)
if (incremental_codebook_replacement_mode) {
int flags = 0;
int flagsind;
for (x = 0; x < size; x++) {
if (flags == 0) {
flagsind = ret;
ret += 4;
flags = 0x80000000;
} else
flags = ((flags >> 1) | 0x80000000);
for (y = 0; y < entry_size; y++)
buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0);
if ((flags & 0xffffffff) == 0xffffffff) {
AV_WB32(&buf[flagsind], flags);
flags = 0;
}
}
if (flags)
AV_WB32(&buf[flagsind], flags);
} else
for (x = 0; x < size; x++)
for (y = 0; y < entry_size; y++)
buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0);
return ret;
}
// sets out to the sub picture starting at (x,y) in in
static void get_sub_picture(CinepakEncContext *s, int x, int y,
uint8_t * in_data[4], int in_linesize[4],
uint8_t *out_data[4], int out_linesize[4])
{
out_data[0] = in_data[0] + x + y * in_linesize[0];
out_linesize[0] = in_linesize[0];
if (s->pix_fmt == AV_PIX_FMT_RGB24) {
out_data[1] = in_data[1] + (x >> 1) + (y >> 1) * in_linesize[1];
out_linesize[1] = in_linesize[1];
out_data[2] = in_data[2] + (x >> 1) + (y >> 1) * in_linesize[2];
out_linesize[2] = in_linesize[2];
}
}
// decodes the V1 vector in mb into the 4x4 MB pointed to by data
static void decode_v1_vector(CinepakEncContext *s, uint8_t *data[4],
int linesize[4], int v1_vector, strip_info *info)
{
int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
data[0][0] =
data[0][1] =
data[0][ linesize[0]] =
data[0][1 + linesize[0]] = info->v1_codebook[v1_vector * entry_size];
data[0][2] =
data[0][3] =
data[0][2 + linesize[0]] =
data[0][3 + linesize[0]] = info->v1_codebook[v1_vector * entry_size + 1];
data[0][ 2 * linesize[0]] =
data[0][1 + 2 * linesize[0]] =
data[0][ 3 * linesize[0]] =
data[0][1 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 2];
data[0][2 + 2 * linesize[0]] =
data[0][3 + 2 * linesize[0]] =
data[0][2 + 3 * linesize[0]] =
data[0][3 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 3];
if (s->pix_fmt == AV_PIX_FMT_RGB24) {
data[1][0] =
data[1][1] =
data[1][ linesize[1]] =
data[1][1 + linesize[1]] = info->v1_codebook[v1_vector * entry_size + 4];
data[2][0] =
data[2][1] =
data[2][ linesize[2]] =
data[2][1 + linesize[2]] = info->v1_codebook[v1_vector * entry_size + 5];
}
}
// decodes the V4 vectors in mb into the 4x4 MB pointed to by data
static void decode_v4_vector(CinepakEncContext *s, uint8_t *data[4],
int linesize[4], int *v4_vector, strip_info *info)
{
int i, x, y, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
for (i = y = 0; y < 4; y += 2) {
for (x = 0; x < 4; x += 2, i++) {
data[0][x + y * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size];
data[0][x + 1 + y * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 1];
data[0][x + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 2];
data[0][x + 1 + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 3];
if (s->pix_fmt == AV_PIX_FMT_RGB24) {
data[1][(x >> 1) + (y >> 1) * linesize[1]] = info->v4_codebook[v4_vector[i] * entry_size + 4];
data[2][(x >> 1) + (y >> 1) * linesize[2]] = info->v4_codebook[v4_vector[i] * entry_size + 5];
}
}
}
}
static void copy_mb(CinepakEncContext *s,
uint8_t *a_data[4], int a_linesize[4],
uint8_t *b_data[4], int b_linesize[4])
{
int y, p;
for (y = 0; y < MB_SIZE; y++)
memcpy(a_data[0] + y * a_linesize[0], b_data[0] + y * b_linesize[0],
MB_SIZE);
if (s->pix_fmt == AV_PIX_FMT_RGB24) {
for (p = 1; p <= 2; p++)
for (y = 0; y < MB_SIZE / 2; y++)
memcpy(a_data[p] + y * a_linesize[p],
b_data[p] + y * b_linesize[p],
MB_SIZE / 2);
}
}
static int encode_mode(CinepakEncContext *s, int h,
uint8_t *scratch_data[4], int scratch_linesize[4],
uint8_t *last_data[4], int last_linesize[4],
strip_info *info, unsigned char *buf)
{
int x, y, z, bits, temp_size, header_ofs, ret = 0, mb_count = s->w * h / MB_AREA;
int needs_extra_bit, should_write_temp;
uint32_t flags;
unsigned char temp[64]; // 32/2 = 16 V4 blocks at 4 B each -> 64 B
mb_info *mb;
uint8_t *sub_scratch_data[4] = { 0 }, *sub_last_data[4] = { 0 };
int sub_scratch_linesize[4] = { 0 }, sub_last_linesize[4] = { 0 };
// encode codebooks
////// MacOS vintage decoder compatibility dictates the presence of
////// the codebook chunk even when the codebook is empty - pretty dumb...
////// and also the certain order of the codebook chunks -- rl
if (info->v4_size || !s->skip_empty_cb)
ret += encode_codebook(s, info->v4_codebook, info->v4_size, 0x20, 0x24, buf + ret);
if (info->v1_size || !s->skip_empty_cb)
ret += encode_codebook(s, info->v1_codebook, info->v1_size, 0x22, 0x26, buf + ret);
// update scratch picture
for (z = y = 0; y < h; y += MB_SIZE)
for (x = 0; x < s->w; x += MB_SIZE, z++) {
mb = &s->mb[z];
get_sub_picture(s, x, y, scratch_data, scratch_linesize,
sub_scratch_data, sub_scratch_linesize);
if (info->mode == MODE_MC && mb->best_encoding == ENC_SKIP) {
get_sub_picture(s, x, y, last_data, last_linesize,
sub_last_data, sub_last_linesize);
copy_mb(s, sub_scratch_data, sub_scratch_linesize,
sub_last_data, sub_last_linesize);
} else if (info->mode == MODE_V1_ONLY || mb->best_encoding == ENC_V1)
decode_v1_vector(s, sub_scratch_data, sub_scratch_linesize,
mb->v1_vector, info);
else
decode_v4_vector(s, sub_scratch_data, sub_scratch_linesize,
mb->v4_vector, info);
}
switch (info->mode) {
case MODE_V1_ONLY:
ret += write_chunk_header(buf + ret, 0x32, mb_count);
for (x = 0; x < mb_count; x++)
buf[ret++] = s->mb[x].v1_vector;
break;
case MODE_V1_V4:
// remember header position
header_ofs = ret;
ret += CHUNK_HEADER_SIZE;
for (x = 0; x < mb_count; x += 32) {
flags = 0;
for (y = x; y < FFMIN(x + 32, mb_count); y++)
if (s->mb[y].best_encoding == ENC_V4)
flags |= 1U << (31 - y + x);
AV_WB32(&buf[ret], flags);
ret += 4;
for (y = x; y < FFMIN(x + 32, mb_count); y++) {
mb = &s->mb[y];
if (mb->best_encoding == ENC_V1)
buf[ret++] = mb->v1_vector;
else
for (z = 0; z < 4; z++)
buf[ret++] = mb->v4_vector[z];
}
}
write_chunk_header(buf + header_ofs, 0x30, ret - header_ofs - CHUNK_HEADER_SIZE);
break;
case MODE_MC:
// remember header position
header_ofs = ret;
ret += CHUNK_HEADER_SIZE;
flags = bits = temp_size = 0;
for (x = 0; x < mb_count; x++) {
mb = &s->mb[x];
flags |= (uint32_t)(mb->best_encoding != ENC_SKIP) << (31 - bits++);
needs_extra_bit = 0;
should_write_temp = 0;
if (mb->best_encoding != ENC_SKIP) {
if (bits < 32)
flags |= (uint32_t)(mb->best_encoding == ENC_V4) << (31 - bits++);
else
needs_extra_bit = 1;
}
if (bits == 32) {
AV_WB32(&buf[ret], flags);
ret += 4;
flags = bits = 0;
if (mb->best_encoding == ENC_SKIP || needs_extra_bit) {
memcpy(&buf[ret], temp, temp_size);
ret += temp_size;
temp_size = 0;
} else
should_write_temp = 1;
}
if (needs_extra_bit) {
flags = (uint32_t)(mb->best_encoding == ENC_V4) << 31;
bits = 1;
}
if (mb->best_encoding == ENC_V1)
temp[temp_size++] = mb->v1_vector;
else if (mb->best_encoding == ENC_V4)
for (z = 0; z < 4; z++)
temp[temp_size++] = mb->v4_vector[z];
if (should_write_temp) {
memcpy(&buf[ret], temp, temp_size);
ret += temp_size;
temp_size = 0;
}
}
if (bits > 0) {
AV_WB32(&buf[ret], flags);
ret += 4;
memcpy(&buf[ret], temp, temp_size);
ret += temp_size;
}
write_chunk_header(buf + header_ofs, 0x31, ret - header_ofs - CHUNK_HEADER_SIZE);
break;
}
return ret;
}
// computes distortion of 4x4 MB in b compared to a
static int compute_mb_distortion(CinepakEncContext *s,
uint8_t *a_data[4], int a_linesize[4],
uint8_t *b_data[4], int b_linesize[4])
{
int x, y, p, d, ret = 0;
for (y = 0; y < MB_SIZE; y++)
for (x = 0; x < MB_SIZE; x++) {
d = a_data[0][x + y * a_linesize[0]] - b_data[0][x + y * b_linesize[0]];
ret += d * d;
}
if (s->pix_fmt == AV_PIX_FMT_RGB24) {
for (p = 1; p <= 2; p++) {
for (y = 0; y < MB_SIZE / 2; y++)
for (x = 0; x < MB_SIZE / 2; x++) {
d = a_data[p][x + y * a_linesize[p]] - b_data[p][x + y * b_linesize[p]];
ret += d * d;
}
}
}
return ret;
}
// return the possibly adjusted size of the codebook
#define CERTAIN(x) ((x) != ENC_UNCERTAIN)
static int quantize(CinepakEncContext *s, int h, uint8_t *data[4],
int linesize[4], int v1mode, strip_info *info,
mb_encoding encoding)
{
int x, y, i, j, k, x2, y2, x3, y3, plane, shift, mbn;
int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
int *codebook = v1mode ? info->v1_codebook : info->v4_codebook;
int size = v1mode ? info->v1_size : info->v4_size;
int64_t total_error = 0;
uint8_t vq_pict_buf[(MB_AREA * 3) / 2];
uint8_t *sub_data[4], *vq_data[4];
int sub_linesize[4], vq_linesize[4];
for (mbn = i = y = 0; y < h; y += MB_SIZE) {
for (x = 0; x < s->w; x += MB_SIZE, ++mbn) {
int *base;
if (CERTAIN(encoding)) {
// use for the training only the blocks known to be to be encoded [sic:-]
if (s->mb[mbn].best_encoding != encoding)
continue;
}
base = s->codebook_input + i * entry_size;
if (v1mode) {
// subsample
for (j = y2 = 0; y2 < entry_size; y2 += 2)
for (x2 = 0; x2 < 4; x2 += 2, j++) {
plane = y2 < 4 ? 0 : 1 + (x2 >> 1);
shift = y2 < 4 ? 0 : 1;
x3 = shift ? 0 : x2;
y3 = shift ? 0 : y2;
base[j] = (data[plane][((x + x3) >> shift) + ((y + y3) >> shift) * linesize[plane]] +
data[plane][((x + x3) >> shift) + 1 + ((y + y3) >> shift) * linesize[plane]] +
data[plane][((x + x3) >> shift) + (((y + y3) >> shift) + 1) * linesize[plane]] +
data[plane][((x + x3) >> shift) + 1 + (((y + y3) >> shift) + 1) * linesize[plane]]) >> 2;
}
} else {
// copy
for (j = y2 = 0; y2 < MB_SIZE; y2 += 2) {
for (x2 = 0; x2 < MB_SIZE; x2 += 2)
for (k = 0; k < entry_size; k++, j++) {
plane = k >= 4 ? k - 3 : 0;
if (k >= 4) {
x3 = (x + x2) >> 1;
y3 = (y + y2) >> 1;
} else {
x3 = x + x2 + (k & 1);
y3 = y + y2 + (k >> 1);
}
base[j] = data[plane][x3 + y3 * linesize[plane]];
}
}
}
i += v1mode ? 1 : 4;
}
}
if (i == 0) // empty training set, nothing to do
return 0;
if (i < size)
size = i;
avpriv_init_elbg(s->codebook_input, entry_size, i, codebook, size, 1, s->codebook_closest, &s->randctx);
avpriv_do_elbg(s->codebook_input, entry_size, i, codebook, size, 1, s->codebook_closest, &s->randctx);
// set up vq_data, which contains a single MB
vq_data[0] = vq_pict_buf;
vq_linesize[0] = MB_SIZE;
vq_data[1] = &vq_pict_buf[MB_AREA];
vq_data[2] = vq_data[1] + (MB_AREA >> 2);
vq_linesize[1] =
vq_linesize[2] = MB_SIZE >> 1;
// copy indices
for (i = j = y = 0; y < h; y += MB_SIZE)
for (x = 0; x < s->w; x += MB_SIZE, j++) {
mb_info *mb = &s->mb[j];
// skip uninteresting blocks if we know their preferred encoding
if (CERTAIN(encoding) && mb->best_encoding != encoding)
continue;
// point sub_data to current MB
get_sub_picture(s, x, y, data, linesize, sub_data, sub_linesize);
if (v1mode) {
mb->v1_vector = s->codebook_closest[i];
// fill in vq_data with V1 data
decode_v1_vector(s, vq_data, vq_linesize, mb->v1_vector, info);
mb->v1_error = compute_mb_distortion(s, sub_data, sub_linesize,
vq_data, vq_linesize);
total_error += mb->v1_error;
} else {
for (k = 0; k < 4; k++)
mb->v4_vector[k] = s->codebook_closest[i + k];
// fill in vq_data with V4 data
decode_v4_vector(s, vq_data, vq_linesize, mb->v4_vector, info);
mb->v4_error = compute_mb_distortion(s, sub_data, sub_linesize,
vq_data, vq_linesize);
total_error += mb->v4_error;
}
i += v1mode ? 1 : 4;
}
// check that we did it right in the beginning of the function
av_assert0(i >= size); // training set is no smaller than the codebook
return size;
}
static void calculate_skip_errors(CinepakEncContext *s, int h,
uint8_t *last_data[4], int last_linesize[4],
uint8_t *data[4], int linesize[4],
strip_info *info)
{
int x, y, i;
uint8_t *sub_last_data [4], *sub_pict_data [4];
int sub_last_linesize[4], sub_pict_linesize[4];
for (i = y = 0; y < h; y += MB_SIZE)
for (x = 0; x < s->w; x += MB_SIZE, i++) {
get_sub_picture(s, x, y, last_data, last_linesize,
sub_last_data, sub_last_linesize);
get_sub_picture(s, x, y, data, linesize,
sub_pict_data, sub_pict_linesize);
s->mb[i].skip_error =
compute_mb_distortion(s,
sub_last_data, sub_last_linesize,
sub_pict_data, sub_pict_linesize);
}
}
static void write_strip_header(CinepakEncContext *s, int y, int h, int keyframe,
unsigned char *buf, int strip_size)
{
// actually we are exclusively using intra strip coding (how much can we win
// otherwise? how to choose which part of a codebook to update?),
// keyframes are different only because we disallow ENC_SKIP on them -- rl
// (besides, the logic here used to be inverted: )
// buf[0] = keyframe ? 0x11: 0x10;
buf[0] = keyframe ? 0x10 : 0x11;
AV_WB24(&buf[1], strip_size + STRIP_HEADER_SIZE);
// AV_WB16(&buf[4], y); /* using absolute y values works -- rl */
AV_WB16(&buf[4], 0); /* using relative values works as well -- rl */
AV_WB16(&buf[6], 0);
// AV_WB16(&buf[8], y + h); /* using absolute y values works -- rl */
AV_WB16(&buf[8], h); /* using relative values works as well -- rl */
AV_WB16(&buf[10], s->w);
}
static int rd_strip(CinepakEncContext *s, int y, int h, int keyframe,
uint8_t *last_data[4], int last_linesize[4],
uint8_t *data[4], int linesize[4],
uint8_t *scratch_data[4], int scratch_linesize[4],
unsigned char *buf, int64_t *best_score)
{
int64_t score = 0;
int best_size = 0;
strip_info info;
// for codebook optimization:
int v1enough, v1_size, v4enough, v4_size;
int new_v1_size, new_v4_size;
int v1shrunk, v4shrunk;
if (!keyframe)
calculate_skip_errors(s, h, last_data, last_linesize, data, linesize,
&info);
// try some powers of 4 for the size of the codebooks
// constraint the v4 codebook to be no bigger than v1 one,
// (and no less than v1_size/4)
// thus making v1 preferable and possibly losing small details? should be ok
#define SMALLEST_CODEBOOK 1
for (v1enough = 0, v1_size = SMALLEST_CODEBOOK; v1_size <= CODEBOOK_MAX && !v1enough; v1_size <<= 2) {
for (v4enough = 0, v4_size = 0; v4_size <= v1_size && !v4enough; v4_size = v4_size ? v4_size << 2 : v1_size >= SMALLEST_CODEBOOK << 2 ? v1_size >> 2 : SMALLEST_CODEBOOK) {
CinepakMode mode;
// try all modes
for (mode = 0; mode < MODE_COUNT; mode++) {
// don't allow MODE_MC in intra frames
if (keyframe && mode == MODE_MC)
continue;
if (mode == MODE_V1_ONLY) {
info.v1_size = v1_size;
// the size may shrink even before optimizations if the input is short:
info.v1_size = quantize(s, h, data, linesize, 1,
&info, ENC_UNCERTAIN);
if (info.v1_size < v1_size)
// too few eligible blocks, no sense in trying bigger sizes
v1enough = 1;
info.v4_size = 0;
} else { // mode != MODE_V1_ONLY
// if v4 codebook is empty then only allow V1-only mode
if (!v4_size)
continue;
if (mode == MODE_V1_V4) {
info.v4_size = v4_size;
info.v4_size = quantize(s, h, data, linesize, 0,
&info, ENC_UNCERTAIN);
if (info.v4_size < v4_size)
// too few eligible blocks, no sense in trying bigger sizes
v4enough = 1;
}
}
info.mode = mode;
// choose the best encoding per block, based on current experience
score = calculate_mode_score(s, h, &info, 0,
&v1shrunk, &v4shrunk);
if (mode != MODE_V1_ONLY) {
int extra_iterations_limit = s->max_extra_cb_iterations;
// recompute the codebooks, omitting the extra blocks
// we assume we _may_ come here with more blocks to encode than before
info.v1_size = v1_size;
new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1);
if (new_v1_size < info.v1_size)
info.v1_size = new_v1_size;
// we assume we _may_ come here with more blocks to encode than before
info.v4_size = v4_size;
new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4);
if (new_v4_size < info.v4_size)
info.v4_size = new_v4_size;
// calculate the resulting score
// (do not move blocks to codebook encodings now, as some blocks may have
// got bigger errors despite a smaller training set - but we do not
// ever grow the training sets back)
for (;;) {
score = calculate_mode_score(s, h, &info, 1,
&v1shrunk, &v4shrunk);
// do we have a reason to reiterate? if so, have we reached the limit?
if ((!v1shrunk && !v4shrunk) || !extra_iterations_limit--)
break;
// recompute the codebooks, omitting the extra blocks
if (v1shrunk) {
info.v1_size = v1_size;
new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1);
if (new_v1_size < info.v1_size)
info.v1_size = new_v1_size;
}
if (v4shrunk) {
info.v4_size = v4_size;
new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4);
if (new_v4_size < info.v4_size)
info.v4_size = new_v4_size;
}
}
}
if (best_size == 0 || score < *best_score) {
*best_score = score;
best_size = encode_mode(s, h,
scratch_data, scratch_linesize,
last_data, last_linesize, &info,
s->strip_buf + STRIP_HEADER_SIZE);
write_strip_header(s, y, h, keyframe, s->strip_buf, best_size);
}
}
}
}
best_size += STRIP_HEADER_SIZE;
memcpy(buf, s->strip_buf, best_size);
return best_size;
}
static int write_cvid_header(CinepakEncContext *s, unsigned char *buf,
int num_strips, int data_size, int isakeyframe)
{
buf[0] = isakeyframe ? 0 : 1;
AV_WB24(&buf[1], data_size + CVID_HEADER_SIZE);
AV_WB16(&buf[4], s->w);
AV_WB16(&buf[6], s->h);
AV_WB16(&buf[8], num_strips);
return CVID_HEADER_SIZE;
}
static int rd_frame(CinepakEncContext *s, const AVFrame *frame,
int isakeyframe, unsigned char *buf, int buf_size)
{
int num_strips, strip, i, y, nexty, size, temp_size, best_size;
uint8_t *last_data [4], *data [4], *scratch_data [4];
int last_linesize[4], linesize[4], scratch_linesize[4];
int64_t best_score = 0, score, score_temp;
int best_nstrips;
if (s->pix_fmt == AV_PIX_FMT_RGB24) {
int x;
// build a copy of the given frame in the correct colorspace
for (y = 0; y < s->h; y += 2)
for (x = 0; x < s->w; x += 2) {
uint8_t *ir[2];
int32_t r, g, b, rr, gg, bb;
ir[0] = frame->data[0] + x * 3 + y * frame->linesize[0];
ir[1] = ir[0] + frame->linesize[0];
get_sub_picture(s, x, y,
s->input_frame->data, s->input_frame->linesize,
scratch_data, scratch_linesize);
r = g = b = 0;
for (i = 0; i < 4; ++i) {
int i1, i2;
i1 = (i & 1);
i2 = (i >= 2);
rr = ir[i2][i1 * 3 + 0];
gg = ir[i2][i1 * 3 + 1];
bb = ir[i2][i1 * 3 + 2];
r += rr;
g += gg;
b += bb;
// using fixed point arithmetic for portable repeatability, scaling by 2^23
// "Y"
// rr = 0.2857 * rr + 0.5714 * gg + 0.1429 * bb;
rr = (2396625 * rr + 4793251 * gg + 1198732 * bb) >> 23;
if (rr < 0)
rr = 0;
else if (rr > 255)
rr = 255;
scratch_data[0][i1 + i2 * scratch_linesize[0]] = rr;
}
// let us scale down as late as possible
// r /= 4; g /= 4; b /= 4;
// "U"
// rr = -0.1429 * r - 0.2857 * g + 0.4286 * b;
rr = (-299683 * r - 599156 * g + 898839 * b) >> 23;
if (rr < -128)
rr = -128;
else if (rr > 127)
rr = 127;
scratch_data[1][0] = rr + 128; // quantize needs unsigned
// "V"
// rr = 0.3571 * r - 0.2857 * g - 0.0714 * b;
rr = (748893 * r - 599156 * g - 149737 * b) >> 23;
if (rr < -128)
rr = -128;
else if (rr > 127)
rr = 127;
scratch_data[2][0] = rr + 128; // quantize needs unsigned
}
}
// would be nice but quite certainly incompatible with vintage players:
// support encoding zero strips (meaning skip the whole frame)
for (num_strips = s->min_strips; num_strips <= s->max_strips && num_strips <= s->h / MB_SIZE; num_strips++) {
score = 0;
size = 0;
for (y = 0, strip = 1; y < s->h; strip++, y = nexty) {
int strip_height;
nexty = strip * s->h / num_strips; // <= s->h
// make nexty the next multiple of 4 if not already there
if (nexty & 3)
nexty += 4 - (nexty & 3);
strip_height = nexty - y;
if (strip_height <= 0) { // can this ever happen?
av_log(s->avctx, AV_LOG_INFO, "skipping zero height strip %i of %i\n", strip, num_strips);
continue;
}
if (s->pix_fmt == AV_PIX_FMT_RGB24)
get_sub_picture(s, 0, y,
s->input_frame->data, s->input_frame->linesize,
data, linesize);
else
get_sub_picture(s, 0, y,
(uint8_t **)frame->data, (int *)frame->linesize,
data, linesize);
get_sub_picture(s, 0, y,
s->last_frame->data, s->last_frame->linesize,
last_data, last_linesize);
get_sub_picture(s, 0, y,
s->scratch_frame->data, s->scratch_frame->linesize,
scratch_data, scratch_linesize);
if ((temp_size = rd_strip(s, y, strip_height, isakeyframe,
last_data, last_linesize, data, linesize,
scratch_data, scratch_linesize,
s->frame_buf + size + CVID_HEADER_SIZE,
&score_temp)) < 0)
return temp_size;
score += score_temp;
size += temp_size;
}
if (best_score == 0 || score < best_score) {
best_score = score;
best_size = size + write_cvid_header(s, s->frame_buf, num_strips, size, isakeyframe);
FFSWAP(AVFrame *, s->best_frame, s->scratch_frame);
memcpy(buf, s->frame_buf, best_size);
best_nstrips = num_strips;
}
// avoid trying too many strip numbers without a real reason
// (this makes the processing of the very first frame faster)
if (num_strips - best_nstrips > 4)
break;
}
// let the number of strips slowly adapt to the changes in the contents,
// compared to full bruteforcing every time this will occasionally lead
// to some r/d performance loss but makes encoding up to several times faster
if (!s->strip_number_delta_range) {
if (best_nstrips == s->max_strips) { // let us try to step up
s->max_strips = best_nstrips + 1;
if (s->max_strips >= s->max_max_strips)
s->max_strips = s->max_max_strips;
} else { // try to step down
s->max_strips = best_nstrips;
}
s->min_strips = s->max_strips - 1;
if (s->min_strips < s->min_min_strips)
s->min_strips = s->min_min_strips;
} else {
s->max_strips = best_nstrips + s->strip_number_delta_range;
if (s->max_strips >= s->max_max_strips)
s->max_strips = s->max_max_strips;
s->min_strips = best_nstrips - s->strip_number_delta_range;
if (s->min_strips < s->min_min_strips)
s->min_strips = s->min_min_strips;
}
return best_size;
}
static int cinepak_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *frame, int *got_packet)
{
CinepakEncContext *s = avctx->priv_data;
int ret;
s->lambda = frame->quality ? frame->quality - 1 : 2 * FF_LAMBDA_SCALE;
if ((ret = ff_alloc_packet2(avctx, pkt, s->frame_buf_size, 0)) < 0)
return ret;
ret = rd_frame(s, frame, (s->curframe == 0), pkt->data, s->frame_buf_size);
pkt->size = ret;
if (s->curframe == 0)
pkt->flags |= AV_PKT_FLAG_KEY;
*got_packet = 1;
FFSWAP(AVFrame *, s->last_frame, s->best_frame);
if (++s->curframe >= s->keyint)
s->curframe = 0;
return 0;
}
static av_cold int cinepak_encode_end(AVCodecContext *avctx)
{
CinepakEncContext *s = avctx->priv_data;
int x;
av_frame_free(&s->last_frame);
av_frame_free(&s->best_frame);
av_frame_free(&s->scratch_frame);
if (avctx->pix_fmt == AV_PIX_FMT_RGB24)
av_frame_free(&s->input_frame);
av_freep(&s->codebook_input);
av_freep(&s->codebook_closest);
av_freep(&s->strip_buf);
av_freep(&s->frame_buf);
av_freep(&s->mb);
for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++)
av_freep(&s->pict_bufs[x]);
return 0;
}
const AVCodec ff_cinepak_encoder = {
.name = "cinepak",
.long_name = NULL_IF_CONFIG_SMALL("Cinepak"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_CINEPAK,
.priv_data_size = sizeof(CinepakEncContext),
.init = cinepak_encode_init,
.encode2 = cinepak_encode_frame,
.close = cinepak_encode_end,
.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_RGB24, AV_PIX_FMT_GRAY8, AV_PIX_FMT_NONE },
.priv_class = &cinepak_class,
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
};