mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-12-28 20:53:54 +02:00
42ceeb5f3c
Originally committed as revision 12642 to svn://svn.ffmpeg.org/ffmpeg/trunk
1496 lines
43 KiB
C
1496 lines
43 KiB
C
/**
|
|
* FLAC audio encoder
|
|
* Copyright (c) 2006 Justin Ruggles <jruggle@earthlink.net>
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "avcodec.h"
|
|
#include "bitstream.h"
|
|
#include "crc.h"
|
|
#include "dsputil.h"
|
|
#include "golomb.h"
|
|
#include "lls.h"
|
|
|
|
#define FLAC_MAX_CH 8
|
|
#define FLAC_MIN_BLOCKSIZE 16
|
|
#define FLAC_MAX_BLOCKSIZE 65535
|
|
|
|
#define FLAC_SUBFRAME_CONSTANT 0
|
|
#define FLAC_SUBFRAME_VERBATIM 1
|
|
#define FLAC_SUBFRAME_FIXED 8
|
|
#define FLAC_SUBFRAME_LPC 32
|
|
|
|
#define FLAC_CHMODE_NOT_STEREO 0
|
|
#define FLAC_CHMODE_LEFT_RIGHT 1
|
|
#define FLAC_CHMODE_LEFT_SIDE 8
|
|
#define FLAC_CHMODE_RIGHT_SIDE 9
|
|
#define FLAC_CHMODE_MID_SIDE 10
|
|
|
|
#define ORDER_METHOD_EST 0
|
|
#define ORDER_METHOD_2LEVEL 1
|
|
#define ORDER_METHOD_4LEVEL 2
|
|
#define ORDER_METHOD_8LEVEL 3
|
|
#define ORDER_METHOD_SEARCH 4
|
|
#define ORDER_METHOD_LOG 5
|
|
|
|
#define FLAC_STREAMINFO_SIZE 34
|
|
|
|
#define MIN_LPC_ORDER 1
|
|
#define MAX_LPC_ORDER 32
|
|
#define MAX_FIXED_ORDER 4
|
|
#define MAX_PARTITION_ORDER 8
|
|
#define MAX_PARTITIONS (1 << MAX_PARTITION_ORDER)
|
|
#define MAX_LPC_PRECISION 15
|
|
#define MAX_LPC_SHIFT 15
|
|
#define MAX_RICE_PARAM 14
|
|
|
|
typedef struct CompressionOptions {
|
|
int compression_level;
|
|
int block_time_ms;
|
|
int use_lpc;
|
|
int lpc_coeff_precision;
|
|
int min_prediction_order;
|
|
int max_prediction_order;
|
|
int prediction_order_method;
|
|
int min_partition_order;
|
|
int max_partition_order;
|
|
} CompressionOptions;
|
|
|
|
typedef struct RiceContext {
|
|
int porder;
|
|
int params[MAX_PARTITIONS];
|
|
} RiceContext;
|
|
|
|
typedef struct FlacSubframe {
|
|
int type;
|
|
int type_code;
|
|
int obits;
|
|
int order;
|
|
int32_t coefs[MAX_LPC_ORDER];
|
|
int shift;
|
|
RiceContext rc;
|
|
int32_t samples[FLAC_MAX_BLOCKSIZE];
|
|
int32_t residual[FLAC_MAX_BLOCKSIZE+1];
|
|
} FlacSubframe;
|
|
|
|
typedef struct FlacFrame {
|
|
FlacSubframe subframes[FLAC_MAX_CH];
|
|
int blocksize;
|
|
int bs_code[2];
|
|
uint8_t crc8;
|
|
int ch_mode;
|
|
} FlacFrame;
|
|
|
|
typedef struct FlacEncodeContext {
|
|
PutBitContext pb;
|
|
int channels;
|
|
int ch_code;
|
|
int samplerate;
|
|
int sr_code[2];
|
|
int max_framesize;
|
|
uint32_t frame_count;
|
|
FlacFrame frame;
|
|
CompressionOptions options;
|
|
AVCodecContext *avctx;
|
|
DSPContext dsp;
|
|
} FlacEncodeContext;
|
|
|
|
static const int flac_samplerates[16] = {
|
|
0, 0, 0, 0,
|
|
8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000,
|
|
0, 0, 0, 0
|
|
};
|
|
|
|
static const int flac_blocksizes[16] = {
|
|
0,
|
|
192,
|
|
576, 1152, 2304, 4608,
|
|
0, 0,
|
|
256, 512, 1024, 2048, 4096, 8192, 16384, 32768
|
|
};
|
|
|
|
/**
|
|
* Writes streaminfo metadata block to byte array
|
|
*/
|
|
static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
|
|
{
|
|
PutBitContext pb;
|
|
|
|
memset(header, 0, FLAC_STREAMINFO_SIZE);
|
|
init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);
|
|
|
|
/* streaminfo metadata block */
|
|
put_bits(&pb, 16, s->avctx->frame_size);
|
|
put_bits(&pb, 16, s->avctx->frame_size);
|
|
put_bits(&pb, 24, 0);
|
|
put_bits(&pb, 24, s->max_framesize);
|
|
put_bits(&pb, 20, s->samplerate);
|
|
put_bits(&pb, 3, s->channels-1);
|
|
put_bits(&pb, 5, 15); /* bits per sample - 1 */
|
|
flush_put_bits(&pb);
|
|
/* total samples = 0 */
|
|
/* MD5 signature = 0 */
|
|
}
|
|
|
|
/**
|
|
* Sets blocksize based on samplerate
|
|
* Chooses the closest predefined blocksize >= BLOCK_TIME_MS milliseconds
|
|
*/
|
|
static int select_blocksize(int samplerate, int block_time_ms)
|
|
{
|
|
int i;
|
|
int target;
|
|
int blocksize;
|
|
|
|
assert(samplerate > 0);
|
|
blocksize = flac_blocksizes[1];
|
|
target = (samplerate * block_time_ms) / 1000;
|
|
for(i=0; i<16; i++) {
|
|
if(target >= flac_blocksizes[i] && flac_blocksizes[i] > blocksize) {
|
|
blocksize = flac_blocksizes[i];
|
|
}
|
|
}
|
|
return blocksize;
|
|
}
|
|
|
|
static av_cold int flac_encode_init(AVCodecContext *avctx)
|
|
{
|
|
int freq = avctx->sample_rate;
|
|
int channels = avctx->channels;
|
|
FlacEncodeContext *s = avctx->priv_data;
|
|
int i, level;
|
|
uint8_t *streaminfo;
|
|
|
|
s->avctx = avctx;
|
|
|
|
dsputil_init(&s->dsp, avctx);
|
|
|
|
if(avctx->sample_fmt != SAMPLE_FMT_S16) {
|
|
return -1;
|
|
}
|
|
|
|
if(channels < 1 || channels > FLAC_MAX_CH) {
|
|
return -1;
|
|
}
|
|
s->channels = channels;
|
|
s->ch_code = s->channels-1;
|
|
|
|
/* find samplerate in table */
|
|
if(freq < 1)
|
|
return -1;
|
|
for(i=4; i<12; i++) {
|
|
if(freq == flac_samplerates[i]) {
|
|
s->samplerate = flac_samplerates[i];
|
|
s->sr_code[0] = i;
|
|
s->sr_code[1] = 0;
|
|
break;
|
|
}
|
|
}
|
|
/* if not in table, samplerate is non-standard */
|
|
if(i == 12) {
|
|
if(freq % 1000 == 0 && freq < 255000) {
|
|
s->sr_code[0] = 12;
|
|
s->sr_code[1] = freq / 1000;
|
|
} else if(freq % 10 == 0 && freq < 655350) {
|
|
s->sr_code[0] = 14;
|
|
s->sr_code[1] = freq / 10;
|
|
} else if(freq < 65535) {
|
|
s->sr_code[0] = 13;
|
|
s->sr_code[1] = freq;
|
|
} else {
|
|
return -1;
|
|
}
|
|
s->samplerate = freq;
|
|
}
|
|
|
|
/* set compression option defaults based on avctx->compression_level */
|
|
if(avctx->compression_level < 0) {
|
|
s->options.compression_level = 5;
|
|
} else {
|
|
s->options.compression_level = avctx->compression_level;
|
|
}
|
|
av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", s->options.compression_level);
|
|
|
|
level= s->options.compression_level;
|
|
if(level > 12) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
|
|
s->options.compression_level);
|
|
return -1;
|
|
}
|
|
|
|
s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level];
|
|
s->options.use_lpc = ((int[]){ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level];
|
|
s->options.min_prediction_order= ((int[]){ 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level];
|
|
s->options.max_prediction_order= ((int[]){ 3, 4, 4, 6, 8, 8, 8, 8, 12, 12, 12, 32, 32})[level];
|
|
s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST,
|
|
ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST,
|
|
ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG, ORDER_METHOD_4LEVEL,
|
|
ORDER_METHOD_LOG, ORDER_METHOD_SEARCH, ORDER_METHOD_LOG,
|
|
ORDER_METHOD_SEARCH})[level];
|
|
s->options.min_partition_order = ((int[]){ 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})[level];
|
|
s->options.max_partition_order = ((int[]){ 2, 2, 3, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8})[level];
|
|
|
|
/* set compression option overrides from AVCodecContext */
|
|
if(avctx->use_lpc >= 0) {
|
|
s->options.use_lpc = av_clip(avctx->use_lpc, 0, 11);
|
|
}
|
|
if(s->options.use_lpc == 1)
|
|
av_log(avctx, AV_LOG_DEBUG, " use lpc: Levinson-Durbin recursion with Welch window\n");
|
|
else if(s->options.use_lpc > 1)
|
|
av_log(avctx, AV_LOG_DEBUG, " use lpc: Cholesky factorization\n");
|
|
|
|
if(avctx->min_prediction_order >= 0) {
|
|
if(s->options.use_lpc) {
|
|
if(avctx->min_prediction_order < MIN_LPC_ORDER ||
|
|
avctx->min_prediction_order > MAX_LPC_ORDER) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
|
|
avctx->min_prediction_order);
|
|
return -1;
|
|
}
|
|
} else {
|
|
if(avctx->min_prediction_order > MAX_FIXED_ORDER) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
|
|
avctx->min_prediction_order);
|
|
return -1;
|
|
}
|
|
}
|
|
s->options.min_prediction_order = avctx->min_prediction_order;
|
|
}
|
|
if(avctx->max_prediction_order >= 0) {
|
|
if(s->options.use_lpc) {
|
|
if(avctx->max_prediction_order < MIN_LPC_ORDER ||
|
|
avctx->max_prediction_order > MAX_LPC_ORDER) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
|
|
avctx->max_prediction_order);
|
|
return -1;
|
|
}
|
|
} else {
|
|
if(avctx->max_prediction_order > MAX_FIXED_ORDER) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
|
|
avctx->max_prediction_order);
|
|
return -1;
|
|
}
|
|
}
|
|
s->options.max_prediction_order = avctx->max_prediction_order;
|
|
}
|
|
if(s->options.max_prediction_order < s->options.min_prediction_order) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
|
|
s->options.min_prediction_order, s->options.max_prediction_order);
|
|
return -1;
|
|
}
|
|
av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
|
|
s->options.min_prediction_order, s->options.max_prediction_order);
|
|
|
|
if(avctx->prediction_order_method >= 0) {
|
|
if(avctx->prediction_order_method > ORDER_METHOD_LOG) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n",
|
|
avctx->prediction_order_method);
|
|
return -1;
|
|
}
|
|
s->options.prediction_order_method = avctx->prediction_order_method;
|
|
}
|
|
switch(s->options.prediction_order_method) {
|
|
case ORDER_METHOD_EST: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
|
|
"estimate"); break;
|
|
case ORDER_METHOD_2LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
|
|
"2-level"); break;
|
|
case ORDER_METHOD_4LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
|
|
"4-level"); break;
|
|
case ORDER_METHOD_8LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
|
|
"8-level"); break;
|
|
case ORDER_METHOD_SEARCH: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
|
|
"full search"); break;
|
|
case ORDER_METHOD_LOG: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
|
|
"log search"); break;
|
|
}
|
|
|
|
if(avctx->min_partition_order >= 0) {
|
|
if(avctx->min_partition_order > MAX_PARTITION_ORDER) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n",
|
|
avctx->min_partition_order);
|
|
return -1;
|
|
}
|
|
s->options.min_partition_order = avctx->min_partition_order;
|
|
}
|
|
if(avctx->max_partition_order >= 0) {
|
|
if(avctx->max_partition_order > MAX_PARTITION_ORDER) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n",
|
|
avctx->max_partition_order);
|
|
return -1;
|
|
}
|
|
s->options.max_partition_order = avctx->max_partition_order;
|
|
}
|
|
if(s->options.max_partition_order < s->options.min_partition_order) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
|
|
s->options.min_partition_order, s->options.max_partition_order);
|
|
return -1;
|
|
}
|
|
av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
|
|
s->options.min_partition_order, s->options.max_partition_order);
|
|
|
|
if(avctx->frame_size > 0) {
|
|
if(avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
|
|
avctx->frame_size > FLAC_MAX_BLOCKSIZE) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
|
|
avctx->frame_size);
|
|
return -1;
|
|
}
|
|
} else {
|
|
s->avctx->frame_size = select_blocksize(s->samplerate, s->options.block_time_ms);
|
|
}
|
|
av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", s->avctx->frame_size);
|
|
|
|
/* set LPC precision */
|
|
if(avctx->lpc_coeff_precision > 0) {
|
|
if(avctx->lpc_coeff_precision > MAX_LPC_PRECISION) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n",
|
|
avctx->lpc_coeff_precision);
|
|
return -1;
|
|
}
|
|
s->options.lpc_coeff_precision = avctx->lpc_coeff_precision;
|
|
} else {
|
|
/* default LPC precision */
|
|
s->options.lpc_coeff_precision = 15;
|
|
}
|
|
av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
|
|
s->options.lpc_coeff_precision);
|
|
|
|
/* set maximum encoded frame size in verbatim mode */
|
|
if(s->channels == 2) {
|
|
s->max_framesize = 14 + ((s->avctx->frame_size * 33 + 7) >> 3);
|
|
} else {
|
|
s->max_framesize = 14 + (s->avctx->frame_size * s->channels * 2);
|
|
}
|
|
|
|
streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
|
|
write_streaminfo(s, streaminfo);
|
|
avctx->extradata = streaminfo;
|
|
avctx->extradata_size = FLAC_STREAMINFO_SIZE;
|
|
|
|
s->frame_count = 0;
|
|
|
|
avctx->coded_frame = avcodec_alloc_frame();
|
|
avctx->coded_frame->key_frame = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void init_frame(FlacEncodeContext *s)
|
|
{
|
|
int i, ch;
|
|
FlacFrame *frame;
|
|
|
|
frame = &s->frame;
|
|
|
|
for(i=0; i<16; i++) {
|
|
if(s->avctx->frame_size == flac_blocksizes[i]) {
|
|
frame->blocksize = flac_blocksizes[i];
|
|
frame->bs_code[0] = i;
|
|
frame->bs_code[1] = 0;
|
|
break;
|
|
}
|
|
}
|
|
if(i == 16) {
|
|
frame->blocksize = s->avctx->frame_size;
|
|
if(frame->blocksize <= 256) {
|
|
frame->bs_code[0] = 6;
|
|
frame->bs_code[1] = frame->blocksize-1;
|
|
} else {
|
|
frame->bs_code[0] = 7;
|
|
frame->bs_code[1] = frame->blocksize-1;
|
|
}
|
|
}
|
|
|
|
for(ch=0; ch<s->channels; ch++) {
|
|
frame->subframes[ch].obits = 16;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Copy channel-interleaved input samples into separate subframes
|
|
*/
|
|
static void copy_samples(FlacEncodeContext *s, int16_t *samples)
|
|
{
|
|
int i, j, ch;
|
|
FlacFrame *frame;
|
|
|
|
frame = &s->frame;
|
|
for(i=0,j=0; i<frame->blocksize; i++) {
|
|
for(ch=0; ch<s->channels; ch++,j++) {
|
|
frame->subframes[ch].samples[i] = samples[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k)))
|
|
|
|
/**
|
|
* Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0
|
|
*/
|
|
static int find_optimal_param(uint32_t sum, int n)
|
|
{
|
|
int k;
|
|
uint32_t sum2;
|
|
|
|
if(sum <= n>>1)
|
|
return 0;
|
|
sum2 = sum-(n>>1);
|
|
k = av_log2(n<256 ? FASTDIV(sum2,n) : sum2/n);
|
|
return FFMIN(k, MAX_RICE_PARAM);
|
|
}
|
|
|
|
static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder,
|
|
uint32_t *sums, int n, int pred_order)
|
|
{
|
|
int i;
|
|
int k, cnt, part;
|
|
uint32_t all_bits;
|
|
|
|
part = (1 << porder);
|
|
all_bits = 4 * part;
|
|
|
|
cnt = (n >> porder) - pred_order;
|
|
for(i=0; i<part; i++) {
|
|
k = find_optimal_param(sums[i], cnt);
|
|
rc->params[i] = k;
|
|
all_bits += rice_encode_count(sums[i], cnt, k);
|
|
cnt = n >> porder;
|
|
}
|
|
|
|
rc->porder = porder;
|
|
|
|
return all_bits;
|
|
}
|
|
|
|
static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order,
|
|
uint32_t sums[][MAX_PARTITIONS])
|
|
{
|
|
int i, j;
|
|
int parts;
|
|
uint32_t *res, *res_end;
|
|
|
|
/* sums for highest level */
|
|
parts = (1 << pmax);
|
|
res = &data[pred_order];
|
|
res_end = &data[n >> pmax];
|
|
for(i=0; i<parts; i++) {
|
|
uint32_t sum = 0;
|
|
while(res < res_end){
|
|
sum += *(res++);
|
|
}
|
|
sums[pmax][i] = sum;
|
|
res_end+= n >> pmax;
|
|
}
|
|
/* sums for lower levels */
|
|
for(i=pmax-1; i>=pmin; i--) {
|
|
parts = (1 << i);
|
|
for(j=0; j<parts; j++) {
|
|
sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1];
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax,
|
|
int32_t *data, int n, int pred_order)
|
|
{
|
|
int i;
|
|
uint32_t bits[MAX_PARTITION_ORDER+1];
|
|
int opt_porder;
|
|
RiceContext tmp_rc;
|
|
uint32_t *udata;
|
|
uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS];
|
|
|
|
assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
|
|
assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
|
|
assert(pmin <= pmax);
|
|
|
|
udata = av_malloc(n * sizeof(uint32_t));
|
|
for(i=0; i<n; i++) {
|
|
udata[i] = (2*data[i]) ^ (data[i]>>31);
|
|
}
|
|
|
|
calc_sums(pmin, pmax, udata, n, pred_order, sums);
|
|
|
|
opt_porder = pmin;
|
|
bits[pmin] = UINT32_MAX;
|
|
for(i=pmin; i<=pmax; i++) {
|
|
bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order);
|
|
if(bits[i] <= bits[opt_porder]) {
|
|
opt_porder = i;
|
|
*rc= tmp_rc;
|
|
}
|
|
}
|
|
|
|
av_freep(&udata);
|
|
return bits[opt_porder];
|
|
}
|
|
|
|
static int get_max_p_order(int max_porder, int n, int order)
|
|
{
|
|
int porder = FFMIN(max_porder, av_log2(n^(n-1)));
|
|
if(order > 0)
|
|
porder = FFMIN(porder, av_log2(n/order));
|
|
return porder;
|
|
}
|
|
|
|
static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmin, int pmax,
|
|
int32_t *data, int n, int pred_order,
|
|
int bps)
|
|
{
|
|
uint32_t bits;
|
|
pmin = get_max_p_order(pmin, n, pred_order);
|
|
pmax = get_max_p_order(pmax, n, pred_order);
|
|
bits = pred_order*bps + 6;
|
|
bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
|
|
return bits;
|
|
}
|
|
|
|
static uint32_t calc_rice_params_lpc(RiceContext *rc, int pmin, int pmax,
|
|
int32_t *data, int n, int pred_order,
|
|
int bps, int precision)
|
|
{
|
|
uint32_t bits;
|
|
pmin = get_max_p_order(pmin, n, pred_order);
|
|
pmax = get_max_p_order(pmax, n, pred_order);
|
|
bits = pred_order*bps + 4 + 5 + pred_order*precision + 6;
|
|
bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
|
|
return bits;
|
|
}
|
|
|
|
/**
|
|
* Apply Welch window function to audio block
|
|
*/
|
|
static void apply_welch_window(const int32_t *data, int len, double *w_data)
|
|
{
|
|
int i, n2;
|
|
double w;
|
|
double c;
|
|
|
|
assert(!(len&1)); //the optimization in r11881 does not support odd len
|
|
//if someone wants odd len extend the change in r11881
|
|
|
|
n2 = (len >> 1);
|
|
c = 2.0 / (len - 1.0);
|
|
|
|
w_data+=n2;
|
|
data+=n2;
|
|
for(i=0; i<n2; i++) {
|
|
w = c - n2 + i;
|
|
w = 1.0 - (w * w);
|
|
w_data[-i-1] = data[-i-1] * w;
|
|
w_data[+i ] = data[+i ] * w;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculates autocorrelation data from audio samples
|
|
* A Welch window function is applied before calculation.
|
|
*/
|
|
void ff_flac_compute_autocorr(const int32_t *data, int len, int lag,
|
|
double *autoc)
|
|
{
|
|
int i, j;
|
|
double tmp[len + lag + 1];
|
|
double *data1= tmp + lag;
|
|
|
|
apply_welch_window(data, len, data1);
|
|
|
|
for(j=0; j<lag; j++)
|
|
data1[j-lag]= 0.0;
|
|
data1[len] = 0.0;
|
|
|
|
for(j=0; j<lag; j+=2){
|
|
double sum0 = 1.0, sum1 = 1.0;
|
|
for(i=0; i<len; i++){
|
|
sum0 += data1[i] * data1[i-j];
|
|
sum1 += data1[i] * data1[i-j-1];
|
|
}
|
|
autoc[j ] = sum0;
|
|
autoc[j+1] = sum1;
|
|
}
|
|
|
|
if(j==lag){
|
|
double sum = 1.0;
|
|
for(i=0; i<len; i+=2){
|
|
sum += data1[i ] * data1[i-j ]
|
|
+ data1[i+1] * data1[i-j+1];
|
|
}
|
|
autoc[j] = sum;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Levinson-Durbin recursion.
|
|
* Produces LPC coefficients from autocorrelation data.
|
|
*/
|
|
static void compute_lpc_coefs(const double *autoc, int max_order,
|
|
double lpc[][MAX_LPC_ORDER], double *ref)
|
|
{
|
|
int i, j, i2;
|
|
double r, err, tmp;
|
|
double lpc_tmp[MAX_LPC_ORDER];
|
|
|
|
for(i=0; i<max_order; i++) lpc_tmp[i] = 0;
|
|
err = autoc[0];
|
|
|
|
for(i=0; i<max_order; i++) {
|
|
r = -autoc[i+1];
|
|
for(j=0; j<i; j++) {
|
|
r -= lpc_tmp[j] * autoc[i-j];
|
|
}
|
|
r /= err;
|
|
ref[i] = fabs(r);
|
|
|
|
err *= 1.0 - (r * r);
|
|
|
|
i2 = (i >> 1);
|
|
lpc_tmp[i] = r;
|
|
for(j=0; j<i2; j++) {
|
|
tmp = lpc_tmp[j];
|
|
lpc_tmp[j] += r * lpc_tmp[i-1-j];
|
|
lpc_tmp[i-1-j] += r * tmp;
|
|
}
|
|
if(i & 1) {
|
|
lpc_tmp[j] += lpc_tmp[j] * r;
|
|
}
|
|
|
|
for(j=0; j<=i; j++) {
|
|
lpc[i][j] = -lpc_tmp[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Quantize LPC coefficients
|
|
*/
|
|
static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
|
|
int32_t *lpc_out, int *shift)
|
|
{
|
|
int i;
|
|
double cmax, error;
|
|
int32_t qmax;
|
|
int sh;
|
|
|
|
/* define maximum levels */
|
|
qmax = (1 << (precision - 1)) - 1;
|
|
|
|
/* find maximum coefficient value */
|
|
cmax = 0.0;
|
|
for(i=0; i<order; i++) {
|
|
cmax= FFMAX(cmax, fabs(lpc_in[i]));
|
|
}
|
|
|
|
/* if maximum value quantizes to zero, return all zeros */
|
|
if(cmax * (1 << MAX_LPC_SHIFT) < 1.0) {
|
|
*shift = 0;
|
|
memset(lpc_out, 0, sizeof(int32_t) * order);
|
|
return;
|
|
}
|
|
|
|
/* calculate level shift which scales max coeff to available bits */
|
|
sh = MAX_LPC_SHIFT;
|
|
while((cmax * (1 << sh) > qmax) && (sh > 0)) {
|
|
sh--;
|
|
}
|
|
|
|
/* since negative shift values are unsupported in decoder, scale down
|
|
coefficients instead */
|
|
if(sh == 0 && cmax > qmax) {
|
|
double scale = ((double)qmax) / cmax;
|
|
for(i=0; i<order; i++) {
|
|
lpc_in[i] *= scale;
|
|
}
|
|
}
|
|
|
|
/* output quantized coefficients and level shift */
|
|
error=0;
|
|
for(i=0; i<order; i++) {
|
|
error += lpc_in[i] * (1 << sh);
|
|
lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
|
|
error -= lpc_out[i];
|
|
}
|
|
*shift = sh;
|
|
}
|
|
|
|
static int estimate_best_order(double *ref, int max_order)
|
|
{
|
|
int i, est;
|
|
|
|
est = 1;
|
|
for(i=max_order-1; i>=0; i--) {
|
|
if(ref[i] > 0.10) {
|
|
est = i+1;
|
|
break;
|
|
}
|
|
}
|
|
return est;
|
|
}
|
|
|
|
/**
|
|
* Calculate LPC coefficients for multiple orders
|
|
*/
|
|
static int lpc_calc_coefs(FlacEncodeContext *s,
|
|
const int32_t *samples, int blocksize, int max_order,
|
|
int precision, int32_t coefs[][MAX_LPC_ORDER],
|
|
int *shift, int use_lpc, int omethod)
|
|
{
|
|
double autoc[MAX_LPC_ORDER+1];
|
|
double ref[MAX_LPC_ORDER];
|
|
double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
|
|
int i, j, pass;
|
|
int opt_order;
|
|
|
|
assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER);
|
|
|
|
if(use_lpc == 1){
|
|
s->dsp.flac_compute_autocorr(samples, blocksize, max_order, autoc);
|
|
|
|
compute_lpc_coefs(autoc, max_order, lpc, ref);
|
|
}else{
|
|
LLSModel m[2];
|
|
double var[MAX_LPC_ORDER+1], weight;
|
|
|
|
for(pass=0; pass<use_lpc-1; pass++){
|
|
av_init_lls(&m[pass&1], max_order);
|
|
|
|
weight=0;
|
|
for(i=max_order; i<blocksize; i++){
|
|
for(j=0; j<=max_order; j++)
|
|
var[j]= samples[i-j];
|
|
|
|
if(pass){
|
|
double eval, inv, rinv;
|
|
eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
|
|
eval= (512>>pass) + fabs(eval - var[0]);
|
|
inv = 1/eval;
|
|
rinv = sqrt(inv);
|
|
for(j=0; j<=max_order; j++)
|
|
var[j] *= rinv;
|
|
weight += inv;
|
|
}else
|
|
weight++;
|
|
|
|
av_update_lls(&m[pass&1], var, 1.0);
|
|
}
|
|
av_solve_lls(&m[pass&1], 0.001, 0);
|
|
}
|
|
|
|
for(i=0; i<max_order; i++){
|
|
for(j=0; j<max_order; j++)
|
|
lpc[i][j]= m[(pass-1)&1].coeff[i][j];
|
|
ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
|
|
}
|
|
for(i=max_order-1; i>0; i--)
|
|
ref[i] = ref[i-1] - ref[i];
|
|
}
|
|
opt_order = max_order;
|
|
|
|
if(omethod == ORDER_METHOD_EST) {
|
|
opt_order = estimate_best_order(ref, max_order);
|
|
i = opt_order-1;
|
|
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
|
|
} else {
|
|
for(i=0; i<max_order; i++) {
|
|
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
|
|
}
|
|
}
|
|
|
|
return opt_order;
|
|
}
|
|
|
|
|
|
static void encode_residual_verbatim(int32_t *res, int32_t *smp, int n)
|
|
{
|
|
assert(n > 0);
|
|
memcpy(res, smp, n * sizeof(int32_t));
|
|
}
|
|
|
|
static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
|
|
int order)
|
|
{
|
|
int i;
|
|
|
|
for(i=0; i<order; i++) {
|
|
res[i] = smp[i];
|
|
}
|
|
|
|
if(order==0){
|
|
for(i=order; i<n; i++)
|
|
res[i]= smp[i];
|
|
}else if(order==1){
|
|
for(i=order; i<n; i++)
|
|
res[i]= smp[i] - smp[i-1];
|
|
}else if(order==2){
|
|
int a = smp[order-1] - smp[order-2];
|
|
for(i=order; i<n; i+=2) {
|
|
int b = smp[i] - smp[i-1];
|
|
res[i]= b - a;
|
|
a = smp[i+1] - smp[i];
|
|
res[i+1]= a - b;
|
|
}
|
|
}else if(order==3){
|
|
int a = smp[order-1] - smp[order-2];
|
|
int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
|
|
for(i=order; i<n; i+=2) {
|
|
int b = smp[i] - smp[i-1];
|
|
int d = b - a;
|
|
res[i]= d - c;
|
|
a = smp[i+1] - smp[i];
|
|
c = a - b;
|
|
res[i+1]= c - d;
|
|
}
|
|
}else{
|
|
int a = smp[order-1] - smp[order-2];
|
|
int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
|
|
int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4];
|
|
for(i=order; i<n; i+=2) {
|
|
int b = smp[i] - smp[i-1];
|
|
int d = b - a;
|
|
int f = d - c;
|
|
res[i]= f - e;
|
|
a = smp[i+1] - smp[i];
|
|
c = a - b;
|
|
e = c - d;
|
|
res[i+1]= e - f;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define LPC1(x) {\
|
|
int c = coefs[(x)-1];\
|
|
p0 += c*s;\
|
|
s = smp[i-(x)+1];\
|
|
p1 += c*s;\
|
|
}
|
|
|
|
static av_always_inline void encode_residual_lpc_unrolled(
|
|
int32_t *res, const int32_t *smp, int n,
|
|
int order, const int32_t *coefs, int shift, int big)
|
|
{
|
|
int i;
|
|
for(i=order; i<n; i+=2) {
|
|
int s = smp[i-order];
|
|
int p0 = 0, p1 = 0;
|
|
if(big) {
|
|
switch(order) {
|
|
case 32: LPC1(32)
|
|
case 31: LPC1(31)
|
|
case 30: LPC1(30)
|
|
case 29: LPC1(29)
|
|
case 28: LPC1(28)
|
|
case 27: LPC1(27)
|
|
case 26: LPC1(26)
|
|
case 25: LPC1(25)
|
|
case 24: LPC1(24)
|
|
case 23: LPC1(23)
|
|
case 22: LPC1(22)
|
|
case 21: LPC1(21)
|
|
case 20: LPC1(20)
|
|
case 19: LPC1(19)
|
|
case 18: LPC1(18)
|
|
case 17: LPC1(17)
|
|
case 16: LPC1(16)
|
|
case 15: LPC1(15)
|
|
case 14: LPC1(14)
|
|
case 13: LPC1(13)
|
|
case 12: LPC1(12)
|
|
case 11: LPC1(11)
|
|
case 10: LPC1(10)
|
|
case 9: LPC1( 9)
|
|
LPC1( 8)
|
|
LPC1( 7)
|
|
LPC1( 6)
|
|
LPC1( 5)
|
|
LPC1( 4)
|
|
LPC1( 3)
|
|
LPC1( 2)
|
|
LPC1( 1)
|
|
}
|
|
} else {
|
|
switch(order) {
|
|
case 8: LPC1( 8)
|
|
case 7: LPC1( 7)
|
|
case 6: LPC1( 6)
|
|
case 5: LPC1( 5)
|
|
case 4: LPC1( 4)
|
|
case 3: LPC1( 3)
|
|
case 2: LPC1( 2)
|
|
case 1: LPC1( 1)
|
|
}
|
|
}
|
|
res[i ] = smp[i ] - (p0 >> shift);
|
|
res[i+1] = smp[i+1] - (p1 >> shift);
|
|
}
|
|
}
|
|
|
|
static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n,
|
|
int order, const int32_t *coefs, int shift)
|
|
{
|
|
int i;
|
|
for(i=0; i<order; i++) {
|
|
res[i] = smp[i];
|
|
}
|
|
#ifdef CONFIG_SMALL
|
|
for(i=order; i<n; i+=2) {
|
|
int j;
|
|
int s = smp[i];
|
|
int p0 = 0, p1 = 0;
|
|
for(j=0; j<order; j++) {
|
|
int c = coefs[j];
|
|
p1 += c*s;
|
|
s = smp[i-j-1];
|
|
p0 += c*s;
|
|
}
|
|
res[i ] = smp[i ] - (p0 >> shift);
|
|
res[i+1] = smp[i+1] - (p1 >> shift);
|
|
}
|
|
#else
|
|
switch(order) {
|
|
case 1: encode_residual_lpc_unrolled(res, smp, n, 1, coefs, shift, 0); break;
|
|
case 2: encode_residual_lpc_unrolled(res, smp, n, 2, coefs, shift, 0); break;
|
|
case 3: encode_residual_lpc_unrolled(res, smp, n, 3, coefs, shift, 0); break;
|
|
case 4: encode_residual_lpc_unrolled(res, smp, n, 4, coefs, shift, 0); break;
|
|
case 5: encode_residual_lpc_unrolled(res, smp, n, 5, coefs, shift, 0); break;
|
|
case 6: encode_residual_lpc_unrolled(res, smp, n, 6, coefs, shift, 0); break;
|
|
case 7: encode_residual_lpc_unrolled(res, smp, n, 7, coefs, shift, 0); break;
|
|
case 8: encode_residual_lpc_unrolled(res, smp, n, 8, coefs, shift, 0); break;
|
|
default: encode_residual_lpc_unrolled(res, smp, n, order, coefs, shift, 1); break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static int encode_residual(FlacEncodeContext *ctx, int ch)
|
|
{
|
|
int i, n;
|
|
int min_order, max_order, opt_order, precision, omethod;
|
|
int min_porder, max_porder;
|
|
FlacFrame *frame;
|
|
FlacSubframe *sub;
|
|
int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
|
|
int shift[MAX_LPC_ORDER];
|
|
int32_t *res, *smp;
|
|
|
|
frame = &ctx->frame;
|
|
sub = &frame->subframes[ch];
|
|
res = sub->residual;
|
|
smp = sub->samples;
|
|
n = frame->blocksize;
|
|
|
|
/* CONSTANT */
|
|
for(i=1; i<n; i++) {
|
|
if(smp[i] != smp[0]) break;
|
|
}
|
|
if(i == n) {
|
|
sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
|
|
res[0] = smp[0];
|
|
return sub->obits;
|
|
}
|
|
|
|
/* VERBATIM */
|
|
if(n < 5) {
|
|
sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
|
|
encode_residual_verbatim(res, smp, n);
|
|
return sub->obits * n;
|
|
}
|
|
|
|
min_order = ctx->options.min_prediction_order;
|
|
max_order = ctx->options.max_prediction_order;
|
|
min_porder = ctx->options.min_partition_order;
|
|
max_porder = ctx->options.max_partition_order;
|
|
precision = ctx->options.lpc_coeff_precision;
|
|
omethod = ctx->options.prediction_order_method;
|
|
|
|
/* FIXED */
|
|
if(!ctx->options.use_lpc || max_order == 0 || (n <= max_order)) {
|
|
uint32_t bits[MAX_FIXED_ORDER+1];
|
|
if(max_order > MAX_FIXED_ORDER) max_order = MAX_FIXED_ORDER;
|
|
opt_order = 0;
|
|
bits[0] = UINT32_MAX;
|
|
for(i=min_order; i<=max_order; i++) {
|
|
encode_residual_fixed(res, smp, n, i);
|
|
bits[i] = calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res,
|
|
n, i, sub->obits);
|
|
if(bits[i] < bits[opt_order]) {
|
|
opt_order = i;
|
|
}
|
|
}
|
|
sub->order = opt_order;
|
|
sub->type = FLAC_SUBFRAME_FIXED;
|
|
sub->type_code = sub->type | sub->order;
|
|
if(sub->order != max_order) {
|
|
encode_residual_fixed(res, smp, n, sub->order);
|
|
return calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res, n,
|
|
sub->order, sub->obits);
|
|
}
|
|
return bits[sub->order];
|
|
}
|
|
|
|
/* LPC */
|
|
opt_order = lpc_calc_coefs(ctx, smp, n, max_order, precision, coefs, shift, ctx->options.use_lpc, omethod);
|
|
|
|
if(omethod == ORDER_METHOD_2LEVEL ||
|
|
omethod == ORDER_METHOD_4LEVEL ||
|
|
omethod == ORDER_METHOD_8LEVEL) {
|
|
int levels = 1 << omethod;
|
|
uint32_t bits[levels];
|
|
int order;
|
|
int opt_index = levels-1;
|
|
opt_order = max_order-1;
|
|
bits[opt_index] = UINT32_MAX;
|
|
for(i=levels-1; i>=0; i--) {
|
|
order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1;
|
|
if(order < 0) order = 0;
|
|
encode_residual_lpc(res, smp, n, order+1, coefs[order], shift[order]);
|
|
bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
|
|
res, n, order+1, sub->obits, precision);
|
|
if(bits[i] < bits[opt_index]) {
|
|
opt_index = i;
|
|
opt_order = order;
|
|
}
|
|
}
|
|
opt_order++;
|
|
} else if(omethod == ORDER_METHOD_SEARCH) {
|
|
// brute-force optimal order search
|
|
uint32_t bits[MAX_LPC_ORDER];
|
|
opt_order = 0;
|
|
bits[0] = UINT32_MAX;
|
|
for(i=min_order-1; i<max_order; i++) {
|
|
encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
|
|
bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
|
|
res, n, i+1, sub->obits, precision);
|
|
if(bits[i] < bits[opt_order]) {
|
|
opt_order = i;
|
|
}
|
|
}
|
|
opt_order++;
|
|
} else if(omethod == ORDER_METHOD_LOG) {
|
|
uint32_t bits[MAX_LPC_ORDER];
|
|
int step;
|
|
|
|
opt_order= min_order - 1 + (max_order-min_order)/3;
|
|
memset(bits, -1, sizeof(bits));
|
|
|
|
for(step=16 ;step; step>>=1){
|
|
int last= opt_order;
|
|
for(i=last-step; i<=last+step; i+= step){
|
|
if(i<min_order-1 || i>=max_order || bits[i] < UINT32_MAX)
|
|
continue;
|
|
encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
|
|
bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
|
|
res, n, i+1, sub->obits, precision);
|
|
if(bits[i] < bits[opt_order])
|
|
opt_order= i;
|
|
}
|
|
}
|
|
opt_order++;
|
|
}
|
|
|
|
sub->order = opt_order;
|
|
sub->type = FLAC_SUBFRAME_LPC;
|
|
sub->type_code = sub->type | (sub->order-1);
|
|
sub->shift = shift[sub->order-1];
|
|
for(i=0; i<sub->order; i++) {
|
|
sub->coefs[i] = coefs[sub->order-1][i];
|
|
}
|
|
encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift);
|
|
return calc_rice_params_lpc(&sub->rc, min_porder, max_porder, res, n, sub->order,
|
|
sub->obits, precision);
|
|
}
|
|
|
|
static int encode_residual_v(FlacEncodeContext *ctx, int ch)
|
|
{
|
|
int i, n;
|
|
FlacFrame *frame;
|
|
FlacSubframe *sub;
|
|
int32_t *res, *smp;
|
|
|
|
frame = &ctx->frame;
|
|
sub = &frame->subframes[ch];
|
|
res = sub->residual;
|
|
smp = sub->samples;
|
|
n = frame->blocksize;
|
|
|
|
/* CONSTANT */
|
|
for(i=1; i<n; i++) {
|
|
if(smp[i] != smp[0]) break;
|
|
}
|
|
if(i == n) {
|
|
sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
|
|
res[0] = smp[0];
|
|
return sub->obits;
|
|
}
|
|
|
|
/* VERBATIM */
|
|
sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
|
|
encode_residual_verbatim(res, smp, n);
|
|
return sub->obits * n;
|
|
}
|
|
|
|
static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
|
|
{
|
|
int i, best;
|
|
int32_t lt, rt;
|
|
uint64_t sum[4];
|
|
uint64_t score[4];
|
|
int k;
|
|
|
|
/* calculate sum of 2nd order residual for each channel */
|
|
sum[0] = sum[1] = sum[2] = sum[3] = 0;
|
|
for(i=2; i<n; i++) {
|
|
lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
|
|
rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
|
|
sum[2] += FFABS((lt + rt) >> 1);
|
|
sum[3] += FFABS(lt - rt);
|
|
sum[0] += FFABS(lt);
|
|
sum[1] += FFABS(rt);
|
|
}
|
|
/* estimate bit counts */
|
|
for(i=0; i<4; i++) {
|
|
k = find_optimal_param(2*sum[i], n);
|
|
sum[i] = rice_encode_count(2*sum[i], n, k);
|
|
}
|
|
|
|
/* calculate score for each mode */
|
|
score[0] = sum[0] + sum[1];
|
|
score[1] = sum[0] + sum[3];
|
|
score[2] = sum[1] + sum[3];
|
|
score[3] = sum[2] + sum[3];
|
|
|
|
/* return mode with lowest score */
|
|
best = 0;
|
|
for(i=1; i<4; i++) {
|
|
if(score[i] < score[best]) {
|
|
best = i;
|
|
}
|
|
}
|
|
if(best == 0) {
|
|
return FLAC_CHMODE_LEFT_RIGHT;
|
|
} else if(best == 1) {
|
|
return FLAC_CHMODE_LEFT_SIDE;
|
|
} else if(best == 2) {
|
|
return FLAC_CHMODE_RIGHT_SIDE;
|
|
} else {
|
|
return FLAC_CHMODE_MID_SIDE;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Perform stereo channel decorrelation
|
|
*/
|
|
static void channel_decorrelation(FlacEncodeContext *ctx)
|
|
{
|
|
FlacFrame *frame;
|
|
int32_t *left, *right;
|
|
int i, n;
|
|
|
|
frame = &ctx->frame;
|
|
n = frame->blocksize;
|
|
left = frame->subframes[0].samples;
|
|
right = frame->subframes[1].samples;
|
|
|
|
if(ctx->channels != 2) {
|
|
frame->ch_mode = FLAC_CHMODE_NOT_STEREO;
|
|
return;
|
|
}
|
|
|
|
frame->ch_mode = estimate_stereo_mode(left, right, n);
|
|
|
|
/* perform decorrelation and adjust bits-per-sample */
|
|
if(frame->ch_mode == FLAC_CHMODE_LEFT_RIGHT) {
|
|
return;
|
|
}
|
|
if(frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
|
|
int32_t tmp;
|
|
for(i=0; i<n; i++) {
|
|
tmp = left[i];
|
|
left[i] = (tmp + right[i]) >> 1;
|
|
right[i] = tmp - right[i];
|
|
}
|
|
frame->subframes[1].obits++;
|
|
} else if(frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
|
|
for(i=0; i<n; i++) {
|
|
right[i] = left[i] - right[i];
|
|
}
|
|
frame->subframes[1].obits++;
|
|
} else {
|
|
for(i=0; i<n; i++) {
|
|
left[i] -= right[i];
|
|
}
|
|
frame->subframes[0].obits++;
|
|
}
|
|
}
|
|
|
|
static void put_sbits(PutBitContext *pb, int bits, int32_t val)
|
|
{
|
|
assert(bits >= 0 && bits <= 31);
|
|
|
|
put_bits(pb, bits, val & ((1<<bits)-1));
|
|
}
|
|
|
|
static void write_utf8(PutBitContext *pb, uint32_t val)
|
|
{
|
|
uint8_t tmp;
|
|
PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);)
|
|
}
|
|
|
|
static void output_frame_header(FlacEncodeContext *s)
|
|
{
|
|
FlacFrame *frame;
|
|
int crc;
|
|
|
|
frame = &s->frame;
|
|
|
|
put_bits(&s->pb, 16, 0xFFF8);
|
|
put_bits(&s->pb, 4, frame->bs_code[0]);
|
|
put_bits(&s->pb, 4, s->sr_code[0]);
|
|
if(frame->ch_mode == FLAC_CHMODE_NOT_STEREO) {
|
|
put_bits(&s->pb, 4, s->ch_code);
|
|
} else {
|
|
put_bits(&s->pb, 4, frame->ch_mode);
|
|
}
|
|
put_bits(&s->pb, 3, 4); /* bits-per-sample code */
|
|
put_bits(&s->pb, 1, 0);
|
|
write_utf8(&s->pb, s->frame_count);
|
|
if(frame->bs_code[0] == 6) {
|
|
put_bits(&s->pb, 8, frame->bs_code[1]);
|
|
} else if(frame->bs_code[0] == 7) {
|
|
put_bits(&s->pb, 16, frame->bs_code[1]);
|
|
}
|
|
if(s->sr_code[0] == 12) {
|
|
put_bits(&s->pb, 8, s->sr_code[1]);
|
|
} else if(s->sr_code[0] > 12) {
|
|
put_bits(&s->pb, 16, s->sr_code[1]);
|
|
}
|
|
flush_put_bits(&s->pb);
|
|
crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0,
|
|
s->pb.buf, put_bits_count(&s->pb)>>3);
|
|
put_bits(&s->pb, 8, crc);
|
|
}
|
|
|
|
static void output_subframe_constant(FlacEncodeContext *s, int ch)
|
|
{
|
|
FlacSubframe *sub;
|
|
int32_t res;
|
|
|
|
sub = &s->frame.subframes[ch];
|
|
res = sub->residual[0];
|
|
put_sbits(&s->pb, sub->obits, res);
|
|
}
|
|
|
|
static void output_subframe_verbatim(FlacEncodeContext *s, int ch)
|
|
{
|
|
int i;
|
|
FlacFrame *frame;
|
|
FlacSubframe *sub;
|
|
int32_t res;
|
|
|
|
frame = &s->frame;
|
|
sub = &frame->subframes[ch];
|
|
|
|
for(i=0; i<frame->blocksize; i++) {
|
|
res = sub->residual[i];
|
|
put_sbits(&s->pb, sub->obits, res);
|
|
}
|
|
}
|
|
|
|
static void output_residual(FlacEncodeContext *ctx, int ch)
|
|
{
|
|
int i, j, p, n, parts;
|
|
int k, porder, psize, res_cnt;
|
|
FlacFrame *frame;
|
|
FlacSubframe *sub;
|
|
int32_t *res;
|
|
|
|
frame = &ctx->frame;
|
|
sub = &frame->subframes[ch];
|
|
res = sub->residual;
|
|
n = frame->blocksize;
|
|
|
|
/* rice-encoded block */
|
|
put_bits(&ctx->pb, 2, 0);
|
|
|
|
/* partition order */
|
|
porder = sub->rc.porder;
|
|
psize = n >> porder;
|
|
parts = (1 << porder);
|
|
put_bits(&ctx->pb, 4, porder);
|
|
res_cnt = psize - sub->order;
|
|
|
|
/* residual */
|
|
j = sub->order;
|
|
for(p=0; p<parts; p++) {
|
|
k = sub->rc.params[p];
|
|
put_bits(&ctx->pb, 4, k);
|
|
if(p == 1) res_cnt = psize;
|
|
for(i=0; i<res_cnt && j<n; i++, j++) {
|
|
set_sr_golomb_flac(&ctx->pb, res[j], k, INT32_MAX, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void output_subframe_fixed(FlacEncodeContext *ctx, int ch)
|
|
{
|
|
int i;
|
|
FlacFrame *frame;
|
|
FlacSubframe *sub;
|
|
|
|
frame = &ctx->frame;
|
|
sub = &frame->subframes[ch];
|
|
|
|
/* warm-up samples */
|
|
for(i=0; i<sub->order; i++) {
|
|
put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
|
|
}
|
|
|
|
/* residual */
|
|
output_residual(ctx, ch);
|
|
}
|
|
|
|
static void output_subframe_lpc(FlacEncodeContext *ctx, int ch)
|
|
{
|
|
int i, cbits;
|
|
FlacFrame *frame;
|
|
FlacSubframe *sub;
|
|
|
|
frame = &ctx->frame;
|
|
sub = &frame->subframes[ch];
|
|
|
|
/* warm-up samples */
|
|
for(i=0; i<sub->order; i++) {
|
|
put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
|
|
}
|
|
|
|
/* LPC coefficients */
|
|
cbits = ctx->options.lpc_coeff_precision;
|
|
put_bits(&ctx->pb, 4, cbits-1);
|
|
put_sbits(&ctx->pb, 5, sub->shift);
|
|
for(i=0; i<sub->order; i++) {
|
|
put_sbits(&ctx->pb, cbits, sub->coefs[i]);
|
|
}
|
|
|
|
/* residual */
|
|
output_residual(ctx, ch);
|
|
}
|
|
|
|
static void output_subframes(FlacEncodeContext *s)
|
|
{
|
|
FlacFrame *frame;
|
|
FlacSubframe *sub;
|
|
int ch;
|
|
|
|
frame = &s->frame;
|
|
|
|
for(ch=0; ch<s->channels; ch++) {
|
|
sub = &frame->subframes[ch];
|
|
|
|
/* subframe header */
|
|
put_bits(&s->pb, 1, 0);
|
|
put_bits(&s->pb, 6, sub->type_code);
|
|
put_bits(&s->pb, 1, 0); /* no wasted bits */
|
|
|
|
/* subframe */
|
|
if(sub->type == FLAC_SUBFRAME_CONSTANT) {
|
|
output_subframe_constant(s, ch);
|
|
} else if(sub->type == FLAC_SUBFRAME_VERBATIM) {
|
|
output_subframe_verbatim(s, ch);
|
|
} else if(sub->type == FLAC_SUBFRAME_FIXED) {
|
|
output_subframe_fixed(s, ch);
|
|
} else if(sub->type == FLAC_SUBFRAME_LPC) {
|
|
output_subframe_lpc(s, ch);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void output_frame_footer(FlacEncodeContext *s)
|
|
{
|
|
int crc;
|
|
flush_put_bits(&s->pb);
|
|
crc = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
|
|
s->pb.buf, put_bits_count(&s->pb)>>3));
|
|
put_bits(&s->pb, 16, crc);
|
|
flush_put_bits(&s->pb);
|
|
}
|
|
|
|
static int flac_encode_frame(AVCodecContext *avctx, uint8_t *frame,
|
|
int buf_size, void *data)
|
|
{
|
|
int ch;
|
|
FlacEncodeContext *s;
|
|
int16_t *samples = data;
|
|
int out_bytes;
|
|
|
|
s = avctx->priv_data;
|
|
|
|
init_frame(s);
|
|
|
|
copy_samples(s, samples);
|
|
|
|
channel_decorrelation(s);
|
|
|
|
for(ch=0; ch<s->channels; ch++) {
|
|
encode_residual(s, ch);
|
|
}
|
|
init_put_bits(&s->pb, frame, buf_size);
|
|
output_frame_header(s);
|
|
output_subframes(s);
|
|
output_frame_footer(s);
|
|
out_bytes = put_bits_count(&s->pb) >> 3;
|
|
|
|
if(out_bytes > s->max_framesize || out_bytes >= buf_size) {
|
|
/* frame too large. use verbatim mode */
|
|
for(ch=0; ch<s->channels; ch++) {
|
|
encode_residual_v(s, ch);
|
|
}
|
|
init_put_bits(&s->pb, frame, buf_size);
|
|
output_frame_header(s);
|
|
output_subframes(s);
|
|
output_frame_footer(s);
|
|
out_bytes = put_bits_count(&s->pb) >> 3;
|
|
|
|
if(out_bytes > s->max_framesize || out_bytes >= buf_size) {
|
|
/* still too large. must be an error. */
|
|
av_log(avctx, AV_LOG_ERROR, "error encoding frame\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
s->frame_count++;
|
|
return out_bytes;
|
|
}
|
|
|
|
static av_cold int flac_encode_close(AVCodecContext *avctx)
|
|
{
|
|
av_freep(&avctx->extradata);
|
|
avctx->extradata_size = 0;
|
|
av_freep(&avctx->coded_frame);
|
|
return 0;
|
|
}
|
|
|
|
AVCodec flac_encoder = {
|
|
"flac",
|
|
CODEC_TYPE_AUDIO,
|
|
CODEC_ID_FLAC,
|
|
sizeof(FlacEncodeContext),
|
|
flac_encode_init,
|
|
flac_encode_frame,
|
|
flac_encode_close,
|
|
NULL,
|
|
.capabilities = CODEC_CAP_SMALL_LAST_FRAME,
|
|
};
|