mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-11-26 19:01:44 +02:00
790f793844
There are lots of files that don't need it: The number of object files that actually need it went down from 2011 to 884 here. Keep it for external users in order to not cause breakages. Also improve the other headers a bit while just at it. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
454 lines
17 KiB
C
454 lines
17 KiB
C
/*
|
|
* Copyright (c) 2022 Ben Avison
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with FFmpeg; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#include "checkasm.h"
|
|
|
|
#include "libavcodec/vc1dsp.h"
|
|
|
|
#include "libavutil/common.h"
|
|
#include "libavutil/internal.h"
|
|
#include "libavutil/intreadwrite.h"
|
|
#include "libavutil/mem.h"
|
|
#include "libavutil/mem_internal.h"
|
|
|
|
#define VC1DSP_TEST(func) { #func, offsetof(VC1DSPContext, func) },
|
|
#define VC1DSP_SIZED_TEST(func, width, height) { #func, offsetof(VC1DSPContext, func), width, height },
|
|
|
|
typedef struct {
|
|
const char *name;
|
|
size_t offset;
|
|
int width;
|
|
int height;
|
|
} test;
|
|
|
|
typedef struct matrix {
|
|
size_t width;
|
|
size_t height;
|
|
float d[];
|
|
} matrix;
|
|
|
|
static const matrix T8 = { 8, 8, {
|
|
12, 12, 12, 12, 12, 12, 12, 12,
|
|
16, 15, 9, 4, -4, -9, -15, -16,
|
|
16, 6, -6, -16, -16, -6, 6, 16,
|
|
15, -4, -16, -9, 9, 16, 4, -15,
|
|
12, -12, -12, 12, 12, -12, -12, 12,
|
|
9, -16, 4, 15, -15, -4, 16, -9,
|
|
6, -16, 16, -6, -6, 16, -16, 6,
|
|
4, -9, 15, -16, 16, -15, 9, -4
|
|
} };
|
|
|
|
static const matrix T4 = { 4, 4, {
|
|
17, 17, 17, 17,
|
|
22, 10, -10, -22,
|
|
17, -17, -17, 17,
|
|
10, -22, 22, -10
|
|
} };
|
|
|
|
static const matrix T8t = { 8, 8, {
|
|
12, 16, 16, 15, 12, 9, 6, 4,
|
|
12, 15, 6, -4, -12, -16, -16, -9,
|
|
12, 9, -6, -16, -12, 4, 16, 15,
|
|
12, 4, -16, -9, 12, 15, -6, -16,
|
|
12, -4, -16, 9, 12, -15, -6, 16,
|
|
12, -9, -6, 16, -12, -4, 16, -15,
|
|
12, -15, 6, 4, -12, 16, -16, 9,
|
|
12, -16, 16, -15, 12, -9, 6, -4
|
|
} };
|
|
|
|
static const matrix T4t = { 4, 4, {
|
|
17, 22, 17, 10,
|
|
17, 10, -17, -22,
|
|
17, -10, -17, 22,
|
|
17, -22, 17, -10
|
|
} };
|
|
|
|
static matrix *new_matrix(size_t width, size_t height)
|
|
{
|
|
matrix *out = av_mallocz(sizeof (matrix) + height * width * sizeof (float));
|
|
if (out == NULL) {
|
|
fprintf(stderr, "Memory allocation failure\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
out->width = width;
|
|
out->height = height;
|
|
return out;
|
|
}
|
|
|
|
static matrix *multiply(const matrix *a, const matrix *b)
|
|
{
|
|
matrix *out;
|
|
if (a->width != b->height) {
|
|
fprintf(stderr, "Incompatible multiplication\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
out = new_matrix(b->width, a->height);
|
|
for (int j = 0; j < out->height; ++j)
|
|
for (int i = 0; i < out->width; ++i) {
|
|
float sum = 0;
|
|
for (int k = 0; k < a->width; ++k)
|
|
sum += a->d[j * a->width + k] * b->d[k * b->width + i];
|
|
out->d[j * out->width + i] = sum;
|
|
}
|
|
return out;
|
|
}
|
|
|
|
static void normalise(matrix *a)
|
|
{
|
|
for (int j = 0; j < a->height; ++j)
|
|
for (int i = 0; i < a->width; ++i) {
|
|
float *p = a->d + j * a->width + i;
|
|
*p *= 64;
|
|
if (a->height == 4)
|
|
*p /= (const unsigned[]) { 289, 292, 289, 292 } [j];
|
|
else
|
|
*p /= (const unsigned[]) { 288, 289, 292, 289, 288, 289, 292, 289 } [j];
|
|
if (a->width == 4)
|
|
*p /= (const unsigned[]) { 289, 292, 289, 292 } [i];
|
|
else
|
|
*p /= (const unsigned[]) { 288, 289, 292, 289, 288, 289, 292, 289 } [i];
|
|
}
|
|
}
|
|
|
|
static void divide_and_round_nearest(matrix *a, float by)
|
|
{
|
|
for (int j = 0; j < a->height; ++j)
|
|
for (int i = 0; i < a->width; ++i) {
|
|
float *p = a->d + j * a->width + i;
|
|
*p = rintf(*p / by);
|
|
}
|
|
}
|
|
|
|
static void tweak(matrix *a)
|
|
{
|
|
for (int j = 4; j < a->height; ++j)
|
|
for (int i = 0; i < a->width; ++i) {
|
|
float *p = a->d + j * a->width + i;
|
|
*p += 1;
|
|
}
|
|
}
|
|
|
|
/* The VC-1 spec places restrictions on the values permitted at three
|
|
* different stages:
|
|
* - D: the input coefficients in frequency domain
|
|
* - E: the intermediate coefficients, inverse-transformed only horizontally
|
|
* - R: the fully inverse-transformed coefficients
|
|
*
|
|
* To fully cater for the ranges specified requires various intermediate
|
|
* values to be held to 17-bit precision; yet these conditions do not appear
|
|
* to be utilised in real-world streams. At least some assembly
|
|
* implementations have chosen to restrict these values to 16-bit precision,
|
|
* to accelerate the decoding of real-world streams at the cost of strict
|
|
* adherence to the spec. To avoid our test marking these as failures,
|
|
* reduce our random inputs.
|
|
*/
|
|
#define ATTENUATION 4
|
|
|
|
static matrix *generate_inverse_quantized_transform_coefficients(size_t width, size_t height)
|
|
{
|
|
matrix *raw, *tmp, *D, *E, *R;
|
|
raw = new_matrix(width, height);
|
|
for (int i = 0; i < width * height; ++i)
|
|
raw->d[i] = (int) (rnd() % (1024/ATTENUATION)) - 512/ATTENUATION;
|
|
tmp = multiply(height == 8 ? &T8 : &T4, raw);
|
|
D = multiply(tmp, width == 8 ? &T8t : &T4t);
|
|
normalise(D);
|
|
divide_and_round_nearest(D, 1);
|
|
for (int i = 0; i < width * height; ++i) {
|
|
if (D->d[i] < -2048/ATTENUATION || D->d[i] > 2048/ATTENUATION-1) {
|
|
/* Rare, so simply try again */
|
|
av_free(raw);
|
|
av_free(tmp);
|
|
av_free(D);
|
|
return generate_inverse_quantized_transform_coefficients(width, height);
|
|
}
|
|
}
|
|
E = multiply(D, width == 8 ? &T8 : &T4);
|
|
divide_and_round_nearest(E, 8);
|
|
for (int i = 0; i < width * height; ++i)
|
|
if (E->d[i] < -4096/ATTENUATION || E->d[i] > 4096/ATTENUATION-1) {
|
|
/* Rare, so simply try again */
|
|
av_free(raw);
|
|
av_free(tmp);
|
|
av_free(D);
|
|
av_free(E);
|
|
return generate_inverse_quantized_transform_coefficients(width, height);
|
|
}
|
|
R = multiply(height == 8 ? &T8t : &T4t, E);
|
|
tweak(R);
|
|
divide_and_round_nearest(R, 128);
|
|
for (int i = 0; i < width * height; ++i)
|
|
if (R->d[i] < -512/ATTENUATION || R->d[i] > 512/ATTENUATION-1) {
|
|
/* Rare, so simply try again */
|
|
av_free(raw);
|
|
av_free(tmp);
|
|
av_free(D);
|
|
av_free(E);
|
|
av_free(R);
|
|
return generate_inverse_quantized_transform_coefficients(width, height);
|
|
}
|
|
av_free(raw);
|
|
av_free(tmp);
|
|
av_free(E);
|
|
av_free(R);
|
|
return D;
|
|
}
|
|
|
|
#define RANDOMIZE_BUFFER16(name, size) \
|
|
do { \
|
|
int i; \
|
|
for (i = 0; i < size; ++i) { \
|
|
uint16_t r = rnd(); \
|
|
AV_WN16A(name##0 + i, r); \
|
|
AV_WN16A(name##1 + i, r); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define RANDOMIZE_BUFFER8(name, size) \
|
|
do { \
|
|
int i; \
|
|
for (i = 0; i < size; ++i) { \
|
|
uint8_t r = rnd(); \
|
|
name##0[i] = r; \
|
|
name##1[i] = r; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define RANDOMIZE_BUFFER8_MID_WEIGHTED(name, size) \
|
|
do { \
|
|
uint8_t *p##0 = name##0, *p##1 = name##1; \
|
|
int i = (size); \
|
|
while (i-- > 0) { \
|
|
int x = 0x80 | (rnd() & 0x7F); \
|
|
x >>= rnd() % 9; \
|
|
if (rnd() & 1) \
|
|
x = -x; \
|
|
*p##1++ = *p##0++ = 0x80 + x; \
|
|
} \
|
|
} while (0)
|
|
|
|
static void check_inv_trans_inplace(void)
|
|
{
|
|
/* Inverse transform input coefficients are stored in a 16-bit buffer
|
|
* with row stride of 8 coefficients irrespective of transform size.
|
|
* vc1_inv_trans_8x8 differs from the others in two ways: coefficients
|
|
* are stored in column-major order, and the outputs are written back
|
|
* to the input buffer, so we oversize it slightly to catch overruns. */
|
|
LOCAL_ALIGNED_16(int16_t, inv_trans_in0, [10 * 8]);
|
|
LOCAL_ALIGNED_16(int16_t, inv_trans_in1, [10 * 8]);
|
|
|
|
VC1DSPContext h;
|
|
|
|
ff_vc1dsp_init(&h);
|
|
|
|
if (check_func(h.vc1_inv_trans_8x8, "vc1dsp.vc1_inv_trans_8x8")) {
|
|
matrix *coeffs;
|
|
declare_func(void, int16_t *);
|
|
RANDOMIZE_BUFFER16(inv_trans_in, 10 * 8);
|
|
coeffs = generate_inverse_quantized_transform_coefficients(8, 8);
|
|
for (int j = 0; j < 8; ++j)
|
|
for (int i = 0; i < 8; ++i) {
|
|
int idx = 8 + i * 8 + j;
|
|
inv_trans_in1[idx] = inv_trans_in0[idx] = coeffs->d[j * 8 + i];
|
|
}
|
|
call_ref(inv_trans_in0 + 8);
|
|
call_new(inv_trans_in1 + 8);
|
|
if (memcmp(inv_trans_in0, inv_trans_in1, 10 * 8 * sizeof (int16_t)))
|
|
fail();
|
|
bench_new(inv_trans_in1 + 8);
|
|
av_free(coeffs);
|
|
}
|
|
}
|
|
|
|
static void check_inv_trans_adding(void)
|
|
{
|
|
/* Inverse transform input coefficients are stored in a 16-bit buffer
|
|
* with row stride of 8 coefficients irrespective of transform size. */
|
|
LOCAL_ALIGNED_16(int16_t, inv_trans_in0, [8 * 8]);
|
|
LOCAL_ALIGNED_16(int16_t, inv_trans_in1, [8 * 8]);
|
|
|
|
/* For all but vc1_inv_trans_8x8, the inverse transform is narrowed and
|
|
* added with saturation to an array of unsigned 8-bit values. Oversize
|
|
* this by 8 samples left and right and one row above and below. */
|
|
LOCAL_ALIGNED_8(uint8_t, inv_trans_out0, [10 * 24]);
|
|
LOCAL_ALIGNED_8(uint8_t, inv_trans_out1, [10 * 24]);
|
|
|
|
VC1DSPContext h;
|
|
|
|
const test tests[] = {
|
|
VC1DSP_SIZED_TEST(vc1_inv_trans_8x4, 8, 4)
|
|
VC1DSP_SIZED_TEST(vc1_inv_trans_4x8, 4, 8)
|
|
VC1DSP_SIZED_TEST(vc1_inv_trans_4x4, 4, 4)
|
|
VC1DSP_SIZED_TEST(vc1_inv_trans_8x8_dc, 8, 8)
|
|
VC1DSP_SIZED_TEST(vc1_inv_trans_8x4_dc, 8, 4)
|
|
VC1DSP_SIZED_TEST(vc1_inv_trans_4x8_dc, 4, 8)
|
|
VC1DSP_SIZED_TEST(vc1_inv_trans_4x4_dc, 4, 4)
|
|
};
|
|
|
|
ff_vc1dsp_init(&h);
|
|
|
|
for (size_t t = 0; t < FF_ARRAY_ELEMS(tests); ++t) {
|
|
void (*func)(uint8_t *, ptrdiff_t, int16_t *) = *(void **)((intptr_t) &h + tests[t].offset);
|
|
if (check_func(func, "vc1dsp.%s", tests[t].name)) {
|
|
matrix *coeffs;
|
|
declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *, ptrdiff_t, int16_t *);
|
|
RANDOMIZE_BUFFER16(inv_trans_in, 8 * 8);
|
|
RANDOMIZE_BUFFER8(inv_trans_out, 10 * 24);
|
|
coeffs = generate_inverse_quantized_transform_coefficients(tests[t].width, tests[t].height);
|
|
for (int j = 0; j < tests[t].height; ++j)
|
|
for (int i = 0; i < tests[t].width; ++i) {
|
|
int idx = j * 8 + i;
|
|
inv_trans_in1[idx] = inv_trans_in0[idx] = coeffs->d[j * tests[t].width + i];
|
|
}
|
|
call_ref(inv_trans_out0 + 24 + 8, 24, inv_trans_in0);
|
|
call_new(inv_trans_out1 + 24 + 8, 24, inv_trans_in1);
|
|
if (memcmp(inv_trans_out0, inv_trans_out1, 10 * 24))
|
|
fail();
|
|
bench_new(inv_trans_out1 + 24 + 8, 24, inv_trans_in1 + 8);
|
|
av_free(coeffs);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void check_loop_filter(void)
|
|
{
|
|
/* Deblocking filter buffers are big enough to hold a 16x16 block,
|
|
* plus 16 columns left and 4 rows above to hold filter inputs
|
|
* (depending on whether v or h neighbouring block edge, oversized
|
|
* horizontally to maintain 16-byte alignment) plus 16 columns and
|
|
* 4 rows below to catch write overflows */
|
|
LOCAL_ALIGNED_16(uint8_t, filter_buf0, [24 * 48]);
|
|
LOCAL_ALIGNED_16(uint8_t, filter_buf1, [24 * 48]);
|
|
|
|
VC1DSPContext h;
|
|
|
|
const test tests[] = {
|
|
VC1DSP_TEST(vc1_v_loop_filter4)
|
|
VC1DSP_TEST(vc1_h_loop_filter4)
|
|
VC1DSP_TEST(vc1_v_loop_filter8)
|
|
VC1DSP_TEST(vc1_h_loop_filter8)
|
|
VC1DSP_TEST(vc1_v_loop_filter16)
|
|
VC1DSP_TEST(vc1_h_loop_filter16)
|
|
};
|
|
|
|
ff_vc1dsp_init(&h);
|
|
|
|
for (size_t t = 0; t < FF_ARRAY_ELEMS(tests); ++t) {
|
|
void (*func)(uint8_t *, ptrdiff_t, int) = *(void **)((intptr_t) &h + tests[t].offset);
|
|
declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *, ptrdiff_t, int);
|
|
if (check_func(func, "vc1dsp.%s", tests[t].name)) {
|
|
for (int count = 1000; count > 0; --count) {
|
|
int pq = rnd() % 31 + 1;
|
|
RANDOMIZE_BUFFER8_MID_WEIGHTED(filter_buf, 24 * 48);
|
|
call_ref(filter_buf0 + 4 * 48 + 16, 48, pq);
|
|
call_new(filter_buf1 + 4 * 48 + 16, 48, pq);
|
|
if (memcmp(filter_buf0, filter_buf1, 24 * 48))
|
|
fail();
|
|
}
|
|
}
|
|
for (int j = 0; j < 24; ++j)
|
|
for (int i = 0; i < 48; ++i)
|
|
filter_buf1[j * 48 + i] = 0x60 + 0x40 * (i >= 16 && j >= 4);
|
|
if (check_func(func, "vc1dsp.%s_bestcase", tests[t].name))
|
|
bench_new(filter_buf1 + 4 * 48 + 16, 48, 1);
|
|
if (check_func(func, "vc1dsp.%s_worstcase", tests[t].name))
|
|
bench_new(filter_buf1 + 4 * 48 + 16, 48, 31);
|
|
}
|
|
}
|
|
|
|
#define TEST_UNESCAPE \
|
|
do { \
|
|
for (int count = 100; count > 0; --count) { \
|
|
escaped_offset = rnd() & 7; \
|
|
unescaped_offset = rnd() & 7; \
|
|
escaped_len = (1u << (rnd() % 8) + 3) - (rnd() & 7); \
|
|
RANDOMIZE_BUFFER8(unescaped, UNESCAPE_BUF_SIZE); \
|
|
len0 = call_ref(escaped0 + escaped_offset, escaped_len, unescaped0 + unescaped_offset); \
|
|
len1 = call_new(escaped1 + escaped_offset, escaped_len, unescaped1 + unescaped_offset); \
|
|
if (len0 != len1 || memcmp(unescaped0, unescaped1, UNESCAPE_BUF_SIZE)) \
|
|
fail(); \
|
|
} \
|
|
} while (0)
|
|
|
|
static void check_unescape(void)
|
|
{
|
|
/* This appears to be a typical length of buffer in use */
|
|
#define LOG2_UNESCAPE_BUF_SIZE 17
|
|
#define UNESCAPE_BUF_SIZE (1u<<LOG2_UNESCAPE_BUF_SIZE)
|
|
LOCAL_ALIGNED_8(uint8_t, escaped0, [UNESCAPE_BUF_SIZE]);
|
|
LOCAL_ALIGNED_8(uint8_t, escaped1, [UNESCAPE_BUF_SIZE]);
|
|
LOCAL_ALIGNED_8(uint8_t, unescaped0, [UNESCAPE_BUF_SIZE]);
|
|
LOCAL_ALIGNED_8(uint8_t, unescaped1, [UNESCAPE_BUF_SIZE]);
|
|
|
|
VC1DSPContext h;
|
|
|
|
ff_vc1dsp_init(&h);
|
|
|
|
if (check_func(h.vc1_unescape_buffer, "vc1dsp.vc1_unescape_buffer")) {
|
|
int len0, len1, escaped_offset, unescaped_offset, escaped_len;
|
|
declare_func(int, const uint8_t *, int, uint8_t *);
|
|
|
|
/* Test data which consists of escapes sequences packed as tightly as possible */
|
|
for (int x = 0; x < UNESCAPE_BUF_SIZE; ++x)
|
|
escaped1[x] = escaped0[x] = 3 * (x % 3 == 0);
|
|
TEST_UNESCAPE;
|
|
|
|
/* Test random data */
|
|
RANDOMIZE_BUFFER8(escaped, UNESCAPE_BUF_SIZE);
|
|
TEST_UNESCAPE;
|
|
|
|
/* Test data with escape sequences at random intervals */
|
|
for (int x = 0; x <= UNESCAPE_BUF_SIZE - 4;) {
|
|
int gap, gap_msb;
|
|
escaped1[x+0] = escaped0[x+0] = 0;
|
|
escaped1[x+1] = escaped0[x+1] = 0;
|
|
escaped1[x+2] = escaped0[x+2] = 3;
|
|
escaped1[x+3] = escaped0[x+3] = rnd() & 3;
|
|
gap_msb = 2u << (rnd() % 8);
|
|
gap = (rnd() &~ -gap_msb) | gap_msb;
|
|
x += gap;
|
|
}
|
|
TEST_UNESCAPE;
|
|
|
|
/* Test data which is known to contain no escape sequences */
|
|
memset(escaped0, 0xFF, UNESCAPE_BUF_SIZE);
|
|
memset(escaped1, 0xFF, UNESCAPE_BUF_SIZE);
|
|
TEST_UNESCAPE;
|
|
|
|
/* Benchmark the no-escape-sequences case */
|
|
bench_new(escaped1, UNESCAPE_BUF_SIZE, unescaped1);
|
|
}
|
|
}
|
|
|
|
void checkasm_check_vc1dsp(void)
|
|
{
|
|
check_inv_trans_inplace();
|
|
check_inv_trans_adding();
|
|
report("inv_trans");
|
|
|
|
check_loop_filter();
|
|
report("loop_filter");
|
|
|
|
check_unescape();
|
|
report("unescape_buffer");
|
|
}
|