1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-08 13:22:53 +02:00
FFmpeg/libavformat/udp.c
Marton Balint ab0812c1a8 avformat/udp: always use IP_ADD_SOURCE_MEMBERSHIP for subscribing to an UDP multicast source group in IPv4
That alone supports specifying the interface based on its address. Getting the
interface index from the local address seems quite a bit of work in a platform
independent way...

Obviously for IPv6 we still always use MCAST_JOIN_SOURCE_GROUP.

As a side effect this also fixes ticket #7459.

Signed-off-by: Marton Balint <cus@passwd.hu>
2018-10-03 22:03:29 +02:00

1112 lines
40 KiB
C

/*
* UDP prototype streaming system
* Copyright (c) 2000, 2001, 2002 Fabrice Bellard
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* UDP protocol
*/
#define _DEFAULT_SOURCE
#define _BSD_SOURCE /* Needed for using struct ip_mreq with recent glibc */
#include "avformat.h"
#include "avio_internal.h"
#include "libavutil/avassert.h"
#include "libavutil/parseutils.h"
#include "libavutil/fifo.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/avstring.h"
#include "libavutil/opt.h"
#include "libavutil/log.h"
#include "libavutil/time.h"
#include "internal.h"
#include "network.h"
#include "os_support.h"
#include "url.h"
#include "ip.h"
#ifdef __APPLE__
#include "TargetConditionals.h"
#endif
#if HAVE_UDPLITE_H
#include "udplite.h"
#else
/* On many Linux systems, udplite.h is missing but the kernel supports UDP-Lite.
* So, we provide a fallback here.
*/
#define UDPLITE_SEND_CSCOV 10
#define UDPLITE_RECV_CSCOV 11
#endif
#ifndef IPPROTO_UDPLITE
#define IPPROTO_UDPLITE 136
#endif
#if HAVE_PTHREAD_CANCEL
#include <pthread.h>
#endif
#ifndef IPV6_ADD_MEMBERSHIP
#define IPV6_ADD_MEMBERSHIP IPV6_JOIN_GROUP
#define IPV6_DROP_MEMBERSHIP IPV6_LEAVE_GROUP
#endif
#define UDP_TX_BUF_SIZE 32768
#define UDP_MAX_PKT_SIZE 65536
#define UDP_HEADER_SIZE 8
typedef struct UDPContext {
const AVClass *class;
int udp_fd;
int ttl;
int udplite_coverage;
int buffer_size;
int pkt_size;
int is_multicast;
int is_broadcast;
int local_port;
int reuse_socket;
int overrun_nonfatal;
struct sockaddr_storage dest_addr;
int dest_addr_len;
int is_connected;
/* Circular Buffer variables for use in UDP receive code */
int circular_buffer_size;
AVFifoBuffer *fifo;
int circular_buffer_error;
int64_t bitrate; /* number of bits to send per second */
int64_t burst_bits;
int close_req;
#if HAVE_PTHREAD_CANCEL
pthread_t circular_buffer_thread;
pthread_mutex_t mutex;
pthread_cond_t cond;
int thread_started;
#endif
uint8_t tmp[UDP_MAX_PKT_SIZE+4];
int remaining_in_dg;
char *localaddr;
int timeout;
struct sockaddr_storage local_addr_storage;
char *sources;
char *block;
IPSourceFilters filters;
} UDPContext;
#define OFFSET(x) offsetof(UDPContext, x)
#define D AV_OPT_FLAG_DECODING_PARAM
#define E AV_OPT_FLAG_ENCODING_PARAM
static const AVOption options[] = {
{ "buffer_size", "System data size (in bytes)", OFFSET(buffer_size), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, INT_MAX, .flags = D|E },
{ "bitrate", "Bits to send per second", OFFSET(bitrate), AV_OPT_TYPE_INT64, { .i64 = 0 }, 0, INT64_MAX, .flags = E },
{ "burst_bits", "Max length of bursts in bits (when using bitrate)", OFFSET(burst_bits), AV_OPT_TYPE_INT64, { .i64 = 0 }, 0, INT64_MAX, .flags = E },
{ "localport", "Local port", OFFSET(local_port), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, INT_MAX, D|E },
{ "local_port", "Local port", OFFSET(local_port), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, INT_MAX, .flags = D|E },
{ "localaddr", "Local address", OFFSET(localaddr), AV_OPT_TYPE_STRING, { .str = NULL }, .flags = D|E },
{ "udplite_coverage", "choose UDPLite head size which should be validated by checksum", OFFSET(udplite_coverage), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT_MAX, D|E },
{ "pkt_size", "Maximum UDP packet size", OFFSET(pkt_size), AV_OPT_TYPE_INT, { .i64 = 1472 }, -1, INT_MAX, .flags = D|E },
{ "reuse", "explicitly allow reusing UDP sockets", OFFSET(reuse_socket), AV_OPT_TYPE_BOOL, { .i64 = -1 }, -1, 1, D|E },
{ "reuse_socket", "explicitly allow reusing UDP sockets", OFFSET(reuse_socket), AV_OPT_TYPE_BOOL, { .i64 = -1 }, -1, 1, .flags = D|E },
{ "broadcast", "explicitly allow or disallow broadcast destination", OFFSET(is_broadcast), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, E },
{ "ttl", "Time to live (multicast only)", OFFSET(ttl), AV_OPT_TYPE_INT, { .i64 = 16 }, 0, INT_MAX, E },
{ "connect", "set if connect() should be called on socket", OFFSET(is_connected), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, .flags = D|E },
{ "fifo_size", "set the UDP receiving circular buffer size, expressed as a number of packets with size of 188 bytes", OFFSET(circular_buffer_size), AV_OPT_TYPE_INT, {.i64 = 7*4096}, 0, INT_MAX, D },
{ "overrun_nonfatal", "survive in case of UDP receiving circular buffer overrun", OFFSET(overrun_nonfatal), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, D },
{ "timeout", "set raise error timeout (only in read mode)", OFFSET(timeout), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, D },
{ "sources", "Source list", OFFSET(sources), AV_OPT_TYPE_STRING, { .str = NULL }, .flags = D|E },
{ "block", "Block list", OFFSET(block), AV_OPT_TYPE_STRING, { .str = NULL }, .flags = D|E },
{ NULL }
};
static const AVClass udp_class = {
.class_name = "udp",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
static const AVClass udplite_context_class = {
.class_name = "udplite",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
static int udp_set_multicast_ttl(int sockfd, int mcastTTL,
struct sockaddr *addr)
{
#ifdef IP_MULTICAST_TTL
if (addr->sa_family == AF_INET) {
if (setsockopt(sockfd, IPPROTO_IP, IP_MULTICAST_TTL, &mcastTTL, sizeof(mcastTTL)) < 0) {
ff_log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IP_MULTICAST_TTL)");
return -1;
}
}
#endif
#if defined(IPPROTO_IPV6) && defined(IPV6_MULTICAST_HOPS)
if (addr->sa_family == AF_INET6) {
if (setsockopt(sockfd, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, &mcastTTL, sizeof(mcastTTL)) < 0) {
ff_log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IPV6_MULTICAST_HOPS)");
return -1;
}
}
#endif
return 0;
}
static int udp_join_multicast_group(int sockfd, struct sockaddr *addr,struct sockaddr *local_addr)
{
#ifdef IP_ADD_MEMBERSHIP
if (addr->sa_family == AF_INET) {
struct ip_mreq mreq;
mreq.imr_multiaddr.s_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
if (local_addr)
mreq.imr_interface= ((struct sockaddr_in *)local_addr)->sin_addr;
else
mreq.imr_interface.s_addr= INADDR_ANY;
if (setsockopt(sockfd, IPPROTO_IP, IP_ADD_MEMBERSHIP, (const void *)&mreq, sizeof(mreq)) < 0) {
ff_log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IP_ADD_MEMBERSHIP)");
return -1;
}
}
#endif
#if HAVE_STRUCT_IPV6_MREQ && defined(IPPROTO_IPV6)
if (addr->sa_family == AF_INET6) {
struct ipv6_mreq mreq6;
memcpy(&mreq6.ipv6mr_multiaddr, &(((struct sockaddr_in6 *)addr)->sin6_addr), sizeof(struct in6_addr));
//TODO: Interface index should be looked up from local_addr
mreq6.ipv6mr_interface= 0;
if (setsockopt(sockfd, IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP, &mreq6, sizeof(mreq6)) < 0) {
ff_log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IPV6_ADD_MEMBERSHIP)");
return -1;
}
}
#endif
return 0;
}
static int udp_leave_multicast_group(int sockfd, struct sockaddr *addr,struct sockaddr *local_addr)
{
#ifdef IP_DROP_MEMBERSHIP
if (addr->sa_family == AF_INET) {
struct ip_mreq mreq;
mreq.imr_multiaddr.s_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
if (local_addr)
mreq.imr_interface= ((struct sockaddr_in *)local_addr)->sin_addr;
else
mreq.imr_interface.s_addr= INADDR_ANY;
if (setsockopt(sockfd, IPPROTO_IP, IP_DROP_MEMBERSHIP, (const void *)&mreq, sizeof(mreq)) < 0) {
ff_log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IP_DROP_MEMBERSHIP)");
return -1;
}
}
#endif
#if HAVE_STRUCT_IPV6_MREQ && defined(IPPROTO_IPV6)
if (addr->sa_family == AF_INET6) {
struct ipv6_mreq mreq6;
memcpy(&mreq6.ipv6mr_multiaddr, &(((struct sockaddr_in6 *)addr)->sin6_addr), sizeof(struct in6_addr));
//TODO: Interface index should be looked up from local_addr
mreq6.ipv6mr_interface= 0;
if (setsockopt(sockfd, IPPROTO_IPV6, IPV6_DROP_MEMBERSHIP, &mreq6, sizeof(mreq6)) < 0) {
ff_log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IPV6_DROP_MEMBERSHIP)");
return -1;
}
}
#endif
return 0;
}
static int udp_set_multicast_sources(URLContext *h,
int sockfd, struct sockaddr *addr,
int addr_len, struct sockaddr_storage *local_addr,
struct sockaddr_storage *sources,
int nb_sources, int include)
{
int i;
if (addr->sa_family != AF_INET) {
#if HAVE_STRUCT_GROUP_SOURCE_REQ && defined(MCAST_BLOCK_SOURCE)
/* For IPv4 prefer the old approach, as that alone works reliably on
* Windows and it also supports supplying the interface based on its
* address. */
int i;
for (i = 0; i < nb_sources; i++) {
struct group_source_req mreqs;
int level = addr->sa_family == AF_INET ? IPPROTO_IP : IPPROTO_IPV6;
//TODO: Interface index should be looked up from local_addr
mreqs.gsr_interface = 0;
memcpy(&mreqs.gsr_group, addr, addr_len);
memcpy(&mreqs.gsr_source, &sources[i], sizeof(*sources));
if (setsockopt(sockfd, level,
include ? MCAST_JOIN_SOURCE_GROUP : MCAST_BLOCK_SOURCE,
(const void *)&mreqs, sizeof(mreqs)) < 0) {
if (include)
ff_log_net_error(NULL, AV_LOG_ERROR, "setsockopt(MCAST_JOIN_SOURCE_GROUP)");
else
ff_log_net_error(NULL, AV_LOG_ERROR, "setsockopt(MCAST_BLOCK_SOURCE)");
return ff_neterrno();
}
}
return 0;
#else
av_log(NULL, AV_LOG_ERROR,
"Setting multicast sources only supported for IPv4\n");
return AVERROR(EINVAL);
#endif
}
#if HAVE_STRUCT_IP_MREQ_SOURCE && defined(IP_BLOCK_SOURCE)
for (i = 0; i < nb_sources; i++) {
struct ip_mreq_source mreqs;
if (sources[i].ss_family != AF_INET) {
av_log(NULL, AV_LOG_ERROR, "Source/block address %d is of incorrect protocol family\n", i + 1);
return AVERROR(EINVAL);
}
mreqs.imr_multiaddr.s_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
if (local_addr)
mreqs.imr_interface= ((struct sockaddr_in *)local_addr)->sin_addr;
else
mreqs.imr_interface.s_addr= INADDR_ANY;
mreqs.imr_sourceaddr.s_addr = ((struct sockaddr_in *)&sources[i])->sin_addr.s_addr;
if (setsockopt(sockfd, IPPROTO_IP,
include ? IP_ADD_SOURCE_MEMBERSHIP : IP_BLOCK_SOURCE,
(const void *)&mreqs, sizeof(mreqs)) < 0) {
if (include)
ff_log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IP_ADD_SOURCE_MEMBERSHIP)");
else
ff_log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IP_BLOCK_SOURCE)");
return ff_neterrno();
}
}
#else
return AVERROR(ENOSYS);
#endif
return 0;
}
static int udp_set_url(URLContext *h,
struct sockaddr_storage *addr,
const char *hostname, int port)
{
struct addrinfo *res0;
int addr_len;
res0 = ff_ip_resolve_host(h, hostname, port, SOCK_DGRAM, AF_UNSPEC, 0);
if (!res0) return AVERROR(EIO);
memcpy(addr, res0->ai_addr, res0->ai_addrlen);
addr_len = res0->ai_addrlen;
freeaddrinfo(res0);
return addr_len;
}
static int udp_socket_create(URLContext *h, struct sockaddr_storage *addr,
socklen_t *addr_len, const char *localaddr)
{
UDPContext *s = h->priv_data;
int udp_fd = -1;
struct addrinfo *res0, *res;
int family = AF_UNSPEC;
if (((struct sockaddr *) &s->dest_addr)->sa_family)
family = ((struct sockaddr *) &s->dest_addr)->sa_family;
res0 = ff_ip_resolve_host(h, (localaddr && localaddr[0]) ? localaddr : NULL,
s->local_port,
SOCK_DGRAM, family, AI_PASSIVE);
if (!res0)
goto fail;
for (res = res0; res; res=res->ai_next) {
if (s->udplite_coverage)
udp_fd = ff_socket(res->ai_family, SOCK_DGRAM, IPPROTO_UDPLITE);
else
udp_fd = ff_socket(res->ai_family, SOCK_DGRAM, 0);
if (udp_fd != -1) break;
ff_log_net_error(NULL, AV_LOG_ERROR, "socket");
}
if (udp_fd < 0)
goto fail;
memcpy(addr, res->ai_addr, res->ai_addrlen);
*addr_len = res->ai_addrlen;
freeaddrinfo(res0);
return udp_fd;
fail:
if (udp_fd >= 0)
closesocket(udp_fd);
if(res0)
freeaddrinfo(res0);
return -1;
}
static int udp_port(struct sockaddr_storage *addr, int addr_len)
{
char sbuf[sizeof(int)*3+1];
int error;
if ((error = getnameinfo((struct sockaddr *)addr, addr_len, NULL, 0, sbuf, sizeof(sbuf), NI_NUMERICSERV)) != 0) {
av_log(NULL, AV_LOG_ERROR, "getnameinfo: %s\n", gai_strerror(error));
return -1;
}
return strtol(sbuf, NULL, 10);
}
/**
* If no filename is given to av_open_input_file because you want to
* get the local port first, then you must call this function to set
* the remote server address.
*
* url syntax: udp://host:port[?option=val...]
* option: 'ttl=n' : set the ttl value (for multicast only)
* 'localport=n' : set the local port
* 'pkt_size=n' : set max packet size
* 'reuse=1' : enable reusing the socket
* 'overrun_nonfatal=1': survive in case of circular buffer overrun
*
* @param h media file context
* @param uri of the remote server
* @return zero if no error.
*/
int ff_udp_set_remote_url(URLContext *h, const char *uri)
{
UDPContext *s = h->priv_data;
char hostname[256], buf[10];
int port;
const char *p;
av_url_split(NULL, 0, NULL, 0, hostname, sizeof(hostname), &port, NULL, 0, uri);
/* set the destination address */
s->dest_addr_len = udp_set_url(h, &s->dest_addr, hostname, port);
if (s->dest_addr_len < 0) {
return AVERROR(EIO);
}
s->is_multicast = ff_is_multicast_address((struct sockaddr*) &s->dest_addr);
p = strchr(uri, '?');
if (p) {
if (av_find_info_tag(buf, sizeof(buf), "connect", p)) {
int was_connected = s->is_connected;
s->is_connected = strtol(buf, NULL, 10);
if (s->is_connected && !was_connected) {
if (connect(s->udp_fd, (struct sockaddr *) &s->dest_addr,
s->dest_addr_len)) {
s->is_connected = 0;
ff_log_net_error(h, AV_LOG_ERROR, "connect");
return AVERROR(EIO);
}
}
}
}
return 0;
}
/**
* Return the local port used by the UDP connection
* @param h media file context
* @return the local port number
*/
int ff_udp_get_local_port(URLContext *h)
{
UDPContext *s = h->priv_data;
return s->local_port;
}
/**
* Return the udp file handle for select() usage to wait for several RTP
* streams at the same time.
* @param h media file context
*/
static int udp_get_file_handle(URLContext *h)
{
UDPContext *s = h->priv_data;
return s->udp_fd;
}
#if HAVE_PTHREAD_CANCEL
static void *circular_buffer_task_rx( void *_URLContext)
{
URLContext *h = _URLContext;
UDPContext *s = h->priv_data;
int old_cancelstate;
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &old_cancelstate);
pthread_mutex_lock(&s->mutex);
if (ff_socket_nonblock(s->udp_fd, 0) < 0) {
av_log(h, AV_LOG_ERROR, "Failed to set blocking mode");
s->circular_buffer_error = AVERROR(EIO);
goto end;
}
while(1) {
int len;
struct sockaddr_storage addr;
socklen_t addr_len = sizeof(addr);
pthread_mutex_unlock(&s->mutex);
/* Blocking operations are always cancellation points;
see "General Information" / "Thread Cancelation Overview"
in Single Unix. */
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_cancelstate);
len = recvfrom(s->udp_fd, s->tmp+4, sizeof(s->tmp)-4, 0, (struct sockaddr *)&addr, &addr_len);
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &old_cancelstate);
pthread_mutex_lock(&s->mutex);
if (len < 0) {
if (ff_neterrno() != AVERROR(EAGAIN) && ff_neterrno() != AVERROR(EINTR)) {
s->circular_buffer_error = ff_neterrno();
goto end;
}
continue;
}
if (ff_ip_check_source_lists(&addr, &s->filters))
continue;
AV_WL32(s->tmp, len);
if(av_fifo_space(s->fifo) < len + 4) {
/* No Space left */
if (s->overrun_nonfatal) {
av_log(h, AV_LOG_WARNING, "Circular buffer overrun. "
"Surviving due to overrun_nonfatal option\n");
continue;
} else {
av_log(h, AV_LOG_ERROR, "Circular buffer overrun. "
"To avoid, increase fifo_size URL option. "
"To survive in such case, use overrun_nonfatal option\n");
s->circular_buffer_error = AVERROR(EIO);
goto end;
}
}
av_fifo_generic_write(s->fifo, s->tmp, len+4, NULL);
pthread_cond_signal(&s->cond);
}
end:
pthread_cond_signal(&s->cond);
pthread_mutex_unlock(&s->mutex);
return NULL;
}
static void *circular_buffer_task_tx( void *_URLContext)
{
URLContext *h = _URLContext;
UDPContext *s = h->priv_data;
int old_cancelstate;
int64_t target_timestamp = av_gettime_relative();
int64_t start_timestamp = av_gettime_relative();
int64_t sent_bits = 0;
int64_t burst_interval = s->bitrate ? (s->burst_bits * 1000000 / s->bitrate) : 0;
int64_t max_delay = s->bitrate ? ((int64_t)h->max_packet_size * 8 * 1000000 / s->bitrate + 1) : 0;
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &old_cancelstate);
pthread_mutex_lock(&s->mutex);
if (ff_socket_nonblock(s->udp_fd, 0) < 0) {
av_log(h, AV_LOG_ERROR, "Failed to set blocking mode");
s->circular_buffer_error = AVERROR(EIO);
goto end;
}
for(;;) {
int len;
const uint8_t *p;
uint8_t tmp[4];
int64_t timestamp;
len=av_fifo_size(s->fifo);
while (len<4) {
if (s->close_req)
goto end;
if (pthread_cond_wait(&s->cond, &s->mutex) < 0) {
goto end;
}
len=av_fifo_size(s->fifo);
}
av_fifo_generic_read(s->fifo, tmp, 4, NULL);
len=AV_RL32(tmp);
av_assert0(len >= 0);
av_assert0(len <= sizeof(s->tmp));
av_fifo_generic_read(s->fifo, s->tmp, len, NULL);
pthread_mutex_unlock(&s->mutex);
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_cancelstate);
if (s->bitrate) {
timestamp = av_gettime_relative();
if (timestamp < target_timestamp) {
int64_t delay = target_timestamp - timestamp;
if (delay > max_delay) {
delay = max_delay;
start_timestamp = timestamp + delay;
sent_bits = 0;
}
av_usleep(delay);
} else {
if (timestamp - burst_interval > target_timestamp) {
start_timestamp = timestamp - burst_interval;
sent_bits = 0;
}
}
sent_bits += len * 8;
target_timestamp = start_timestamp + sent_bits * 1000000 / s->bitrate;
}
p = s->tmp;
while (len) {
int ret;
av_assert0(len > 0);
if (!s->is_connected) {
ret = sendto (s->udp_fd, p, len, 0,
(struct sockaddr *) &s->dest_addr,
s->dest_addr_len);
} else
ret = send(s->udp_fd, p, len, 0);
if (ret >= 0) {
len -= ret;
p += ret;
} else {
ret = ff_neterrno();
if (ret != AVERROR(EAGAIN) && ret != AVERROR(EINTR)) {
pthread_mutex_lock(&s->mutex);
s->circular_buffer_error = ret;
pthread_mutex_unlock(&s->mutex);
return NULL;
}
}
}
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &old_cancelstate);
pthread_mutex_lock(&s->mutex);
}
end:
pthread_mutex_unlock(&s->mutex);
return NULL;
}
#endif
/* put it in UDP context */
/* return non zero if error */
static int udp_open(URLContext *h, const char *uri, int flags)
{
char hostname[1024], localaddr[1024] = "";
int port, udp_fd = -1, tmp, bind_ret = -1, dscp = -1;
UDPContext *s = h->priv_data;
int is_output;
const char *p;
char buf[256];
struct sockaddr_storage my_addr;
socklen_t len;
h->is_streamed = 1;
is_output = !(flags & AVIO_FLAG_READ);
if (s->buffer_size < 0)
s->buffer_size = is_output ? UDP_TX_BUF_SIZE : UDP_MAX_PKT_SIZE;
if (s->sources) {
if (ff_ip_parse_sources(h, s->sources, &s->filters) < 0)
goto fail;
}
if (s->block) {
if (ff_ip_parse_blocks(h, s->block, &s->filters) < 0)
goto fail;
}
if (s->pkt_size > 0)
h->max_packet_size = s->pkt_size;
p = strchr(uri, '?');
if (p) {
if (av_find_info_tag(buf, sizeof(buf), "reuse", p)) {
char *endptr = NULL;
s->reuse_socket = strtol(buf, &endptr, 10);
/* assume if no digits were found it is a request to enable it */
if (buf == endptr)
s->reuse_socket = 1;
}
if (av_find_info_tag(buf, sizeof(buf), "overrun_nonfatal", p)) {
char *endptr = NULL;
s->overrun_nonfatal = strtol(buf, &endptr, 10);
/* assume if no digits were found it is a request to enable it */
if (buf == endptr)
s->overrun_nonfatal = 1;
if (!HAVE_PTHREAD_CANCEL)
av_log(h, AV_LOG_WARNING,
"'overrun_nonfatal' option was set but it is not supported "
"on this build (pthread support is required)\n");
}
if (av_find_info_tag(buf, sizeof(buf), "ttl", p)) {
s->ttl = strtol(buf, NULL, 10);
}
if (av_find_info_tag(buf, sizeof(buf), "udplite_coverage", p)) {
s->udplite_coverage = strtol(buf, NULL, 10);
}
if (av_find_info_tag(buf, sizeof(buf), "localport", p)) {
s->local_port = strtol(buf, NULL, 10);
}
if (av_find_info_tag(buf, sizeof(buf), "pkt_size", p)) {
s->pkt_size = strtol(buf, NULL, 10);
}
if (av_find_info_tag(buf, sizeof(buf), "buffer_size", p)) {
s->buffer_size = strtol(buf, NULL, 10);
}
if (av_find_info_tag(buf, sizeof(buf), "connect", p)) {
s->is_connected = strtol(buf, NULL, 10);
}
if (av_find_info_tag(buf, sizeof(buf), "dscp", p)) {
dscp = strtol(buf, NULL, 10);
}
if (av_find_info_tag(buf, sizeof(buf), "fifo_size", p)) {
s->circular_buffer_size = strtol(buf, NULL, 10);
if (!HAVE_PTHREAD_CANCEL)
av_log(h, AV_LOG_WARNING,
"'circular_buffer_size' option was set but it is not supported "
"on this build (pthread support is required)\n");
}
if (av_find_info_tag(buf, sizeof(buf), "bitrate", p)) {
s->bitrate = strtoll(buf, NULL, 10);
if (!HAVE_PTHREAD_CANCEL)
av_log(h, AV_LOG_WARNING,
"'bitrate' option was set but it is not supported "
"on this build (pthread support is required)\n");
}
if (av_find_info_tag(buf, sizeof(buf), "burst_bits", p)) {
s->burst_bits = strtoll(buf, NULL, 10);
}
if (av_find_info_tag(buf, sizeof(buf), "localaddr", p)) {
av_strlcpy(localaddr, buf, sizeof(localaddr));
}
if (av_find_info_tag(buf, sizeof(buf), "sources", p)) {
if (ff_ip_parse_sources(h, buf, &s->filters) < 0)
goto fail;
}
if (av_find_info_tag(buf, sizeof(buf), "block", p)) {
if (ff_ip_parse_blocks(h, buf, &s->filters) < 0)
goto fail;
}
if (!is_output && av_find_info_tag(buf, sizeof(buf), "timeout", p))
s->timeout = strtol(buf, NULL, 10);
if (is_output && av_find_info_tag(buf, sizeof(buf), "broadcast", p))
s->is_broadcast = strtol(buf, NULL, 10);
}
/* handling needed to support options picking from both AVOption and URL */
s->circular_buffer_size *= 188;
if (flags & AVIO_FLAG_WRITE) {
h->max_packet_size = s->pkt_size;
} else {
h->max_packet_size = UDP_MAX_PKT_SIZE;
}
h->rw_timeout = s->timeout;
/* fill the dest addr */
av_url_split(NULL, 0, NULL, 0, hostname, sizeof(hostname), &port, NULL, 0, uri);
/* XXX: fix av_url_split */
if (hostname[0] == '\0' || hostname[0] == '?') {
/* only accepts null hostname if input */
if (!(flags & AVIO_FLAG_READ))
goto fail;
} else {
if (ff_udp_set_remote_url(h, uri) < 0)
goto fail;
}
if ((s->is_multicast || s->local_port <= 0) && (h->flags & AVIO_FLAG_READ))
s->local_port = port;
if (localaddr[0])
udp_fd = udp_socket_create(h, &my_addr, &len, localaddr);
else
udp_fd = udp_socket_create(h, &my_addr, &len, s->localaddr);
if (udp_fd < 0)
goto fail;
s->local_addr_storage=my_addr; //store for future multicast join
/* Follow the requested reuse option, unless it's multicast in which
* case enable reuse unless explicitly disabled.
*/
if (s->reuse_socket > 0 || (s->is_multicast && s->reuse_socket < 0)) {
s->reuse_socket = 1;
if (setsockopt (udp_fd, SOL_SOCKET, SO_REUSEADDR, &(s->reuse_socket), sizeof(s->reuse_socket)) != 0)
goto fail;
}
if (s->is_broadcast) {
#ifdef SO_BROADCAST
if (setsockopt (udp_fd, SOL_SOCKET, SO_BROADCAST, &(s->is_broadcast), sizeof(s->is_broadcast)) != 0)
#endif
goto fail;
}
/* Set the checksum coverage for UDP-Lite (RFC 3828) for sending and receiving.
* The receiver coverage has to be less than or equal to the sender coverage.
* Otherwise, the receiver will drop all packets.
*/
if (s->udplite_coverage) {
if (setsockopt (udp_fd, IPPROTO_UDPLITE, UDPLITE_SEND_CSCOV, &(s->udplite_coverage), sizeof(s->udplite_coverage)) != 0)
av_log(h, AV_LOG_WARNING, "socket option UDPLITE_SEND_CSCOV not available");
if (setsockopt (udp_fd, IPPROTO_UDPLITE, UDPLITE_RECV_CSCOV, &(s->udplite_coverage), sizeof(s->udplite_coverage)) != 0)
av_log(h, AV_LOG_WARNING, "socket option UDPLITE_RECV_CSCOV not available");
}
if (dscp >= 0) {
dscp <<= 2;
if (setsockopt (udp_fd, IPPROTO_IP, IP_TOS, &dscp, sizeof(dscp)) != 0)
goto fail;
}
/* If multicast, try binding the multicast address first, to avoid
* receiving UDP packets from other sources aimed at the same UDP
* port. This fails on windows. This makes sending to the same address
* using sendto() fail, so only do it if we're opened in read-only mode. */
if (s->is_multicast && !(h->flags & AVIO_FLAG_WRITE)) {
bind_ret = bind(udp_fd,(struct sockaddr *)&s->dest_addr, len);
}
/* bind to the local address if not multicast or if the multicast
* bind failed */
/* the bind is needed to give a port to the socket now */
if (bind_ret < 0 && bind(udp_fd,(struct sockaddr *)&my_addr, len) < 0) {
ff_log_net_error(h, AV_LOG_ERROR, "bind failed");
goto fail;
}
len = sizeof(my_addr);
getsockname(udp_fd, (struct sockaddr *)&my_addr, &len);
s->local_port = udp_port(&my_addr, len);
if (s->is_multicast) {
if (h->flags & AVIO_FLAG_WRITE) {
/* output */
if (udp_set_multicast_ttl(udp_fd, s->ttl, (struct sockaddr *)&s->dest_addr) < 0)
goto fail;
}
if (h->flags & AVIO_FLAG_READ) {
/* input */
if (s->filters.nb_include_addrs) {
if (udp_set_multicast_sources(h, udp_fd,
(struct sockaddr *)&s->dest_addr,
s->dest_addr_len, &s->local_addr_storage,
s->filters.include_addrs,
s->filters.nb_include_addrs, 1) < 0)
goto fail;
} else {
if (udp_join_multicast_group(udp_fd, (struct sockaddr *)&s->dest_addr,(struct sockaddr *)&s->local_addr_storage) < 0)
goto fail;
}
if (s->filters.nb_exclude_addrs) {
if (udp_set_multicast_sources(h, udp_fd,
(struct sockaddr *)&s->dest_addr,
s->dest_addr_len, &s->local_addr_storage,
s->filters.exclude_addrs,
s->filters.nb_exclude_addrs, 0) < 0)
goto fail;
}
}
}
if (is_output) {
/* limit the tx buf size to limit latency */
tmp = s->buffer_size;
if (setsockopt(udp_fd, SOL_SOCKET, SO_SNDBUF, &tmp, sizeof(tmp)) < 0) {
ff_log_net_error(h, AV_LOG_ERROR, "setsockopt(SO_SNDBUF)");
goto fail;
}
} else {
/* set udp recv buffer size to the requested value (default 64K) */
tmp = s->buffer_size;
if (setsockopt(udp_fd, SOL_SOCKET, SO_RCVBUF, &tmp, sizeof(tmp)) < 0) {
ff_log_net_error(h, AV_LOG_WARNING, "setsockopt(SO_RECVBUF)");
}
len = sizeof(tmp);
if (getsockopt(udp_fd, SOL_SOCKET, SO_RCVBUF, &tmp, &len) < 0) {
ff_log_net_error(h, AV_LOG_WARNING, "getsockopt(SO_RCVBUF)");
} else {
av_log(h, AV_LOG_DEBUG, "end receive buffer size reported is %d\n", tmp);
if(tmp < s->buffer_size)
av_log(h, AV_LOG_WARNING, "attempted to set receive buffer to size %d but it only ended up set as %d", s->buffer_size, tmp);
}
/* make the socket non-blocking */
ff_socket_nonblock(udp_fd, 1);
}
if (s->is_connected) {
if (connect(udp_fd, (struct sockaddr *) &s->dest_addr, s->dest_addr_len)) {
ff_log_net_error(h, AV_LOG_ERROR, "connect");
goto fail;
}
}
s->udp_fd = udp_fd;
#if HAVE_PTHREAD_CANCEL
/*
Create thread in case of:
1. Input and circular_buffer_size is set
2. Output and bitrate and circular_buffer_size is set
*/
if (is_output && s->bitrate && !s->circular_buffer_size) {
/* Warn user in case of 'circular_buffer_size' is not set */
av_log(h, AV_LOG_WARNING,"'bitrate' option was set but 'circular_buffer_size' is not, but required\n");
}
if ((!is_output && s->circular_buffer_size) || (is_output && s->bitrate && s->circular_buffer_size)) {
int ret;
/* start the task going */
s->fifo = av_fifo_alloc(s->circular_buffer_size);
ret = pthread_mutex_init(&s->mutex, NULL);
if (ret != 0) {
av_log(h, AV_LOG_ERROR, "pthread_mutex_init failed : %s\n", strerror(ret));
goto fail;
}
ret = pthread_cond_init(&s->cond, NULL);
if (ret != 0) {
av_log(h, AV_LOG_ERROR, "pthread_cond_init failed : %s\n", strerror(ret));
goto cond_fail;
}
ret = pthread_create(&s->circular_buffer_thread, NULL, is_output?circular_buffer_task_tx:circular_buffer_task_rx, h);
if (ret != 0) {
av_log(h, AV_LOG_ERROR, "pthread_create failed : %s\n", strerror(ret));
goto thread_fail;
}
s->thread_started = 1;
}
#endif
return 0;
#if HAVE_PTHREAD_CANCEL
thread_fail:
pthread_cond_destroy(&s->cond);
cond_fail:
pthread_mutex_destroy(&s->mutex);
#endif
fail:
if (udp_fd >= 0)
closesocket(udp_fd);
av_fifo_freep(&s->fifo);
ff_ip_reset_filters(&s->filters);
return AVERROR(EIO);
}
static int udplite_open(URLContext *h, const char *uri, int flags)
{
UDPContext *s = h->priv_data;
// set default checksum coverage
s->udplite_coverage = UDP_HEADER_SIZE;
return udp_open(h, uri, flags);
}
static int udp_read(URLContext *h, uint8_t *buf, int size)
{
UDPContext *s = h->priv_data;
int ret;
struct sockaddr_storage addr;
socklen_t addr_len = sizeof(addr);
#if HAVE_PTHREAD_CANCEL
int avail, nonblock = h->flags & AVIO_FLAG_NONBLOCK;
if (s->fifo) {
pthread_mutex_lock(&s->mutex);
do {
avail = av_fifo_size(s->fifo);
if (avail) { // >=size) {
uint8_t tmp[4];
av_fifo_generic_read(s->fifo, tmp, 4, NULL);
avail= AV_RL32(tmp);
if(avail > size){
av_log(h, AV_LOG_WARNING, "Part of datagram lost due to insufficient buffer size\n");
avail= size;
}
av_fifo_generic_read(s->fifo, buf, avail, NULL);
av_fifo_drain(s->fifo, AV_RL32(tmp) - avail);
pthread_mutex_unlock(&s->mutex);
return avail;
} else if(s->circular_buffer_error){
int err = s->circular_buffer_error;
pthread_mutex_unlock(&s->mutex);
return err;
} else if(nonblock) {
pthread_mutex_unlock(&s->mutex);
return AVERROR(EAGAIN);
}
else {
/* FIXME: using the monotonic clock would be better,
but it does not exist on all supported platforms. */
int64_t t = av_gettime() + 100000;
struct timespec tv = { .tv_sec = t / 1000000,
.tv_nsec = (t % 1000000) * 1000 };
if (pthread_cond_timedwait(&s->cond, &s->mutex, &tv) < 0) {
pthread_mutex_unlock(&s->mutex);
return AVERROR(errno == ETIMEDOUT ? EAGAIN : errno);
}
nonblock = 1;
}
} while( 1);
}
#endif
if (!(h->flags & AVIO_FLAG_NONBLOCK)) {
ret = ff_network_wait_fd(s->udp_fd, 0);
if (ret < 0)
return ret;
}
ret = recvfrom(s->udp_fd, buf, size, 0, (struct sockaddr *)&addr, &addr_len);
if (ret < 0)
return ff_neterrno();
if (ff_ip_check_source_lists(&addr, &s->filters))
return AVERROR(EINTR);
return ret;
}
static int udp_write(URLContext *h, const uint8_t *buf, int size)
{
UDPContext *s = h->priv_data;
int ret;
#if HAVE_PTHREAD_CANCEL
if (s->fifo) {
uint8_t tmp[4];
pthread_mutex_lock(&s->mutex);
/*
Return error if last tx failed.
Here we can't know on which packet error was, but it needs to know that error exists.
*/
if (s->circular_buffer_error<0) {
int err=s->circular_buffer_error;
pthread_mutex_unlock(&s->mutex);
return err;
}
if(av_fifo_space(s->fifo) < size + 4) {
/* What about a partial packet tx ? */
pthread_mutex_unlock(&s->mutex);
return AVERROR(ENOMEM);
}
AV_WL32(tmp, size);
av_fifo_generic_write(s->fifo, tmp, 4, NULL); /* size of packet */
av_fifo_generic_write(s->fifo, (uint8_t *)buf, size, NULL); /* the data */
pthread_cond_signal(&s->cond);
pthread_mutex_unlock(&s->mutex);
return size;
}
#endif
if (!(h->flags & AVIO_FLAG_NONBLOCK)) {
ret = ff_network_wait_fd(s->udp_fd, 1);
if (ret < 0)
return ret;
}
if (!s->is_connected) {
ret = sendto (s->udp_fd, buf, size, 0,
(struct sockaddr *) &s->dest_addr,
s->dest_addr_len);
} else
ret = send(s->udp_fd, buf, size, 0);
return ret < 0 ? ff_neterrno() : ret;
}
static int udp_close(URLContext *h)
{
UDPContext *s = h->priv_data;
#if HAVE_PTHREAD_CANCEL
// Request close once writing is finished
if (s->thread_started && !(h->flags & AVIO_FLAG_READ)) {
pthread_mutex_lock(&s->mutex);
s->close_req = 1;
pthread_cond_signal(&s->cond);
pthread_mutex_unlock(&s->mutex);
}
#endif
if (s->is_multicast && (h->flags & AVIO_FLAG_READ))
udp_leave_multicast_group(s->udp_fd, (struct sockaddr *)&s->dest_addr,(struct sockaddr *)&s->local_addr_storage);
#if HAVE_PTHREAD_CANCEL
if (s->thread_started) {
int ret;
// Cancel only read, as write has been signaled as success to the user
if (h->flags & AVIO_FLAG_READ)
pthread_cancel(s->circular_buffer_thread);
ret = pthread_join(s->circular_buffer_thread, NULL);
if (ret != 0)
av_log(h, AV_LOG_ERROR, "pthread_join(): %s\n", strerror(ret));
pthread_mutex_destroy(&s->mutex);
pthread_cond_destroy(&s->cond);
}
#endif
closesocket(s->udp_fd);
av_fifo_freep(&s->fifo);
ff_ip_reset_filters(&s->filters);
return 0;
}
const URLProtocol ff_udp_protocol = {
.name = "udp",
.url_open = udp_open,
.url_read = udp_read,
.url_write = udp_write,
.url_close = udp_close,
.url_get_file_handle = udp_get_file_handle,
.priv_data_size = sizeof(UDPContext),
.priv_data_class = &udp_class,
.flags = URL_PROTOCOL_FLAG_NETWORK,
};
const URLProtocol ff_udplite_protocol = {
.name = "udplite",
.url_open = udplite_open,
.url_read = udp_read,
.url_write = udp_write,
.url_close = udp_close,
.url_get_file_handle = udp_get_file_handle,
.priv_data_size = sizeof(UDPContext),
.priv_data_class = &udplite_context_class,
.flags = URL_PROTOCOL_FLAG_NETWORK,
};