1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00
FFmpeg/libavcodec/aac.c
Robert Swain cc0591dab0 Sync already committed code with that in SoC and commit more OKed hunks of code
Originally committed as revision 14674 to svn://svn.ffmpeg.org/ffmpeg/trunk
2008-08-09 10:46:27 +00:00

438 lines
15 KiB
C

/*
* AAC decoder
* Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
* Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file aac.c
* AAC decoder
* @author Oded Shimon ( ods15 ods15 dyndns org )
* @author Maxim Gavrilov ( maxim.gavrilov gmail com )
*/
/*
* supported tools
*
* Support? Name
* N (code in SoC repo) gain control
* Y block switching
* Y window shapes - standard
* N window shapes - Low Delay
* Y filterbank - standard
* N (code in SoC repo) filterbank - Scalable Sample Rate
* Y Temporal Noise Shaping
* N (code in SoC repo) Long Term Prediction
* Y intensity stereo
* Y channel coupling
* N frequency domain prediction
* Y Perceptual Noise Substitution
* Y Mid/Side stereo
* N Scalable Inverse AAC Quantization
* N Frequency Selective Switch
* N upsampling filter
* Y quantization & coding - AAC
* N quantization & coding - TwinVQ
* N quantization & coding - BSAC
* N AAC Error Resilience tools
* N Error Resilience payload syntax
* N Error Protection tool
* N CELP
* N Silence Compression
* N HVXC
* N HVXC 4kbits/s VR
* N Structured Audio tools
* N Structured Audio Sample Bank Format
* N MIDI
* N Harmonic and Individual Lines plus Noise
* N Text-To-Speech Interface
* N (in progress) Spectral Band Replication
* Y (not in this code) Layer-1
* Y (not in this code) Layer-2
* Y (not in this code) Layer-3
* N SinuSoidal Coding (Transient, Sinusoid, Noise)
* N (planned) Parametric Stereo
* N Direct Stream Transfer
*
* Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
* - HE AAC v2 comprises LC AAC with Spectral Band Replication and
Parametric Stereo.
*/
#include "avcodec.h"
#include "bitstream.h"
#include "dsputil.h"
#include "aac.h"
#include "aactab.h"
#include "aacdectab.h"
#include "mpeg4audio.h"
#include <assert.h>
#include <errno.h>
#include <math.h>
#include <string.h>
#ifndef CONFIG_HARDCODED_TABLES
static float ff_aac_ivquant_tab[IVQUANT_SIZE];
static float ff_aac_pow2sf_tab[316];
#endif /* CONFIG_HARDCODED_TABLES */
static VLC vlc_scalefactors;
static VLC vlc_spectral[11];
num_front = get_bits(gb, 4);
num_side = get_bits(gb, 4);
num_back = get_bits(gb, 4);
num_lfe = get_bits(gb, 2);
num_assoc_data = get_bits(gb, 3);
num_cc = get_bits(gb, 4);
if (get_bits1(gb))
skip_bits(gb, 4); // mono_mixdown_tag
if (get_bits1(gb))
skip_bits(gb, 4); // stereo_mixdown_tag
if (get_bits1(gb))
skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE, gb, num_side );
decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK, gb, num_back );
decode_channel_map(NULL, new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE, gb, num_lfe );
skip_bits_long(gb, 4 * num_assoc_data);
decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC, gb, num_cc );
align_get_bits(gb);
/* comment field, first byte is length */
skip_bits_long(gb, 8 * get_bits(gb, 8));
return 0;
}
static av_cold int aac_decode_init(AVCodecContext * avccontext) {
AACContext * ac = avccontext->priv_data;
int i;
ac->avccontext = avccontext;
if (avccontext->extradata_size <= 0 ||
decode_audio_specific_config(ac, avccontext->extradata, avccontext->extradata_size))
return -1;
avccontext->sample_rate = ac->m4ac.sample_rate;
avccontext->frame_size = 1024;
AAC_INIT_VLC_STATIC( 0, 144);
AAC_INIT_VLC_STATIC( 1, 114);
AAC_INIT_VLC_STATIC( 2, 188);
AAC_INIT_VLC_STATIC( 3, 180);
AAC_INIT_VLC_STATIC( 4, 172);
AAC_INIT_VLC_STATIC( 5, 140);
AAC_INIT_VLC_STATIC( 6, 168);
AAC_INIT_VLC_STATIC( 7, 114);
AAC_INIT_VLC_STATIC( 8, 262);
AAC_INIT_VLC_STATIC( 9, 248);
AAC_INIT_VLC_STATIC(10, 384);
dsputil_init(&ac->dsp, avccontext);
// -1024 - Compensate wrong IMDCT method.
// 32768 - Required to scale values to the correct range for the bias method
// for float to int16 conversion.
if(ac->dsp.float_to_int16 == ff_float_to_int16_c) {
ac->add_bias = 385.0f;
ac->sf_scale = 1. / (-1024. * 32768.);
ac->sf_offset = 0;
} else {
ac->add_bias = 0.0f;
ac->sf_scale = 1. / -1024.;
ac->sf_offset = 60;
}
#ifndef CONFIG_HARDCODED_TABLES
for (i = 1 - IVQUANT_SIZE/2; i < IVQUANT_SIZE/2; i++)
ff_aac_ivquant_tab[i + IVQUANT_SIZE/2 - 1] = cbrt(fabs(i)) * i;
for (i = 0; i < 316; i++)
ff_aac_pow2sf_tab[i] = pow(2, (i - 200)/4.);
#endif /* CONFIG_HARDCODED_TABLES */
INIT_VLC_STATIC(&vlc_scalefactors, 7, sizeof(ff_aac_scalefactor_code)/sizeof(ff_aac_scalefactor_code[0]),
ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
352);
ff_mdct_init(&ac->mdct, 11, 1);
ff_mdct_init(&ac->mdct_small, 8, 1);
return 0;
}
int byte_align = get_bits1(gb);
int count = get_bits(gb, 8);
if (count == 255)
count += get_bits(gb, 8);
if (byte_align)
align_get_bits(gb);
skip_bits_long(gb, 8 * count);
}
/**
* inverse quantization
*
* @param a quantized value to be dequantized
* @return Returns dequantized value.
*/
static inline float ivquant(int a) {
if (a + (unsigned int)IVQUANT_SIZE/2 - 1 < (unsigned int)IVQUANT_SIZE - 1)
return ff_aac_ivquant_tab[a + IVQUANT_SIZE/2 - 1];
else
return cbrtf(fabsf(a)) * a;
}
int band_type_run_end[120], GetBitContext * gb, IndividualChannelStream * ics) {
int g, idx = 0;
const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
for (g = 0; g < ics->num_window_groups; g++) {
int k = 0;
while (k < ics->max_sfb) {
uint8_t sect_len = k;
int sect_len_incr;
int sect_band_type = get_bits(gb, 4);
if (sect_band_type == 12) {
av_log(ac->avccontext, AV_LOG_ERROR, "invalid band type\n");
return -1;
}
while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits)-1)
sect_len += sect_len_incr;
sect_len += sect_len_incr;
if (sect_len > ics->max_sfb) {
av_log(ac->avccontext, AV_LOG_ERROR,
"Number of bands (%d) exceeds limit (%d).\n",
sect_len, ics->max_sfb);
return -1;
}
*
* @param mix_gain channel gain (Not used by AAC bitstream.)
* @param global_gain first scalefactor value as scalefactors are differentially coded
* @param band_type array of the used band type
* @param band_type_run_end array of the last scalefactor band of a band type run
* @param sf array of scalefactors or intensity stereo positions
*
* @return Returns error status. 0 - OK, !0 - error
*/
static int decode_scalefactors(AACContext * ac, float sf[120], GetBitContext * gb,
float mix_gain, unsigned int global_gain, IndividualChannelStream * ics,
enum BandType band_type[120], int band_type_run_end[120]) {
const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0);
int g, i, idx = 0;
int offset[3] = { global_gain, global_gain - 90, 100 };
int noise_flag = 1;
static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
ics->intensity_present = 0;
for (g = 0; g < ics->num_window_groups; g++) {
for (i = 0; i < ics->max_sfb;) {
int run_end = band_type_run_end[idx];
if (band_type[idx] == ZERO_BT) {
for(; i < run_end; i++, idx++)
sf[idx] = 0.;
}else if((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
ics->intensity_present = 1;
for(; i < run_end; i++, idx++) {
offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
if(offset[2] > 255U) {
av_log(ac->avccontext, AV_LOG_ERROR,
"%s (%d) out of range.\n", sf_str[2], offset[2]);
return -1;
}
sf[idx] = ff_aac_pow2sf_tab[-offset[2] + 300];
sf[idx] *= mix_gain;
}
}else if(band_type[idx] == NOISE_BT) {
for(; i < run_end; i++, idx++) {
if(noise_flag-- > 0)
offset[1] += get_bits(gb, 9) - 256;
else
offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
if(offset[1] > 255U) {
av_log(ac->avccontext, AV_LOG_ERROR,
"%s (%d) out of range.\n", sf_str[1], offset[1]);
return -1;
}
sf[idx] = -ff_aac_pow2sf_tab[ offset[1] + sf_offset];
sf[idx] *= mix_gain;
}
}else {
for(; i < run_end; i++, idx++) {
offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
if(offset[0] > 255U) {
av_log(ac->avccontext, AV_LOG_ERROR,
"%s (%d) out of range.\n", sf_str[0], offset[0]);
return -1;
}
sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
sf[idx] *= mix_gain;
}
}
}
}
return 0;
}
/**
* Decode pulse data; reference: table 4.7.
*/
static void decode_pulses(Pulse * pulse, GetBitContext * gb) {
int i;
pulse->num_pulse = get_bits(gb, 2) + 1;
pulse->start = get_bits(gb, 6);
for (i = 0; i < pulse->num_pulse; i++) {
pulse->offset[i] = get_bits(gb, 5);
pulse->amp [i] = get_bits(gb, 4);
}
}
/**
* Add pulses with particular amplitudes to the quantized spectral data; reference: 4.6.3.3.
*
* @param pulse pointer to pulse data struct
* @param icoef array of quantized spectral data
*/
static void add_pulses(int icoef[1024], const Pulse * pulse, const IndividualChannelStream * ics) {
int i, off = ics->swb_offset[pulse->start];
for (i = 0; i < pulse->num_pulse; i++) {
int ic;
off += pulse->offset[i];
ic = (icoef[off] - 1)>>31;
icoef[off] += (pulse->amp[i]^ic) - ic;
}
}
/**
* Parse Spectral Band Replication extension data; reference: table 4.55.
*
* @param crc flag indicating the presence of CRC checksum
* @param cnt length of TYPE_FIL syntactic element in bytes
* @return Returns number of bytes consumed from the TYPE_FIL element.
*/
static int decode_sbr_extension(AACContext * ac, GetBitContext * gb, int crc, int cnt) {
// TODO : sbr_extension implementation
av_log(ac->avccontext, AV_LOG_DEBUG, "aac: SBR not yet supported.\n");
skip_bits_long(gb, 8*cnt - 4); // -4 due to reading extension type
return cnt;
}
int crc_flag = 0;
int res = cnt;
switch (get_bits(gb, 4)) { // extension type
case EXT_SBR_DATA_CRC:
crc_flag++;
case EXT_SBR_DATA:
res = decode_sbr_extension(ac, gb, crc_flag, cnt);
break;
case EXT_DYNAMIC_RANGE:
res = decode_dynamic_range(&ac->che_drc, gb, cnt);
break;
case EXT_FILL:
case EXT_FILL_DATA:
case EXT_DATA_ELEMENT:
default:
skip_bits_long(gb, 8*cnt - 4);
break;
};
return res;
}
/**
* Apply dependent channel coupling (applied before IMDCT).
*
* @param index index into coupling gain array
*/
static void apply_dependent_coupling(AACContext * ac, SingleChannelElement * sce, ChannelElement * cc, int index) {
IndividualChannelStream * ics = &cc->ch[0].ics;
const uint16_t * offsets = ics->swb_offset;
float * dest = sce->coeffs;
const float * src = cc->ch[0].coeffs;
int g, i, group, k, idx = 0;
if(ac->m4ac.object_type == AOT_AAC_LTP) {
av_log(ac->avccontext, AV_LOG_ERROR,
"Dependent coupling is not supported together with LTP\n");
return;
}
for (g = 0; g < ics->num_window_groups; g++) {
for (i = 0; i < ics->max_sfb; i++, idx++) {
if (cc->ch[0].band_type[idx] != ZERO_BT) {
float gain = cc->coup.gain[index][idx] * sce->mixing_gain;
for (group = 0; group < ics->group_len[g]; group++) {
for (k = offsets[i]; k < offsets[i+1]; k++) {
// XXX dsputil-ize
dest[group*128+k] += gain * src[group*128+k];
}
}
}
}
dest += ics->group_len[g]*128;
src += ics->group_len[g]*128;
}
}
/**
* Apply independent channel coupling (applied after IMDCT).
*
* @param index index into coupling gain array
*/
static void apply_independent_coupling(AACContext * ac, SingleChannelElement * sce, ChannelElement * cc, int index) {
int i;
float gain = cc->coup.gain[index][0] * sce->mixing_gain;
for (i = 0; i < 1024; i++)
sce->ret[i] += gain * (cc->ch[0].ret[i] - ac->add_bias);
}
static av_cold int aac_decode_close(AVCodecContext * avccontext) {
AACContext * ac = avccontext->priv_data;
int i, j;
for (i = 0; i < MAX_ELEM_ID; i++) {
for(j = 0; j < 4; j++)
av_freep(&ac->che[j][i]);
}
ff_mdct_end(&ac->mdct);
ff_mdct_end(&ac->mdct_small);
return 0 ;
}
AVCodec aac_decoder = {
"aac",
CODEC_TYPE_AUDIO,
CODEC_ID_AAC,
sizeof(AACContext),
aac_decode_init,
NULL,
aac_decode_close,
aac_decode_frame,
.long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
.sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
};