1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
FFmpeg/libavcodec/vc1dec.c
Michael Niedermayer 0ed7bc49a3 Merge remote-tracking branch 'qatar/master'
* qatar/master: (31 commits)
  libx264: set default thread count to 0 (auto)
  lavc: cosmetics, group deprecated codec flags
  mpeg12: add 'scan_offset' private option.
  h263/p encoder: add 'structured_slices' private option.
  h263/p encoder: add 'obmc' private option.
  h263p encoder: add 'aiv' private option.
  h263p encoder: add 'umv' private option.
  mpeg12enc/mpeg4videoenc: add 'alternate_scan' private option.
  mjpegdec: add 'extern_huff' private option.
  mpeg4enc: add 'data_partitioning' private option.
  snow: add 'memc_only' private option.
  libx264: add 'mbtree' private option.
  libx264: add 'psy' private option.
  libmp3lame: add 'reservoir' private option.
  mpeg2enc: add 'non_linear_quant' private option
  mpeg12enc: add drop_frame_timecode private option.
  mpeg12enc: add intra_vlc private option.
  VC1: Support dynamic dimension changes
  mjpeg: treat external huffman table setup failure as codec init failure if external huffman table use requested
  lavc: deprecate CODEC_FLAG2_BRDO
  ...

Conflicts:
	avconv.c
	libavcodec/libmp3lame.c
	libavcodec/libx264.c
	libavcodec/mjpegdec.c
	libavcodec/mpeg12enc.c
	libavcodec/mpegvideo.h
	libavcodec/vc1.c
	libavcodec/vc1dec.c

Merged-by: Michael Niedermayer <michaelni@gmx.at>
2011-09-01 00:01:21 +02:00

4159 lines
154 KiB
C

/*
* VC-1 and WMV3 decoder
* Copyright (c) 2006-2007 Konstantin Shishkov
* Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* VC-1 and WMV3 decoder
*
*/
#include "internal.h"
#include "dsputil.h"
#include "avcodec.h"
#include "mpegvideo.h"
#include "h263.h"
#include "vc1.h"
#include "vc1data.h"
#include "vc1acdata.h"
#include "msmpeg4data.h"
#include "unary.h"
#include "simple_idct.h"
#include "mathops.h"
#include "vdpau_internal.h"
#undef NDEBUG
#include <assert.h>
#define MB_INTRA_VLC_BITS 9
#define DC_VLC_BITS 9
#define AC_VLC_BITS 9
static const uint16_t vlc_offs[] = {
0, 520, 552, 616, 1128, 1160, 1224, 1740, 1772, 1836, 1900, 2436,
2986, 3050, 3610, 4154, 4218, 4746, 5326, 5390, 5902, 6554, 7658, 8620,
9262, 10202, 10756, 11310, 12228, 15078
};
/**
* Init VC-1 specific tables and VC1Context members
* @param v The VC1Context to initialize
* @return Status
*/
static int vc1_init_common(VC1Context *v)
{
static int done = 0;
int i = 0;
static VLC_TYPE vlc_table[15078][2];
v->hrd_rate = v->hrd_buffer = NULL;
/* VLC tables */
if(!done)
{
INIT_VLC_STATIC(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
ff_vc1_bfraction_bits, 1, 1,
ff_vc1_bfraction_codes, 1, 1, 1 << VC1_BFRACTION_VLC_BITS);
INIT_VLC_STATIC(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
ff_vc1_norm2_bits, 1, 1,
ff_vc1_norm2_codes, 1, 1, 1 << VC1_NORM2_VLC_BITS);
INIT_VLC_STATIC(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
ff_vc1_norm6_bits, 1, 1,
ff_vc1_norm6_codes, 2, 2, 556);
INIT_VLC_STATIC(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
ff_vc1_imode_bits, 1, 1,
ff_vc1_imode_codes, 1, 1, 1 << VC1_IMODE_VLC_BITS);
for (i=0; i<3; i++)
{
ff_vc1_ttmb_vlc[i].table = &vlc_table[vlc_offs[i*3+0]];
ff_vc1_ttmb_vlc[i].table_allocated = vlc_offs[i*3+1] - vlc_offs[i*3+0];
init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
ff_vc1_ttmb_bits[i], 1, 1,
ff_vc1_ttmb_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
ff_vc1_ttblk_vlc[i].table = &vlc_table[vlc_offs[i*3+1]];
ff_vc1_ttblk_vlc[i].table_allocated = vlc_offs[i*3+2] - vlc_offs[i*3+1];
init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
ff_vc1_ttblk_bits[i], 1, 1,
ff_vc1_ttblk_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
ff_vc1_subblkpat_vlc[i].table = &vlc_table[vlc_offs[i*3+2]];
ff_vc1_subblkpat_vlc[i].table_allocated = vlc_offs[i*3+3] - vlc_offs[i*3+2];
init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
ff_vc1_subblkpat_bits[i], 1, 1,
ff_vc1_subblkpat_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
}
for(i=0; i<4; i++)
{
ff_vc1_4mv_block_pattern_vlc[i].table = &vlc_table[vlc_offs[i*3+9]];
ff_vc1_4mv_block_pattern_vlc[i].table_allocated = vlc_offs[i*3+10] - vlc_offs[i*3+9];
init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
ff_vc1_4mv_block_pattern_bits[i], 1, 1,
ff_vc1_4mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
ff_vc1_cbpcy_p_vlc[i].table = &vlc_table[vlc_offs[i*3+10]];
ff_vc1_cbpcy_p_vlc[i].table_allocated = vlc_offs[i*3+11] - vlc_offs[i*3+10];
init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
ff_vc1_cbpcy_p_bits[i], 1, 1,
ff_vc1_cbpcy_p_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
ff_vc1_mv_diff_vlc[i].table = &vlc_table[vlc_offs[i*3+11]];
ff_vc1_mv_diff_vlc[i].table_allocated = vlc_offs[i*3+12] - vlc_offs[i*3+11];
init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
ff_vc1_mv_diff_bits[i], 1, 1,
ff_vc1_mv_diff_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
}
for(i=0; i<8; i++){
ff_vc1_ac_coeff_table[i].table = &vlc_table[vlc_offs[i+21]];
ff_vc1_ac_coeff_table[i].table_allocated = vlc_offs[i+22] - vlc_offs[i+21];
init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
&vc1_ac_tables[i][0][1], 8, 4,
&vc1_ac_tables[i][0][0], 8, 4, INIT_VLC_USE_NEW_STATIC);
}
done = 1;
}
/* Other defaults */
v->pq = -1;
v->mvrange = 0; /* 7.1.1.18, p80 */
return 0;
}
/***********************************************************************/
/**
* @name VC-1 Bitplane decoding
* @see 8.7, p56
* @{
*/
/**
* Imode types
* @{
*/
enum Imode {
IMODE_RAW,
IMODE_NORM2,
IMODE_DIFF2,
IMODE_NORM6,
IMODE_DIFF6,
IMODE_ROWSKIP,
IMODE_COLSKIP
};
/** @} */ //imode defines
/** @} */ //Bitplane group
static void vc1_put_signed_blocks_clamped(VC1Context *v)
{
MpegEncContext *s = &v->s;
/* The put pixels loop is always one MB row behind the decoding loop,
* because we can only put pixels when overlap filtering is done, and
* for filtering of the bottom edge of a MB, we need the next MB row
* present as well.
* Within the row, the put pixels loop is also one MB col behind the
* decoding loop. The reason for this is again, because for filtering
* of the right MB edge, we need the next MB present. */
if (!s->first_slice_line) {
if (s->mb_x) {
s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][0],
s->dest[0] - 16 * s->linesize - 16,
s->linesize);
s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][1],
s->dest[0] - 16 * s->linesize - 8,
s->linesize);
s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][2],
s->dest[0] - 8 * s->linesize - 16,
s->linesize);
s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][3],
s->dest[0] - 8 * s->linesize - 8,
s->linesize);
s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][4],
s->dest[1] - 8 * s->uvlinesize - 8,
s->uvlinesize);
s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][5],
s->dest[2] - 8 * s->uvlinesize - 8,
s->uvlinesize);
}
if (s->mb_x == s->mb_width - 1) {
s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][0],
s->dest[0] - 16 * s->linesize,
s->linesize);
s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][1],
s->dest[0] - 16 * s->linesize + 8,
s->linesize);
s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][2],
s->dest[0] - 8 * s->linesize,
s->linesize);
s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][3],
s->dest[0] - 8 * s->linesize + 8,
s->linesize);
s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][4],
s->dest[1] - 8 * s->uvlinesize,
s->uvlinesize);
s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][5],
s->dest[2] - 8 * s->uvlinesize,
s->uvlinesize);
}
}
#define inc_blk_idx(idx) do { \
idx++; \
if (idx >= v->n_allocated_blks) \
idx = 0; \
} while (0)
inc_blk_idx(v->topleft_blk_idx);
inc_blk_idx(v->top_blk_idx);
inc_blk_idx(v->left_blk_idx);
inc_blk_idx(v->cur_blk_idx);
}
static void vc1_loop_filter_iblk(VC1Context *v, int pq)
{
MpegEncContext *s = &v->s;
int j;
if (!s->first_slice_line) {
v->vc1dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
if (s->mb_x)
v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16*s->linesize, s->linesize, pq);
v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16*s->linesize+8, s->linesize, pq);
for(j = 0; j < 2; j++){
v->vc1dsp.vc1_v_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
if (s->mb_x)
v->vc1dsp.vc1_h_loop_filter8(s->dest[j+1]-8*s->uvlinesize, s->uvlinesize, pq);
}
}
v->vc1dsp.vc1_v_loop_filter16(s->dest[0] + 8*s->linesize, s->linesize, pq);
if (s->mb_y == s->end_mb_y-1) {
if (s->mb_x) {
v->vc1dsp.vc1_h_loop_filter16(s->dest[0], s->linesize, pq);
v->vc1dsp.vc1_h_loop_filter8(s->dest[1], s->uvlinesize, pq);
v->vc1dsp.vc1_h_loop_filter8(s->dest[2], s->uvlinesize, pq);
}
v->vc1dsp.vc1_h_loop_filter16(s->dest[0] + 8, s->linesize, pq);
}
}
static void vc1_loop_filter_iblk_delayed(VC1Context *v, int pq)
{
MpegEncContext *s = &v->s;
int j;
/* The loopfilter runs 1 row and 1 column behind the overlap filter, which
* means it runs two rows/cols behind the decoding loop. */
if (!s->first_slice_line) {
if (s->mb_x) {
if (s->mb_y >= s->start_mb_y + 2) {
v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
if (s->mb_x >= 2)
v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 16, s->linesize, pq);
v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 8, s->linesize, pq);
for(j = 0; j < 2; j++) {
v->vc1dsp.vc1_v_loop_filter8(s->dest[j+1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
if (s->mb_x >= 2) {
v->vc1dsp.vc1_h_loop_filter8(s->dest[j+1] - 16 * s->uvlinesize - 8, s->uvlinesize, pq);
}
}
}
v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize - 16, s->linesize, pq);
}
if (s->mb_x == s->mb_width - 1) {
if (s->mb_y >= s->start_mb_y + 2) {
v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
if (s->mb_x)
v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize, s->linesize, pq);
v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize + 8, s->linesize, pq);
for(j = 0; j < 2; j++) {
v->vc1dsp.vc1_v_loop_filter8(s->dest[j+1] - 8 * s->uvlinesize, s->uvlinesize, pq);
if (s->mb_x >= 2) {
v->vc1dsp.vc1_h_loop_filter8(s->dest[j+1] - 16 * s->uvlinesize, s->uvlinesize, pq);
}
}
}
v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize, s->linesize, pq);
}
if (s->mb_y == s->end_mb_y) {
if (s->mb_x) {
if (s->mb_x >= 2)
v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 8, s->linesize, pq);
if (s->mb_x >= 2) {
for(j = 0; j < 2; j++) {
v->vc1dsp.vc1_h_loop_filter8(s->dest[j+1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
}
}
}
if (s->mb_x == s->mb_width - 1) {
if (s->mb_x)
v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
if (s->mb_x) {
for(j = 0; j < 2; j++) {
v->vc1dsp.vc1_h_loop_filter8(s->dest[j+1] - 8 * s->uvlinesize, s->uvlinesize, pq);
}
}
}
}
}
}
static void vc1_smooth_overlap_filter_iblk(VC1Context *v)
{
MpegEncContext *s = &v->s;
int mb_pos;
if (v->condover == CONDOVER_NONE)
return;
mb_pos = s->mb_x + s->mb_y * s->mb_stride;
/* Within a MB, the horizontal overlap always runs before the vertical.
* To accomplish that, we run the H on left and internal borders of the
* currently decoded MB. Then, we wait for the next overlap iteration
* to do H overlap on the right edge of this MB, before moving over and
* running the V overlap. Therefore, the V overlap makes us trail by one
* MB col and the H overlap filter makes us trail by one MB row. This
* is reflected in the time at which we run the put_pixels loop. */
if(v->condover == CONDOVER_ALL || v->pq >= 9 || v->over_flags_plane[mb_pos]) {
if(s->mb_x && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
v->over_flags_plane[mb_pos - 1])) {
v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][1],
v->block[v->cur_blk_idx][0]);
v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][3],
v->block[v->cur_blk_idx][2]);
if(!(s->flags & CODEC_FLAG_GRAY)) {
v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][4],
v->block[v->cur_blk_idx][4]);
v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][5],
v->block[v->cur_blk_idx][5]);
}
}
v->vc1dsp.vc1_h_s_overlap(v->block[v->cur_blk_idx][0],
v->block[v->cur_blk_idx][1]);
v->vc1dsp.vc1_h_s_overlap(v->block[v->cur_blk_idx][2],
v->block[v->cur_blk_idx][3]);
if (s->mb_x == s->mb_width - 1) {
if(!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
v->over_flags_plane[mb_pos - s->mb_stride])) {
v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][2],
v->block[v->cur_blk_idx][0]);
v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][3],
v->block[v->cur_blk_idx][1]);
if(!(s->flags & CODEC_FLAG_GRAY)) {
v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][4],
v->block[v->cur_blk_idx][4]);
v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][5],
v->block[v->cur_blk_idx][5]);
}
}
v->vc1dsp.vc1_v_s_overlap(v->block[v->cur_blk_idx][0],
v->block[v->cur_blk_idx][2]);
v->vc1dsp.vc1_v_s_overlap(v->block[v->cur_blk_idx][1],
v->block[v->cur_blk_idx][3]);
}
}
if (s->mb_x && (v->condover == CONDOVER_ALL || v->over_flags_plane[mb_pos - 1])) {
if(!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
v->over_flags_plane[mb_pos - s->mb_stride - 1])) {
v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][2],
v->block[v->left_blk_idx][0]);
v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][3],
v->block[v->left_blk_idx][1]);
if(!(s->flags & CODEC_FLAG_GRAY)) {
v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][4],
v->block[v->left_blk_idx][4]);
v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][5],
v->block[v->left_blk_idx][5]);
}
}
v->vc1dsp.vc1_v_s_overlap(v->block[v->left_blk_idx][0],
v->block[v->left_blk_idx][2]);
v->vc1dsp.vc1_v_s_overlap(v->block[v->left_blk_idx][1],
v->block[v->left_blk_idx][3]);
}
}
/** Do motion compensation over 1 macroblock
* Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
*/
static void vc1_mc_1mv(VC1Context *v, int dir)
{
MpegEncContext *s = &v->s;
DSPContext *dsp = &v->s.dsp;
uint8_t *srcY, *srcU, *srcV;
int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
if(!v->s.last_picture.f.data[0])return;
mx = s->mv[dir][0][0];
my = s->mv[dir][0][1];
// store motion vectors for further use in B frames
if(s->pict_type == AV_PICTURE_TYPE_P) {
s->current_picture.f.motion_val[1][s->block_index[0]][0] = mx;
s->current_picture.f.motion_val[1][s->block_index[0]][1] = my;
}
uvmx = (mx + ((mx & 3) == 3)) >> 1;
uvmy = (my + ((my & 3) == 3)) >> 1;
v->luma_mv[s->mb_x][0] = uvmx;
v->luma_mv[s->mb_x][1] = uvmy;
if(v->fastuvmc) {
uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
}
if(!dir) {
srcY = s->last_picture.f.data[0];
srcU = s->last_picture.f.data[1];
srcV = s->last_picture.f.data[2];
} else {
srcY = s->next_picture.f.data[0];
srcU = s->next_picture.f.data[1];
srcV = s->next_picture.f.data[2];
}
src_x = s->mb_x * 16 + (mx >> 2);
src_y = s->mb_y * 16 + (my >> 2);
uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
if(v->profile != PROFILE_ADVANCED){
src_x = av_clip( src_x, -16, s->mb_width * 16);
src_y = av_clip( src_y, -16, s->mb_height * 16);
uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
}else{
src_x = av_clip( src_x, -17, s->avctx->coded_width);
src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
}
srcY += src_y * s->linesize + src_x;
srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
/* for grayscale we should not try to read from unknown area */
if(s->flags & CODEC_FLAG_GRAY) {
srcU = s->edge_emu_buffer + 18 * s->linesize;
srcV = s->edge_emu_buffer + 18 * s->linesize;
}
if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
|| (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
|| (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
srcY -= s->mspel * (1 + s->linesize);
s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
srcY = s->edge_emu_buffer;
s->dsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
s->dsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
srcU = uvbuf;
srcV = uvbuf + 16;
/* if we deal with range reduction we need to scale source blocks */
if(v->rangeredfrm) {
int i, j;
uint8_t *src, *src2;
src = srcY;
for(j = 0; j < 17 + s->mspel*2; j++) {
for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
src += s->linesize;
}
src = srcU; src2 = srcV;
for(j = 0; j < 9; j++) {
for(i = 0; i < 9; i++) {
src[i] = ((src[i] - 128) >> 1) + 128;
src2[i] = ((src2[i] - 128) >> 1) + 128;
}
src += s->uvlinesize;
src2 += s->uvlinesize;
}
}
/* if we deal with intensity compensation we need to scale source blocks */
if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
int i, j;
uint8_t *src, *src2;
src = srcY;
for(j = 0; j < 17 + s->mspel*2; j++) {
for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
src += s->linesize;
}
src = srcU; src2 = srcV;
for(j = 0; j < 9; j++) {
for(i = 0; i < 9; i++) {
src[i] = v->lutuv[src[i]];
src2[i] = v->lutuv[src2[i]];
}
src += s->uvlinesize;
src2 += s->uvlinesize;
}
}
srcY += s->mspel * (1 + s->linesize);
}
if(s->mspel) {
dxy = ((my & 3) << 2) | (mx & 3);
v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
srcY += s->linesize * 8;
v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
} else { // hpel mc - always used for luma
dxy = (my & 2) | ((mx & 2) >> 1);
if(!v->rnd)
dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
else
dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
}
if(s->flags & CODEC_FLAG_GRAY) return;
/* Chroma MC always uses qpel bilinear */
uvmx = (uvmx&3)<<1;
uvmy = (uvmy&3)<<1;
if(!v->rnd){
dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
}else{
v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
}
}
/** Do motion compensation for 4-MV macroblock - luminance block
*/
static void vc1_mc_4mv_luma(VC1Context *v, int n)
{
MpegEncContext *s = &v->s;
DSPContext *dsp = &v->s.dsp;
uint8_t *srcY;
int dxy, mx, my, src_x, src_y;
int off;
if(!v->s.last_picture.f.data[0])return;
mx = s->mv[0][n][0];
my = s->mv[0][n][1];
srcY = s->last_picture.f.data[0];
off = s->linesize * 4 * (n&2) + (n&1) * 8;
src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
if(v->profile != PROFILE_ADVANCED){
src_x = av_clip( src_x, -16, s->mb_width * 16);
src_y = av_clip( src_y, -16, s->mb_height * 16);
}else{
src_x = av_clip( src_x, -17, s->avctx->coded_width);
src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
}
srcY += src_y * s->linesize + src_x;
if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
|| (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
|| (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
srcY -= s->mspel * (1 + s->linesize);
s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
srcY = s->edge_emu_buffer;
/* if we deal with range reduction we need to scale source blocks */
if(v->rangeredfrm) {
int i, j;
uint8_t *src;
src = srcY;
for(j = 0; j < 9 + s->mspel*2; j++) {
for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
src += s->linesize;
}
}
/* if we deal with intensity compensation we need to scale source blocks */
if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
int i, j;
uint8_t *src;
src = srcY;
for(j = 0; j < 9 + s->mspel*2; j++) {
for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
src += s->linesize;
}
}
srcY += s->mspel * (1 + s->linesize);
}
if(s->mspel) {
dxy = ((my & 3) << 2) | (mx & 3);
v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
} else { // hpel mc - always used for luma
dxy = (my & 2) | ((mx & 2) >> 1);
if(!v->rnd)
dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
else
dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
}
}
static inline int median4(int a, int b, int c, int d)
{
if(a < b) {
if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
} else {
if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
}
}
/** Do motion compensation for 4-MV macroblock - both chroma blocks
*/
static void vc1_mc_4mv_chroma(VC1Context *v)
{
MpegEncContext *s = &v->s;
DSPContext *dsp = &v->s.dsp;
uint8_t *srcU, *srcV;
int uvmx, uvmy, uvsrc_x, uvsrc_y;
int i, idx, tx = 0, ty = 0;
int mvx[4], mvy[4], intra[4];
static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
if(!v->s.last_picture.f.data[0])return;
if(s->flags & CODEC_FLAG_GRAY) return;
for(i = 0; i < 4; i++) {
mvx[i] = s->mv[0][i][0];
mvy[i] = s->mv[0][i][1];
intra[i] = v->mb_type[0][s->block_index[i]];
}
/* calculate chroma MV vector from four luma MVs */
idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
if(!idx) { // all blocks are inter
tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
} else if(count[idx] == 1) { // 3 inter blocks
switch(idx) {
case 0x1:
tx = mid_pred(mvx[1], mvx[2], mvx[3]);
ty = mid_pred(mvy[1], mvy[2], mvy[3]);
break;
case 0x2:
tx = mid_pred(mvx[0], mvx[2], mvx[3]);
ty = mid_pred(mvy[0], mvy[2], mvy[3]);
break;
case 0x4:
tx = mid_pred(mvx[0], mvx[1], mvx[3]);
ty = mid_pred(mvy[0], mvy[1], mvy[3]);
break;
case 0x8:
tx = mid_pred(mvx[0], mvx[1], mvx[2]);
ty = mid_pred(mvy[0], mvy[1], mvy[2]);
break;
}
} else if(count[idx] == 2) {
int t1 = 0, t2 = 0;
for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
tx = (mvx[t1] + mvx[t2]) / 2;
ty = (mvy[t1] + mvy[t2]) / 2;
} else {
s->current_picture.f.motion_val[1][s->block_index[0]][0] = 0;
s->current_picture.f.motion_val[1][s->block_index[0]][1] = 0;
v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
return; //no need to do MC for inter blocks
}
s->current_picture.f.motion_val[1][s->block_index[0]][0] = tx;
s->current_picture.f.motion_val[1][s->block_index[0]][1] = ty;
uvmx = (tx + ((tx&3) == 3)) >> 1;
uvmy = (ty + ((ty&3) == 3)) >> 1;
v->luma_mv[s->mb_x][0] = uvmx;
v->luma_mv[s->mb_x][1] = uvmy;
if(v->fastuvmc) {
uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
}
uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
if(v->profile != PROFILE_ADVANCED){
uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
}else{
uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
}
srcU = s->last_picture.f.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
srcV = s->last_picture.f.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
|| (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
|| (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
s->dsp.emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
s->dsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
srcU = s->edge_emu_buffer;
srcV = s->edge_emu_buffer + 16;
/* if we deal with range reduction we need to scale source blocks */
if(v->rangeredfrm) {
int i, j;
uint8_t *src, *src2;
src = srcU; src2 = srcV;
for(j = 0; j < 9; j++) {
for(i = 0; i < 9; i++) {
src[i] = ((src[i] - 128) >> 1) + 128;
src2[i] = ((src2[i] - 128) >> 1) + 128;
}
src += s->uvlinesize;
src2 += s->uvlinesize;
}
}
/* if we deal with intensity compensation we need to scale source blocks */
if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
int i, j;
uint8_t *src, *src2;
src = srcU; src2 = srcV;
for(j = 0; j < 9; j++) {
for(i = 0; i < 9; i++) {
src[i] = v->lutuv[src[i]];
src2[i] = v->lutuv[src2[i]];
}
src += s->uvlinesize;
src2 += s->uvlinesize;
}
}
}
/* Chroma MC always uses qpel bilinear */
uvmx = (uvmx&3)<<1;
uvmy = (uvmy&3)<<1;
if(!v->rnd){
dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
}else{
v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
}
}
/***********************************************************************/
/**
* @name VC-1 Block-level functions
* @see 7.1.4, p91 and 8.1.1.7, p(1)04
* @{
*/
/**
* @def GET_MQUANT
* @brief Get macroblock-level quantizer scale
*/
#define GET_MQUANT() \
if (v->dquantfrm) \
{ \
int edges = 0; \
if (v->dqprofile == DQPROFILE_ALL_MBS) \
{ \
if (v->dqbilevel) \
{ \
mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
} \
else \
{ \
mqdiff = get_bits(gb, 3); \
if (mqdiff != 7) mquant = v->pq + mqdiff; \
else mquant = get_bits(gb, 5); \
} \
} \
if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
edges = 1 << v->dqsbedge; \
else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
edges = (3 << v->dqsbedge) % 15; \
else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
edges = 15; \
if((edges&1) && !s->mb_x) \
mquant = v->altpq; \
if((edges&2) && s->first_slice_line) \
mquant = v->altpq; \
if((edges&4) && s->mb_x == (s->mb_width - 1)) \
mquant = v->altpq; \
if((edges&8) && s->mb_y == (s->mb_height - 1)) \
mquant = v->altpq; \
}
/**
* @def GET_MVDATA(_dmv_x, _dmv_y)
* @brief Get MV differentials
* @see MVDATA decoding from 8.3.5.2, p(1)20
* @param _dmv_x Horizontal differential for decoded MV
* @param _dmv_y Vertical differential for decoded MV
*/
#define GET_MVDATA(_dmv_x, _dmv_y) \
index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
VC1_MV_DIFF_VLC_BITS, 2); \
if (index > 36) \
{ \
mb_has_coeffs = 1; \
index -= 37; \
} \
else mb_has_coeffs = 0; \
s->mb_intra = 0; \
if (!index) { _dmv_x = _dmv_y = 0; } \
else if (index == 35) \
{ \
_dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
_dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
} \
else if (index == 36) \
{ \
_dmv_x = 0; \
_dmv_y = 0; \
s->mb_intra = 1; \
} \
else \
{ \
index1 = index%6; \
if (!s->quarter_sample && index1 == 5) val = 1; \
else val = 0; \
if(size_table[index1] - val > 0) \
val = get_bits(gb, size_table[index1] - val); \
else val = 0; \
sign = 0 - (val&1); \
_dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
\
index1 = index/6; \
if (!s->quarter_sample && index1 == 5) val = 1; \
else val = 0; \
if(size_table[index1] - val > 0) \
val = get_bits(gb, size_table[index1] - val); \
else val = 0; \
sign = 0 - (val&1); \
_dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
}
/** Predict and set motion vector
*/
static inline void vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
{
MpegEncContext *s = &v->s;
int xy, wrap, off = 0;
int16_t *A, *B, *C;
int px, py;
int sum;
/* scale MV difference to be quad-pel */
dmv_x <<= 1 - s->quarter_sample;
dmv_y <<= 1 - s->quarter_sample;
wrap = s->b8_stride;
xy = s->block_index[n];
if(s->mb_intra){
s->mv[0][n][0] = s->current_picture.f.motion_val[0][xy][0] = 0;
s->mv[0][n][1] = s->current_picture.f.motion_val[0][xy][1] = 0;
s->current_picture.f.motion_val[1][xy][0] = 0;
s->current_picture.f.motion_val[1][xy][1] = 0;
if(mv1) { /* duplicate motion data for 1-MV block */
s->current_picture.f.motion_val[0][xy + 1][0] = 0;
s->current_picture.f.motion_val[0][xy + 1][1] = 0;
s->current_picture.f.motion_val[0][xy + wrap][0] = 0;
s->current_picture.f.motion_val[0][xy + wrap][1] = 0;
s->current_picture.f.motion_val[0][xy + wrap + 1][0] = 0;
s->current_picture.f.motion_val[0][xy + wrap + 1][1] = 0;
v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
s->current_picture.f.motion_val[1][xy + 1][0] = 0;
s->current_picture.f.motion_val[1][xy + 1][1] = 0;
s->current_picture.f.motion_val[1][xy + wrap][0] = 0;
s->current_picture.f.motion_val[1][xy + wrap][1] = 0;
s->current_picture.f.motion_val[1][xy + wrap + 1][0] = 0;
s->current_picture.f.motion_val[1][xy + wrap + 1][1] = 0;
}
return;
}
C = s->current_picture.f.motion_val[0][xy - 1];
A = s->current_picture.f.motion_val[0][xy - wrap];
if(mv1)
off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
else {
//in 4-MV mode different blocks have different B predictor position
switch(n){
case 0:
off = (s->mb_x > 0) ? -1 : 1;
break;
case 1:
off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
break;
case 2:
off = 1;
break;
case 3:
off = -1;
}
}
B = s->current_picture.f.motion_val[0][xy - wrap + off];
if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
if(s->mb_width == 1) {
px = A[0];
py = A[1];
} else {
px = mid_pred(A[0], B[0], C[0]);
py = mid_pred(A[1], B[1], C[1]);
}
} else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
px = C[0];
py = C[1];
} else {
px = py = 0;
}
/* Pullback MV as specified in 8.3.5.3.4 */
{
int qx, qy, X, Y;
qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
X = (s->mb_width << 6) - 4;
Y = (s->mb_height << 6) - 4;
if(mv1) {
if(qx + px < -60) px = -60 - qx;
if(qy + py < -60) py = -60 - qy;
} else {
if(qx + px < -28) px = -28 - qx;
if(qy + py < -28) py = -28 - qy;
}
if(qx + px > X) px = X - qx;
if(qy + py > Y) py = Y - qy;
}
/* Calculate hybrid prediction as specified in 8.3.5.3.5 */
if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
if(is_intra[xy - wrap])
sum = FFABS(px) + FFABS(py);
else
sum = FFABS(px - A[0]) + FFABS(py - A[1]);
if(sum > 32) {
if(get_bits1(&s->gb)) {
px = A[0];
py = A[1];
} else {
px = C[0];
py = C[1];
}
} else {
if(is_intra[xy - 1])
sum = FFABS(px) + FFABS(py);
else
sum = FFABS(px - C[0]) + FFABS(py - C[1]);
if(sum > 32) {
if(get_bits1(&s->gb)) {
px = A[0];
py = A[1];
} else {
px = C[0];
py = C[1];
}
}
}
}
/* store MV using signed modulus of MV range defined in 4.11 */
s->mv[0][n][0] = s->current_picture.f.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
s->mv[0][n][1] = s->current_picture.f.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
if(mv1) { /* duplicate motion data for 1-MV block */
s->current_picture.f.motion_val[0][xy + 1][0] = s->current_picture.f.motion_val[0][xy][0];
s->current_picture.f.motion_val[0][xy + 1][1] = s->current_picture.f.motion_val[0][xy][1];
s->current_picture.f.motion_val[0][xy + wrap][0] = s->current_picture.f.motion_val[0][xy][0];
s->current_picture.f.motion_val[0][xy + wrap][1] = s->current_picture.f.motion_val[0][xy][1];
s->current_picture.f.motion_val[0][xy + wrap + 1][0] = s->current_picture.f.motion_val[0][xy][0];
s->current_picture.f.motion_val[0][xy + wrap + 1][1] = s->current_picture.f.motion_val[0][xy][1];
}
}
/** Motion compensation for direct or interpolated blocks in B-frames
*/
static void vc1_interp_mc(VC1Context *v)
{
MpegEncContext *s = &v->s;
DSPContext *dsp = &v->s.dsp;
uint8_t *srcY, *srcU, *srcV;
int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
if(!v->s.next_picture.f.data[0])return;
mx = s->mv[1][0][0];
my = s->mv[1][0][1];
uvmx = (mx + ((mx & 3) == 3)) >> 1;
uvmy = (my + ((my & 3) == 3)) >> 1;
if(v->fastuvmc) {
uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
}
srcY = s->next_picture.f.data[0];
srcU = s->next_picture.f.data[1];
srcV = s->next_picture.f.data[2];
src_x = s->mb_x * 16 + (mx >> 2);
src_y = s->mb_y * 16 + (my >> 2);
uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
if(v->profile != PROFILE_ADVANCED){
src_x = av_clip( src_x, -16, s->mb_width * 16);
src_y = av_clip( src_y, -16, s->mb_height * 16);
uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
}else{
src_x = av_clip( src_x, -17, s->avctx->coded_width);
src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
}
srcY += src_y * s->linesize + src_x;
srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
/* for grayscale we should not try to read from unknown area */
if(s->flags & CODEC_FLAG_GRAY) {
srcU = s->edge_emu_buffer + 18 * s->linesize;
srcV = s->edge_emu_buffer + 18 * s->linesize;
}
if(v->rangeredfrm
|| (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
|| (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
srcY -= s->mspel * (1 + s->linesize);
s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
srcY = s->edge_emu_buffer;
s->dsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
s->dsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
srcU = uvbuf;
srcV = uvbuf + 16;
/* if we deal with range reduction we need to scale source blocks */
if(v->rangeredfrm) {
int i, j;
uint8_t *src, *src2;
src = srcY;
for(j = 0; j < 17 + s->mspel*2; j++) {
for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
src += s->linesize;
}
src = srcU; src2 = srcV;
for(j = 0; j < 9; j++) {
for(i = 0; i < 9; i++) {
src[i] = ((src[i] - 128) >> 1) + 128;
src2[i] = ((src2[i] - 128) >> 1) + 128;
}
src += s->uvlinesize;
src2 += s->uvlinesize;
}
}
srcY += s->mspel * (1 + s->linesize);
}
if(s->mspel) {
dxy = ((my & 3) << 2) | (mx & 3);
v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
srcY += s->linesize * 8;
v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
} else { // hpel mc
dxy = (my & 2) | ((mx & 2) >> 1);
if(!v->rnd)
dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
else
dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
}
if(s->flags & CODEC_FLAG_GRAY) return;
/* Chroma MC always uses qpel blilinear */
uvmx = (uvmx&3)<<1;
uvmy = (uvmy&3)<<1;
if(!v->rnd){
dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
}else{
v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
}
}
static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
{
int n = bfrac;
#if B_FRACTION_DEN==256
if(inv)
n -= 256;
if(!qs)
return 2 * ((value * n + 255) >> 9);
return (value * n + 128) >> 8;
#else
if(inv)
n -= B_FRACTION_DEN;
if(!qs)
return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
#endif
}
/** Reconstruct motion vector for B-frame and do motion compensation
*/
static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
{
if(v->use_ic) {
v->mv_mode2 = v->mv_mode;
v->mv_mode = MV_PMODE_INTENSITY_COMP;
}
if(direct) {
vc1_mc_1mv(v, 0);
vc1_interp_mc(v);
if(v->use_ic) v->mv_mode = v->mv_mode2;
return;
}
if(mode == BMV_TYPE_INTERPOLATED) {
vc1_mc_1mv(v, 0);
vc1_interp_mc(v);
if(v->use_ic) v->mv_mode = v->mv_mode2;
return;
}
if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
if(v->use_ic) v->mv_mode = v->mv_mode2;
}
static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
{
MpegEncContext *s = &v->s;
int xy, wrap, off = 0;
int16_t *A, *B, *C;
int px, py;
int sum;
int r_x, r_y;
const uint8_t *is_intra = v->mb_type[0];
r_x = v->range_x;
r_y = v->range_y;
/* scale MV difference to be quad-pel */
dmv_x[0] <<= 1 - s->quarter_sample;
dmv_y[0] <<= 1 - s->quarter_sample;
dmv_x[1] <<= 1 - s->quarter_sample;
dmv_y[1] <<= 1 - s->quarter_sample;
wrap = s->b8_stride;
xy = s->block_index[0];
if(s->mb_intra) {
s->current_picture.f.motion_val[0][xy][0] =
s->current_picture.f.motion_val[0][xy][1] =
s->current_picture.f.motion_val[1][xy][0] =
s->current_picture.f.motion_val[1][xy][1] = 0;
return;
}
s->mv[0][0][0] = scale_mv(s->next_picture.f.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
s->mv[0][0][1] = scale_mv(s->next_picture.f.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
s->mv[1][0][0] = scale_mv(s->next_picture.f.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
s->mv[1][0][1] = scale_mv(s->next_picture.f.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
/* Pullback predicted motion vectors as specified in 8.4.5.4 */
s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
if(direct) {
s->current_picture.f.motion_val[0][xy][0] = s->mv[0][0][0];
s->current_picture.f.motion_val[0][xy][1] = s->mv[0][0][1];
s->current_picture.f.motion_val[1][xy][0] = s->mv[1][0][0];
s->current_picture.f.motion_val[1][xy][1] = s->mv[1][0][1];
return;
}
if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
C = s->current_picture.f.motion_val[0][xy - 2];
A = s->current_picture.f.motion_val[0][xy - wrap*2];
off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
B = s->current_picture.f.motion_val[0][xy - wrap*2 + off];
if(!s->mb_x) C[0] = C[1] = 0;
if(!s->first_slice_line) { // predictor A is not out of bounds
if(s->mb_width == 1) {
px = A[0];
py = A[1];
} else {
px = mid_pred(A[0], B[0], C[0]);
py = mid_pred(A[1], B[1], C[1]);
}
} else if(s->mb_x) { // predictor C is not out of bounds
px = C[0];
py = C[1];
} else {
px = py = 0;
}
/* Pullback MV as specified in 8.3.5.3.4 */
{
int qx, qy, X, Y;
if(v->profile < PROFILE_ADVANCED) {
qx = (s->mb_x << 5);
qy = (s->mb_y << 5);
X = (s->mb_width << 5) - 4;
Y = (s->mb_height << 5) - 4;
if(qx + px < -28) px = -28 - qx;
if(qy + py < -28) py = -28 - qy;
if(qx + px > X) px = X - qx;
if(qy + py > Y) py = Y - qy;
} else {
qx = (s->mb_x << 6);
qy = (s->mb_y << 6);
X = (s->mb_width << 6) - 4;
Y = (s->mb_height << 6) - 4;
if(qx + px < -60) px = -60 - qx;
if(qy + py < -60) py = -60 - qy;
if(qx + px > X) px = X - qx;
if(qy + py > Y) py = Y - qy;
}
}
/* Calculate hybrid prediction as specified in 8.3.5.3.5 */
if(0 && !s->first_slice_line && s->mb_x) {
if(is_intra[xy - wrap])
sum = FFABS(px) + FFABS(py);
else
sum = FFABS(px - A[0]) + FFABS(py - A[1]);
if(sum > 32) {
if(get_bits1(&s->gb)) {
px = A[0];
py = A[1];
} else {
px = C[0];
py = C[1];
}
} else {
if(is_intra[xy - 2])
sum = FFABS(px) + FFABS(py);
else
sum = FFABS(px - C[0]) + FFABS(py - C[1]);
if(sum > 32) {
if(get_bits1(&s->gb)) {
px = A[0];
py = A[1];
} else {
px = C[0];
py = C[1];
}
}
}
}
/* store MV using signed modulus of MV range defined in 4.11 */
s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
}
if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
C = s->current_picture.f.motion_val[1][xy - 2];
A = s->current_picture.f.motion_val[1][xy - wrap*2];
off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
B = s->current_picture.f.motion_val[1][xy - wrap*2 + off];
if(!s->mb_x) C[0] = C[1] = 0;
if(!s->first_slice_line) { // predictor A is not out of bounds
if(s->mb_width == 1) {
px = A[0];
py = A[1];
} else {
px = mid_pred(A[0], B[0], C[0]);
py = mid_pred(A[1], B[1], C[1]);
}
} else if(s->mb_x) { // predictor C is not out of bounds
px = C[0];
py = C[1];
} else {
px = py = 0;
}
/* Pullback MV as specified in 8.3.5.3.4 */
{
int qx, qy, X, Y;
if(v->profile < PROFILE_ADVANCED) {
qx = (s->mb_x << 5);
qy = (s->mb_y << 5);
X = (s->mb_width << 5) - 4;
Y = (s->mb_height << 5) - 4;
if(qx + px < -28) px = -28 - qx;
if(qy + py < -28) py = -28 - qy;
if(qx + px > X) px = X - qx;
if(qy + py > Y) py = Y - qy;
} else {
qx = (s->mb_x << 6);
qy = (s->mb_y << 6);
X = (s->mb_width << 6) - 4;
Y = (s->mb_height << 6) - 4;
if(qx + px < -60) px = -60 - qx;
if(qy + py < -60) py = -60 - qy;
if(qx + px > X) px = X - qx;
if(qy + py > Y) py = Y - qy;
}
}
/* Calculate hybrid prediction as specified in 8.3.5.3.5 */
if(0 && !s->first_slice_line && s->mb_x) {
if(is_intra[xy - wrap])
sum = FFABS(px) + FFABS(py);
else
sum = FFABS(px - A[0]) + FFABS(py - A[1]);
if(sum > 32) {
if(get_bits1(&s->gb)) {
px = A[0];
py = A[1];
} else {
px = C[0];
py = C[1];
}
} else {
if(is_intra[xy - 2])
sum = FFABS(px) + FFABS(py);
else
sum = FFABS(px - C[0]) + FFABS(py - C[1]);
if(sum > 32) {
if(get_bits1(&s->gb)) {
px = A[0];
py = A[1];
} else {
px = C[0];
py = C[1];
}
}
}
}
/* store MV using signed modulus of MV range defined in 4.11 */
s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
}
s->current_picture.f.motion_val[0][xy][0] = s->mv[0][0][0];
s->current_picture.f.motion_val[0][xy][1] = s->mv[0][0][1];
s->current_picture.f.motion_val[1][xy][0] = s->mv[1][0][0];
s->current_picture.f.motion_val[1][xy][1] = s->mv[1][0][1];
}
/** Get predicted DC value for I-frames only
* prediction dir: left=0, top=1
* @param s MpegEncContext
* @param overlap flag indicating that overlap filtering is used
* @param pq integer part of picture quantizer
* @param[in] n block index in the current MB
* @param dc_val_ptr Pointer to DC predictor
* @param dir_ptr Prediction direction for use in AC prediction
*/
static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
int16_t **dc_val_ptr, int *dir_ptr)
{
int a, b, c, wrap, pred, scale;
int16_t *dc_val;
static const uint16_t dcpred[32] = {
-1, 1024, 512, 341, 256, 205, 171, 146, 128,
114, 102, 93, 85, 79, 73, 68, 64,
60, 57, 54, 51, 49, 47, 45, 43,
41, 39, 38, 37, 35, 34, 33
};
/* find prediction - wmv3_dc_scale always used here in fact */
if (n < 4) scale = s->y_dc_scale;
else scale = s->c_dc_scale;
wrap = s->block_wrap[n];
dc_val= s->dc_val[0] + s->block_index[n];
/* B A
* C X
*/
c = dc_val[ - 1];
b = dc_val[ - 1 - wrap];
a = dc_val[ - wrap];
if (pq < 9 || !overlap)
{
/* Set outer values */
if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
}
else
{
/* Set outer values */
if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
}
if (abs(a - b) <= abs(b - c)) {
pred = c;
*dir_ptr = 1;//left
} else {
pred = a;
*dir_ptr = 0;//top
}
/* update predictor */
*dc_val_ptr = &dc_val[0];
return pred;
}
/** Get predicted DC value
* prediction dir: left=0, top=1
* @param s MpegEncContext
* @param overlap flag indicating that overlap filtering is used
* @param pq integer part of picture quantizer
* @param[in] n block index in the current MB
* @param a_avail flag indicating top block availability
* @param c_avail flag indicating left block availability
* @param dc_val_ptr Pointer to DC predictor
* @param dir_ptr Prediction direction for use in AC prediction
*/
static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
int a_avail, int c_avail,
int16_t **dc_val_ptr, int *dir_ptr)
{
int a, b, c, wrap, pred;
int16_t *dc_val;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int q1, q2 = 0;
wrap = s->block_wrap[n];
dc_val= s->dc_val[0] + s->block_index[n];
/* B A
* C X
*/
c = dc_val[ - 1];
b = dc_val[ - 1 - wrap];
a = dc_val[ - wrap];
/* scale predictors if needed */
q1 = s->current_picture.f.qscale_table[mb_pos];
if(c_avail && (n!= 1 && n!=3)) {
q2 = s->current_picture.f.qscale_table[mb_pos - 1];
if(q2 && q2 != q1)
c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
}
if(a_avail && (n!= 2 && n!=3)) {
q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride];
if(q2 && q2 != q1)
a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
}
if(a_avail && c_avail && (n!=3)) {
int off = mb_pos;
if(n != 1) off--;
if(n != 2) off -= s->mb_stride;
q2 = s->current_picture.f.qscale_table[off];
if(q2 && q2 != q1)
b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
}
if(a_avail && c_avail) {
if(abs(a - b) <= abs(b - c)) {
pred = c;
*dir_ptr = 1;//left
} else {
pred = a;
*dir_ptr = 0;//top
}
} else if(a_avail) {
pred = a;
*dir_ptr = 0;//top
} else if(c_avail) {
pred = c;
*dir_ptr = 1;//left
} else {
pred = 0;
*dir_ptr = 1;//left
}
/* update predictor */
*dc_val_ptr = &dc_val[0];
return pred;
}
/** @} */ // Block group
/**
* @name VC1 Macroblock-level functions in Simple/Main Profiles
* @see 7.1.4, p91 and 8.1.1.7, p(1)04
* @{
*/
static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
{
int xy, wrap, pred, a, b, c;
xy = s->block_index[n];
wrap = s->b8_stride;
/* B C
* A X
*/
a = s->coded_block[xy - 1 ];
b = s->coded_block[xy - 1 - wrap];
c = s->coded_block[xy - wrap];
if (b == c) {
pred = a;
} else {
pred = c;
}
/* store value */
*coded_block_ptr = &s->coded_block[xy];
return pred;
}
/**
* Decode one AC coefficient
* @param v The VC1 context
* @param last Last coefficient
* @param skip How much zero coefficients to skip
* @param value Decoded AC coefficient value
* @param codingset set of VLC to decode data
* @see 8.1.3.4
*/
static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
{
GetBitContext *gb = &v->s.gb;
int index, escape, run = 0, level = 0, lst = 0;
index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
if (index != vc1_ac_sizes[codingset] - 1) {
run = vc1_index_decode_table[codingset][index][0];
level = vc1_index_decode_table[codingset][index][1];
lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
if(get_bits1(gb))
level = -level;
} else {
escape = decode210(gb);
if (escape != 2) {
index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
run = vc1_index_decode_table[codingset][index][0];
level = vc1_index_decode_table[codingset][index][1];
lst = index >= vc1_last_decode_table[codingset];
if(escape == 0) {
if(lst)
level += vc1_last_delta_level_table[codingset][run];
else
level += vc1_delta_level_table[codingset][run];
} else {
if(lst)
run += vc1_last_delta_run_table[codingset][level] + 1;
else
run += vc1_delta_run_table[codingset][level] + 1;
}
if(get_bits1(gb))
level = -level;
} else {
int sign;
lst = get_bits1(gb);
if(v->s.esc3_level_length == 0) {
if(v->pq < 8 || v->dquantfrm) { // table 59
v->s.esc3_level_length = get_bits(gb, 3);
if(!v->s.esc3_level_length)
v->s.esc3_level_length = get_bits(gb, 2) + 8;
} else { //table 60
v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
}
v->s.esc3_run_length = 3 + get_bits(gb, 2);
}
run = get_bits(gb, v->s.esc3_run_length);
sign = get_bits1(gb);
level = get_bits(gb, v->s.esc3_level_length);
if(sign)
level = -level;
}
}
*last = lst;
*skip = run;
*value = level;
}
/** Decode intra block in intra frames - should be faster than decode_intra_block
* @param v VC1Context
* @param block block to decode
* @param[in] n subblock index
* @param coded are AC coeffs present or not
* @param codingset set of VLC to decode data
*/
static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
{
GetBitContext *gb = &v->s.gb;
MpegEncContext *s = &v->s;
int dc_pred_dir = 0; /* Direction of the DC prediction used */
int i;
int16_t *dc_val;
int16_t *ac_val, *ac_val2;
int dcdiff;
/* Get DC differential */
if (n < 4) {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
} else {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
}
if (dcdiff < 0){
av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
return -1;
}
if (dcdiff)
{
if (dcdiff == 119 /* ESC index value */)
{
/* TODO: Optimize */
if (v->pq == 1) dcdiff = get_bits(gb, 10);
else if (v->pq == 2) dcdiff = get_bits(gb, 9);
else dcdiff = get_bits(gb, 8);
}
else
{
if (v->pq == 1)
dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
else if (v->pq == 2)
dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
}
if (get_bits1(gb))
dcdiff = -dcdiff;
}
/* Prediction */
dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
*dc_val = dcdiff;
/* Store the quantized DC coeff, used for prediction */
if (n < 4) {
block[0] = dcdiff * s->y_dc_scale;
} else {
block[0] = dcdiff * s->c_dc_scale;
}
/* Skip ? */
if (!coded) {
goto not_coded;
}
//AC Decoding
i = 1;
{
int last = 0, skip, value;
const uint8_t *zz_table;
int scale;
int k;
scale = v->pq * 2 + v->halfpq;
if(v->s.ac_pred) {
if(!dc_pred_dir)
zz_table = v->zz_8x8[2];
else
zz_table = v->zz_8x8[3];
} else
zz_table = v->zz_8x8[1];
ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
ac_val2 = ac_val;
if(dc_pred_dir) //left
ac_val -= 16;
else //top
ac_val -= 16 * s->block_wrap[n];
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
i += skip;
if(i > 63)
break;
block[zz_table[i++]] = value;
}
/* apply AC prediction if needed */
if(s->ac_pred) {
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++)
block[k << v->left_blk_sh] += ac_val[k];
} else { //top
for(k = 1; k < 8; k++)
block[k << v->top_blk_sh] += ac_val[k + 8];
}
}
/* save AC coeffs for further prediction */
for(k = 1; k < 8; k++) {
ac_val2[k] = block[k << v->left_blk_sh];
ac_val2[k + 8] = block[k << v->top_blk_sh];
}
/* scale AC coeffs */
for(k = 1; k < 64; k++)
if(block[k]) {
block[k] *= scale;
if(!v->pquantizer)
block[k] += (block[k] < 0) ? -v->pq : v->pq;
}
if(s->ac_pred) i = 63;
}
not_coded:
if(!coded) {
int k, scale;
ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
ac_val2 = ac_val;
i = 0;
scale = v->pq * 2 + v->halfpq;
memset(ac_val2, 0, 16 * 2);
if(dc_pred_dir) {//left
ac_val -= 16;
if(s->ac_pred)
memcpy(ac_val2, ac_val, 8 * 2);
} else {//top
ac_val -= 16 * s->block_wrap[n];
if(s->ac_pred)
memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
}
/* apply AC prediction if needed */
if(s->ac_pred) {
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++) {
block[k << v->left_blk_sh] = ac_val[k] * scale;
if(!v->pquantizer && block[k << v->left_blk_sh])
block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -v->pq : v->pq;
}
} else { //top
for(k = 1; k < 8; k++) {
block[k << v->top_blk_sh] = ac_val[k + 8] * scale;
if(!v->pquantizer && block[k << v->top_blk_sh])
block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -v->pq : v->pq;
}
}
i = 63;
}
}
s->block_last_index[n] = i;
return 0;
}
/** Decode intra block in intra frames - should be faster than decode_intra_block
* @param v VC1Context
* @param block block to decode
* @param[in] n subblock number
* @param coded are AC coeffs present or not
* @param codingset set of VLC to decode data
* @param mquant quantizer value for this macroblock
*/
static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
{
GetBitContext *gb = &v->s.gb;
MpegEncContext *s = &v->s;
int dc_pred_dir = 0; /* Direction of the DC prediction used */
int i;
int16_t *dc_val;
int16_t *ac_val, *ac_val2;
int dcdiff;
int a_avail = v->a_avail, c_avail = v->c_avail;
int use_pred = s->ac_pred;
int scale;
int q1, q2 = 0;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
/* Get DC differential */
if (n < 4) {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
} else {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
}
if (dcdiff < 0){
av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
return -1;
}
if (dcdiff)
{
if (dcdiff == 119 /* ESC index value */)
{
/* TODO: Optimize */
if (mquant == 1) dcdiff = get_bits(gb, 10);
else if (mquant == 2) dcdiff = get_bits(gb, 9);
else dcdiff = get_bits(gb, 8);
}
else
{
if (mquant == 1)
dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
else if (mquant == 2)
dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
}
if (get_bits1(gb))
dcdiff = -dcdiff;
}
/* Prediction */
dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
*dc_val = dcdiff;
/* Store the quantized DC coeff, used for prediction */
if (n < 4) {
block[0] = dcdiff * s->y_dc_scale;
} else {
block[0] = dcdiff * s->c_dc_scale;
}
//AC Decoding
i = 1;
/* check if AC is needed at all */
if(!a_avail && !c_avail) use_pred = 0;
ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
ac_val2 = ac_val;
scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
if(dc_pred_dir) //left
ac_val -= 16;
else //top
ac_val -= 16 * s->block_wrap[n];
q1 = s->current_picture.f.qscale_table[mb_pos];
if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.f.qscale_table[mb_pos - 1];
if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride];
if(dc_pred_dir && n==1) q2 = q1;
if(!dc_pred_dir && n==2) q2 = q1;
if(n==3) q2 = q1;
if(coded) {
int last = 0, skip, value;
const uint8_t *zz_table;
int k;
if(v->s.ac_pred) {
if(!dc_pred_dir)
zz_table = v->zz_8x8[2];
else
zz_table = v->zz_8x8[3];
} else
zz_table = v->zz_8x8[1];
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
i += skip;
if(i > 63)
break;
block[zz_table[i++]] = value;
}
/* apply AC prediction if needed */
if(use_pred) {
/* scale predictors if needed*/
if(q2 && q1!=q2) {
q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++)
block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
} else { //top
for(k = 1; k < 8; k++)
block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
} else {
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++)
block[k << v->left_blk_sh] += ac_val[k];
} else { //top
for(k = 1; k < 8; k++)
block[k << v->top_blk_sh] += ac_val[k + 8];
}
}
}
/* save AC coeffs for further prediction */
for(k = 1; k < 8; k++) {
ac_val2[k ] = block[k << v->left_blk_sh];
ac_val2[k + 8] = block[k << v->top_blk_sh];
}
/* scale AC coeffs */
for(k = 1; k < 64; k++)
if(block[k]) {
block[k] *= scale;
if(!v->pquantizer)
block[k] += (block[k] < 0) ? -mquant : mquant;
}
if(use_pred) i = 63;
} else { // no AC coeffs
int k;
memset(ac_val2, 0, 16 * 2);
if(dc_pred_dir) {//left
if(use_pred) {
memcpy(ac_val2, ac_val, 8 * 2);
if(q2 && q1!=q2) {
q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
for(k = 1; k < 8; k++)
ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
}
} else {//top
if(use_pred) {
memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
if(q2 && q1!=q2) {
q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
for(k = 1; k < 8; k++)
ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
}
}
/* apply AC prediction if needed */
if(use_pred) {
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++) {
block[k << v->left_blk_sh] = ac_val2[k] * scale;
if(!v->pquantizer && block[k << v->left_blk_sh])
block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
}
} else { //top
for(k = 1; k < 8; k++) {
block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
if(!v->pquantizer && block[k << v->top_blk_sh])
block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
}
}
i = 63;
}
}
s->block_last_index[n] = i;
return 0;
}
/** Decode intra block in inter frames - more generic version than vc1_decode_i_block
* @param v VC1Context
* @param block block to decode
* @param[in] n subblock index
* @param coded are AC coeffs present or not
* @param mquant block quantizer
* @param codingset set of VLC to decode data
*/
static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
{
GetBitContext *gb = &v->s.gb;
MpegEncContext *s = &v->s;
int dc_pred_dir = 0; /* Direction of the DC prediction used */
int i;
int16_t *dc_val;
int16_t *ac_val, *ac_val2;
int dcdiff;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int a_avail = v->a_avail, c_avail = v->c_avail;
int use_pred = s->ac_pred;
int scale;
int q1, q2 = 0;
s->dsp.clear_block(block);
/* XXX: Guard against dumb values of mquant */
mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
/* Set DC scale - y and c use the same */
s->y_dc_scale = s->y_dc_scale_table[mquant];
s->c_dc_scale = s->c_dc_scale_table[mquant];
/* Get DC differential */
if (n < 4) {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
} else {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
}
if (dcdiff < 0){
av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
return -1;
}
if (dcdiff)
{
if (dcdiff == 119 /* ESC index value */)
{
/* TODO: Optimize */
if (mquant == 1) dcdiff = get_bits(gb, 10);
else if (mquant == 2) dcdiff = get_bits(gb, 9);
else dcdiff = get_bits(gb, 8);
}
else
{
if (mquant == 1)
dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
else if (mquant == 2)
dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
}
if (get_bits1(gb))
dcdiff = -dcdiff;
}
/* Prediction */
dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
*dc_val = dcdiff;
/* Store the quantized DC coeff, used for prediction */
if (n < 4) {
block[0] = dcdiff * s->y_dc_scale;
} else {
block[0] = dcdiff * s->c_dc_scale;
}
//AC Decoding
i = 1;
/* check if AC is needed at all and adjust direction if needed */
if(!a_avail) dc_pred_dir = 1;
if(!c_avail) dc_pred_dir = 0;
if(!a_avail && !c_avail) use_pred = 0;
ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
ac_val2 = ac_val;
scale = mquant * 2 + v->halfpq;
if(dc_pred_dir) //left
ac_val -= 16;
else //top
ac_val -= 16 * s->block_wrap[n];
q1 = s->current_picture.f.qscale_table[mb_pos];
if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.f.qscale_table[mb_pos - 1];
if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride];
if(dc_pred_dir && n==1) q2 = q1;
if(!dc_pred_dir && n==2) q2 = q1;
if(n==3) q2 = q1;
if(coded) {
int last = 0, skip, value;
int k;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
i += skip;
if(i > 63)
break;
block[v->zz_8x8[0][i++]] = value;
}
/* apply AC prediction if needed */
if(use_pred) {
/* scale predictors if needed*/
if(q2 && q1!=q2) {
q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++)
block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
} else { //top
for(k = 1; k < 8; k++)
block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
} else {
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++)
block[k << v->left_blk_sh] += ac_val[k];
} else { //top
for(k = 1; k < 8; k++)
block[k << v->top_blk_sh] += ac_val[k + 8];
}
}
}
/* save AC coeffs for further prediction */
for(k = 1; k < 8; k++) {
ac_val2[k ] = block[k << v->left_blk_sh];
ac_val2[k + 8] = block[k << v->top_blk_sh];
}
/* scale AC coeffs */
for(k = 1; k < 64; k++)
if(block[k]) {
block[k] *= scale;
if(!v->pquantizer)
block[k] += (block[k] < 0) ? -mquant : mquant;
}
if(use_pred) i = 63;
} else { // no AC coeffs
int k;
memset(ac_val2, 0, 16 * 2);
if(dc_pred_dir) {//left
if(use_pred) {
memcpy(ac_val2, ac_val, 8 * 2);
if(q2 && q1!=q2) {
q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
for(k = 1; k < 8; k++)
ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
}
} else {//top
if(use_pred) {
memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
if(q2 && q1!=q2) {
q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
for(k = 1; k < 8; k++)
ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
}
}
/* apply AC prediction if needed */
if(use_pred) {
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++) {
block[k << v->left_blk_sh] = ac_val2[k] * scale;
if(!v->pquantizer && block[k << v->left_blk_sh])
block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
}
} else { //top
for(k = 1; k < 8; k++) {
block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
if(!v->pquantizer && block[k << v->top_blk_sh])
block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
}
}
i = 63;
}
}
s->block_last_index[n] = i;
return 0;
}
/** Decode P block
*/
static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
uint8_t *dst, int linesize, int skip_block, int *ttmb_out)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i, j;
int subblkpat = 0;
int scale, off, idx, last, skip, value;
int ttblk = ttmb & 7;
int pat = 0;
s->dsp.clear_block(block);
if(ttmb == -1) {
ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
}
if(ttblk == TT_4X4) {
subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
}
if((ttblk != TT_8X8 && ttblk != TT_4X4)
&& ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
|| (!v->res_rtm_flag && !first_block))) {
subblkpat = decode012(gb);
if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
}
scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
// convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
subblkpat = 2 - (ttblk == TT_8X4_TOP);
ttblk = TT_8X4;
}
if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
subblkpat = 2 - (ttblk == TT_4X8_LEFT);
ttblk = TT_4X8;
}
switch(ttblk) {
case TT_8X8:
pat = 0xF;
i = 0;
last = 0;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
i += skip;
if(i > 63)
break;
idx = v->zz_8x8[0][i++];
block[idx] = value * scale;
if(!v->pquantizer)
block[idx] += (block[idx] < 0) ? -mquant : mquant;
}
if(!skip_block){
if(i==1)
v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
else{
v->vc1dsp.vc1_inv_trans_8x8(block);
s->dsp.add_pixels_clamped(block, dst, linesize);
}
}
break;
case TT_4X4:
pat = ~subblkpat & 0xF;
for(j = 0; j < 4; j++) {
last = subblkpat & (1 << (3 - j));
i = 0;
off = (j & 1) * 4 + (j & 2) * 16;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
i += skip;
if(i > 15)
break;
idx = ff_vc1_simple_progressive_4x4_zz[i++];
block[idx + off] = value * scale;
if(!v->pquantizer)
block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
}
if(!(subblkpat & (1 << (3 - j))) && !skip_block){
if(i==1)
v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
else
v->vc1dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
}
}
break;
case TT_8X4:
pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
for(j = 0; j < 2; j++) {
last = subblkpat & (1 << (1 - j));
i = 0;
off = j * 32;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
i += skip;
if(i > 31)
break;
idx = v->zz_8x4[i++]+off;
block[idx] = value * scale;
if(!v->pquantizer)
block[idx] += (block[idx] < 0) ? -mquant : mquant;
}
if(!(subblkpat & (1 << (1 - j))) && !skip_block){
if(i==1)
v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j*4*linesize, linesize, block + off);
else
v->vc1dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
}
}
break;
case TT_4X8:
pat = ~(subblkpat*5) & 0xF;
for(j = 0; j < 2; j++) {
last = subblkpat & (1 << (1 - j));
i = 0;
off = j * 4;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
i += skip;
if(i > 31)
break;
idx = v->zz_4x8[i++]+off;
block[idx] = value * scale;
if(!v->pquantizer)
block[idx] += (block[idx] < 0) ? -mquant : mquant;
}
if(!(subblkpat & (1 << (1 - j))) && !skip_block){
if(i==1)
v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j*4, linesize, block + off);
else
v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
}
}
break;
}
if (ttmb_out)
*ttmb_out |= ttblk << (n * 4);
return pat;
}
/** @} */ // Macroblock group
static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
static av_always_inline void vc1_apply_p_v_loop_filter(VC1Context *v, int block_num)
{
MpegEncContext *s = &v->s;
int mb_cbp = v->cbp[s->mb_x - s->mb_stride],
block_cbp = mb_cbp >> (block_num * 4), bottom_cbp,
mb_is_intra = v->is_intra[s->mb_x - s->mb_stride],
block_is_intra = mb_is_intra >> (block_num * 4), bottom_is_intra;
int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
uint8_t *dst;
if(block_num > 3) {
dst = s->dest[block_num - 3];
} else {
dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 8) * linesize;
}
if (s->mb_y != s->end_mb_y || block_num < 2) {
int16_t (*mv)[2];
int mv_stride;
if(block_num > 3) {
bottom_cbp = v->cbp[s->mb_x] >> (block_num * 4);
bottom_is_intra = v->is_intra[s->mb_x] >> (block_num * 4);
mv = &v->luma_mv[s->mb_x - s->mb_stride];
mv_stride = s->mb_stride;
} else {
bottom_cbp = (block_num < 2) ? (mb_cbp >> ((block_num + 2) * 4)) :
(v->cbp[s->mb_x] >> ((block_num - 2) * 4));
bottom_is_intra = (block_num < 2) ? (mb_is_intra >> ((block_num + 2) * 4)) :
(v->is_intra[s->mb_x] >> ((block_num - 2) * 4));
mv_stride = s->b8_stride;
mv = &s->current_picture.f.motion_val[0][s->block_index[block_num] - 2 * mv_stride];
}
if (bottom_is_intra & 1 || block_is_intra & 1 ||
mv[0][0] != mv[mv_stride][0] || mv[0][1] != mv[mv_stride][1]) {
v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
} else {
idx = ((bottom_cbp >> 2) | block_cbp) & 3;
if(idx == 3) {
v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
} else if (idx) {
if (idx == 1)
v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
else
v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
}
}
}
dst -= 4 * linesize;
ttblk = (v->ttblk[s->mb_x - s->mb_stride] >> (block_num * 4)) & 0xf;
if (ttblk == TT_4X4 || ttblk == TT_8X4) {
idx = (block_cbp | (block_cbp >> 2)) & 3;
if (idx == 3) {
v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
} else if (idx) {
if (idx == 1)
v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
else
v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
}
}
}
static av_always_inline void vc1_apply_p_h_loop_filter(VC1Context *v, int block_num)
{
MpegEncContext *s = &v->s;
int mb_cbp = v->cbp[s->mb_x - 1 - s->mb_stride],
block_cbp = mb_cbp >> (block_num * 4), right_cbp,
mb_is_intra = v->is_intra[s->mb_x - 1 - s->mb_stride],
block_is_intra = mb_is_intra >> (block_num * 4), right_is_intra;
int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
uint8_t *dst;
if (block_num > 3) {
dst = s->dest[block_num - 3] - 8 * linesize;
} else {
dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 16) * linesize - 8;
}
if (s->mb_x != s->mb_width || !(block_num & 5)) {
int16_t (*mv)[2];
if(block_num > 3) {
right_cbp = v->cbp[s->mb_x - s->mb_stride] >> (block_num * 4);
right_is_intra = v->is_intra[s->mb_x - s->mb_stride] >> (block_num * 4);
mv = &v->luma_mv[s->mb_x - s->mb_stride - 1];
}else{
right_cbp = (block_num & 1) ? (v->cbp[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4)) :
(mb_cbp >> ((block_num + 1) * 4));
right_is_intra = (block_num & 1) ? (v->is_intra[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4)) :
(mb_is_intra >> ((block_num + 1) * 4));
mv = &s->current_picture.f.motion_val[0][s->block_index[block_num] - s->b8_stride * 2 - 2];
}
if (block_is_intra & 1 || right_is_intra & 1 || mv[0][0] != mv[1][0] || mv[0][1] != mv[1][1]) {
v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
} else {
idx = ((right_cbp >> 1) | block_cbp) & 5; // FIXME check
if (idx == 5) {
v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
} else if (idx) {
if (idx == 1)
v->vc1dsp.vc1_h_loop_filter4(dst+4*linesize, linesize, v->pq);
else
v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
}
}
}
dst -= 4;
ttblk = (v->ttblk[s->mb_x - s->mb_stride - 1] >> (block_num * 4)) & 0xf;
if (ttblk == TT_4X4 || ttblk == TT_4X8) {
idx = (block_cbp | (block_cbp >> 1)) & 5;
if (idx == 5) {
v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
} else if (idx) {
if (idx == 1)
v->vc1dsp.vc1_h_loop_filter4(dst + linesize*4, linesize, v->pq);
else
v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
}
}
}
static void vc1_apply_p_loop_filter(VC1Context *v)
{
MpegEncContext *s = &v->s;
int i;
for (i = 0; i < 6; i++) {
vc1_apply_p_v_loop_filter(v, i);
}
/* V always preceedes H, therefore we run H one MB before V;
* at the end of a row, we catch up to complete the row */
if (s->mb_x) {
for (i = 0; i < 6; i++) {
vc1_apply_p_h_loop_filter(v, i);
}
if (s->mb_x == s->mb_width - 1) {
s->mb_x++;
ff_update_block_index(s);
for (i = 0; i < 6; i++) {
vc1_apply_p_h_loop_filter(v, i);
}
}
}
}
/** Decode one P-frame MB (in Simple/Main profile)
*/
static int vc1_decode_p_mb(VC1Context *v)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i, j;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int cbp; /* cbp decoding stuff */
int mqdiff, mquant; /* MB quantization */
int ttmb = v->ttfrm; /* MB Transform type */
int mb_has_coeffs = 1; /* last_flag */
int dmv_x, dmv_y; /* Differential MV components */
int index, index1; /* LUT indexes */
int val, sign; /* temp values */
int first_block = 1;
int dst_idx, off;
int skipped, fourmv;
int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
mquant = v->pq; /* Loosy initialization */
if (v->mv_type_is_raw)
fourmv = get_bits1(gb);
else
fourmv = v->mv_type_mb_plane[mb_pos];
if (v->skip_is_raw)
skipped = get_bits1(gb);
else
skipped = v->s.mbskip_table[mb_pos];
if (!fourmv) /* 1MV mode */
{
if (!skipped)
{
GET_MVDATA(dmv_x, dmv_y);
if (s->mb_intra) {
s->current_picture.f.motion_val[1][s->block_index[0]][0] = 0;
s->current_picture.f.motion_val[1][s->block_index[0]][1] = 0;
}
s->current_picture.f.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
/* FIXME Set DC val for inter block ? */
if (s->mb_intra && !mb_has_coeffs)
{
GET_MQUANT();
s->ac_pred = get_bits1(gb);
cbp = 0;
}
else if (mb_has_coeffs)
{
if (s->mb_intra) s->ac_pred = get_bits1(gb);
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
GET_MQUANT();
}
else
{
mquant = v->pq;
cbp = 0;
}
s->current_picture.f.qscale_table[mb_pos] = mquant;
if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
VC1_TTMB_VLC_BITS, 2);
if(!s->mb_intra) vc1_mc_1mv(v, 0);
dst_idx = 0;
for (i=0; i<6; i++)
{
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
v->mb_type[0][s->block_index[i]] = s->mb_intra;
if(s->mb_intra) {
/* check if prediction blocks A and C are available */
v->a_avail = v->c_avail = 0;
if(i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if(i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
if(v->pq >= 9 && v->overlap) {
if(v->c_avail)
v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
if(v->a_avail)
v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
}
block_cbp |= 0xF << (i << 2);
block_intra |= 1 << i;
} else if(val) {
pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
block_cbp |= pat << (i << 2);
if(!v->ttmbf && ttmb < 8) ttmb = -1;
first_block = 0;
}
}
}
else //Skipped
{
s->mb_intra = 0;
for(i = 0; i < 6; i++) {
v->mb_type[0][s->block_index[i]] = 0;
s->dc_val[0][s->block_index[i]] = 0;
}
s->current_picture.f.mb_type[mb_pos] = MB_TYPE_SKIP;
s->current_picture.f.qscale_table[mb_pos] = 0;
vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
vc1_mc_1mv(v, 0);
}
} //1MV mode
else //4MV mode
{
if (!skipped /* unskipped MB */)
{
int intra_count = 0, coded_inter = 0;
int is_intra[6], is_coded[6];
/* Get CBPCY */
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
for (i=0; i<6; i++)
{
val = ((cbp >> (5 - i)) & 1);
s->dc_val[0][s->block_index[i]] = 0;
s->mb_intra = 0;
if(i < 4) {
dmv_x = dmv_y = 0;
s->mb_intra = 0;
mb_has_coeffs = 0;
if(val) {
GET_MVDATA(dmv_x, dmv_y);
}
vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
intra_count += s->mb_intra;
is_intra[i] = s->mb_intra;
is_coded[i] = mb_has_coeffs;
}
if(i&4){
is_intra[i] = (intra_count >= 3);
is_coded[i] = val;
}
if(i == 4) vc1_mc_4mv_chroma(v);
v->mb_type[0][s->block_index[i]] = is_intra[i];
if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
}
// if there are no coded blocks then don't do anything more
dst_idx = 0;
if(!intra_count && !coded_inter)
goto end;
GET_MQUANT();
s->current_picture.f.qscale_table[mb_pos] = mquant;
/* test if block is intra and has pred */
{
int intrapred = 0;
for(i=0; i<6; i++)
if(is_intra[i]) {
if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
|| ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
intrapred = 1;
break;
}
}
if(intrapred)s->ac_pred = get_bits1(gb);
else s->ac_pred = 0;
}
if (!v->ttmbf && coded_inter)
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
for (i=0; i<6; i++)
{
dst_idx += i >> 2;
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
s->mb_intra = is_intra[i];
if (is_intra[i]) {
/* check if prediction blocks A and C are available */
v->a_avail = v->c_avail = 0;
if(i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if(i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
if(v->pq >= 9 && v->overlap) {
if(v->c_avail)
v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
if(v->a_avail)
v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
}
block_cbp |= 0xF << (i << 2);
block_intra |= 1 << i;
} else if(is_coded[i]) {
pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
block_cbp |= pat << (i << 2);
if(!v->ttmbf && ttmb < 8) ttmb = -1;
first_block = 0;
}
}
}
else //Skipped MB
{
s->mb_intra = 0;
s->current_picture.f.qscale_table[mb_pos] = 0;
for (i=0; i<6; i++) {
v->mb_type[0][s->block_index[i]] = 0;
s->dc_val[0][s->block_index[i]] = 0;
}
for (i=0; i<4; i++)
{
vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
vc1_mc_4mv_luma(v, i);
}
vc1_mc_4mv_chroma(v);
s->current_picture.f.qscale_table[mb_pos] = 0;
}
}
end:
v->cbp[s->mb_x] = block_cbp;
v->ttblk[s->mb_x] = block_tt;
v->is_intra[s->mb_x] = block_intra;
return 0;
}
/** Decode one B-frame MB (in Main profile)
*/
static void vc1_decode_b_mb(VC1Context *v)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i, j;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int cbp = 0; /* cbp decoding stuff */
int mqdiff, mquant; /* MB quantization */
int ttmb = v->ttfrm; /* MB Transform type */
int mb_has_coeffs = 0; /* last_flag */
int index, index1; /* LUT indexes */
int val, sign; /* temp values */
int first_block = 1;
int dst_idx, off;
int skipped, direct;
int dmv_x[2], dmv_y[2];
int bmvtype = BMV_TYPE_BACKWARD;
mquant = v->pq; /* Loosy initialization */
s->mb_intra = 0;
if (v->dmb_is_raw)
direct = get_bits1(gb);
else
direct = v->direct_mb_plane[mb_pos];
if (v->skip_is_raw)
skipped = get_bits1(gb);
else
skipped = v->s.mbskip_table[mb_pos];
dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
for(i = 0; i < 6; i++) {
v->mb_type[0][s->block_index[i]] = 0;
s->dc_val[0][s->block_index[i]] = 0;
}
s->current_picture.f.qscale_table[mb_pos] = 0;
if (!direct) {
if (!skipped) {
GET_MVDATA(dmv_x[0], dmv_y[0]);
dmv_x[1] = dmv_x[0];
dmv_y[1] = dmv_y[0];
}
if(skipped || !s->mb_intra) {
bmvtype = decode012(gb);
switch(bmvtype) {
case 0:
bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
break;
case 1:
bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
break;
case 2:
bmvtype = BMV_TYPE_INTERPOLATED;
dmv_x[0] = dmv_y[0] = 0;
}
}
}
for(i = 0; i < 6; i++)
v->mb_type[0][s->block_index[i]] = s->mb_intra;
if (skipped) {
if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
return;
}
if (direct) {
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
GET_MQUANT();
s->mb_intra = 0;
s->current_picture.f.qscale_table[mb_pos] = mquant;
if(!v->ttmbf)
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
} else {
if(!mb_has_coeffs && !s->mb_intra) {
/* no coded blocks - effectively skipped */
vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
return;
}
if(s->mb_intra && !mb_has_coeffs) {
GET_MQUANT();
s->current_picture.f.qscale_table[mb_pos] = mquant;
s->ac_pred = get_bits1(gb);
cbp = 0;
vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
} else {
if(bmvtype == BMV_TYPE_INTERPOLATED) {
GET_MVDATA(dmv_x[0], dmv_y[0]);
if(!mb_has_coeffs) {
/* interpolated skipped block */
vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
return;
}
}
vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
if(!s->mb_intra) {
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
}
if(s->mb_intra)
s->ac_pred = get_bits1(gb);
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
GET_MQUANT();
s->current_picture.f.qscale_table[mb_pos] = mquant;
if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
}
}
dst_idx = 0;
for (i=0; i<6; i++)
{
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
v->mb_type[0][s->block_index[i]] = s->mb_intra;
if(s->mb_intra) {
/* check if prediction blocks A and C are available */
v->a_avail = v->c_avail = 0;
if(i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if(i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
} else if(val) {
vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), NULL);
if(!v->ttmbf && ttmb < 8) ttmb = -1;
first_block = 0;
}
}
}
/** Decode blocks of I-frame
*/
static void vc1_decode_i_blocks(VC1Context *v)
{
int k, j;
MpegEncContext *s = &v->s;
int cbp, val;
uint8_t *coded_val;
int mb_pos;
/* select codingmode used for VLC tables selection */
switch(v->y_ac_table_index){
case 0:
v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
break;
case 1:
v->codingset = CS_HIGH_MOT_INTRA;
break;
case 2:
v->codingset = CS_MID_RATE_INTRA;
break;
}
switch(v->c_ac_table_index){
case 0:
v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
break;
case 1:
v->codingset2 = CS_HIGH_MOT_INTER;
break;
case 2:
v->codingset2 = CS_MID_RATE_INTER;
break;
}
/* Set DC scale - y and c use the same */
s->y_dc_scale = s->y_dc_scale_table[v->pq];
s->c_dc_scale = s->c_dc_scale_table[v->pq];
//do frame decode
s->mb_x = s->mb_y = 0;
s->mb_intra = 1;
s->first_slice_line = 1;
for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
s->mb_x = 0;
ff_init_block_index(s);
for(; s->mb_x < s->mb_width; s->mb_x++) {
uint8_t *dst[6];
ff_update_block_index(s);
dst[0] = s->dest[0];
dst[1] = dst[0] + 8;
dst[2] = s->dest[0] + s->linesize * 8;
dst[3] = dst[2] + 8;
dst[4] = s->dest[1];
dst[5] = s->dest[2];
s->dsp.clear_blocks(s->block[0]);
mb_pos = s->mb_x + s->mb_y * s->mb_width;
s->current_picture.f.mb_type[mb_pos] = MB_TYPE_INTRA;
s->current_picture.f.qscale_table[mb_pos] = v->pq;
s->current_picture.f.motion_val[1][s->block_index[0]][0] = 0;
s->current_picture.f.motion_val[1][s->block_index[0]][1] = 0;
// do actual MB decoding and displaying
cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
v->s.ac_pred = get_bits1(&v->s.gb);
for(k = 0; k < 6; k++) {
val = ((cbp >> (5 - k)) & 1);
if (k < 4) {
int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
val = val ^ pred;
*coded_val = val;
}
cbp |= val << (5 - k);
vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
if (k > 3 && (s->flags & CODEC_FLAG_GRAY)) continue;
v->vc1dsp.vc1_inv_trans_8x8(s->block[k]);
if(v->pq >= 9 && v->overlap) {
if (v->rangeredfrm) for(j = 0; j < 64; j++) s->block[k][j] <<= 1;
s->dsp.put_signed_pixels_clamped(s->block[k], dst[k], k & 4 ? s->uvlinesize : s->linesize);
} else {
if (v->rangeredfrm) for(j = 0; j < 64; j++) s->block[k][j] = (s->block[k][j] - 64) << 1;
s->dsp.put_pixels_clamped(s->block[k], dst[k], k & 4 ? s->uvlinesize : s->linesize);
}
}
if(v->pq >= 9 && v->overlap) {
if(s->mb_x) {
v->vc1dsp.vc1_h_overlap(s->dest[0], s->linesize);
v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
if(!(s->flags & CODEC_FLAG_GRAY)) {
v->vc1dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
v->vc1dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
}
}
v->vc1dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
if(!s->first_slice_line) {
v->vc1dsp.vc1_v_overlap(s->dest[0], s->linesize);
v->vc1dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
if(!(s->flags & CODEC_FLAG_GRAY)) {
v->vc1dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
v->vc1dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
}
}
v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
}
if(v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
if(get_bits_count(&s->gb) > v->bits) {
ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
return;
}
}
if (!v->s.loop_filter)
ff_draw_horiz_band(s, s->mb_y * 16, 16);
else if (s->mb_y)
ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
s->first_slice_line = 0;
}
if (v->s.loop_filter)
ff_draw_horiz_band(s, (s->mb_height-1)*16, 16);
ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
}
/** Decode blocks of I-frame for advanced profile
*/
static void vc1_decode_i_blocks_adv(VC1Context *v)
{
int k;
MpegEncContext *s = &v->s;
int cbp, val;
uint8_t *coded_val;
int mb_pos;
int mquant = v->pq;
int mqdiff;
GetBitContext *gb = &s->gb;
/* select codingmode used for VLC tables selection */
switch(v->y_ac_table_index){
case 0:
v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
break;
case 1:
v->codingset = CS_HIGH_MOT_INTRA;
break;
case 2:
v->codingset = CS_MID_RATE_INTRA;
break;
}
switch(v->c_ac_table_index){
case 0:
v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
break;
case 1:
v->codingset2 = CS_HIGH_MOT_INTER;
break;
case 2:
v->codingset2 = CS_MID_RATE_INTER;
break;
}
//do frame decode
s->mb_x = s->mb_y = 0;
s->mb_intra = 1;
s->first_slice_line = 1;
s->mb_y = s->start_mb_y;
if (s->start_mb_y) {
s->mb_x = 0;
ff_init_block_index(s);
memset(&s->coded_block[s->block_index[0]-s->b8_stride], 0,
(1 + s->b8_stride) * sizeof(*s->coded_block));
}
for(; s->mb_y < s->end_mb_y; s->mb_y++) {
s->mb_x = 0;
ff_init_block_index(s);
for(;s->mb_x < s->mb_width; s->mb_x++) {
DCTELEM (*block)[64] = v->block[v->cur_blk_idx];
ff_update_block_index(s);
s->dsp.clear_blocks(block[0]);
mb_pos = s->mb_x + s->mb_y * s->mb_stride;
s->current_picture.f.mb_type[mb_pos] = MB_TYPE_INTRA;
s->current_picture.f.motion_val[1][s->block_index[0]][0] = 0;
s->current_picture.f.motion_val[1][s->block_index[0]][1] = 0;
// do actual MB decoding and displaying
cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
if(v->acpred_is_raw)
v->s.ac_pred = get_bits1(&v->s.gb);
else
v->s.ac_pred = v->acpred_plane[mb_pos];
if (v->condover == CONDOVER_SELECT && v->overflg_is_raw)
v->over_flags_plane[mb_pos] = get_bits1(&v->s.gb);
GET_MQUANT();
s->current_picture.f.qscale_table[mb_pos] = mquant;
/* Set DC scale - y and c use the same */
s->y_dc_scale = s->y_dc_scale_table[mquant];
s->c_dc_scale = s->c_dc_scale_table[mquant];
for(k = 0; k < 6; k++) {
val = ((cbp >> (5 - k)) & 1);
if (k < 4) {
int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
val = val ^ pred;
*coded_val = val;
}
cbp |= val << (5 - k);
v->a_avail = !s->first_slice_line || (k==2 || k==3);
v->c_avail = !!s->mb_x || (k==1 || k==3);
vc1_decode_i_block_adv(v, block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
if (k > 3 && (s->flags & CODEC_FLAG_GRAY)) continue;
v->vc1dsp.vc1_inv_trans_8x8(block[k]);
}
vc1_smooth_overlap_filter_iblk(v);
vc1_put_signed_blocks_clamped(v);
if(v->s.loop_filter) vc1_loop_filter_iblk_delayed(v, v->pq);
if(get_bits_count(&s->gb) > v->bits) {
ff_er_add_slice(s, 0, s->start_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
return;
}
}
if (!v->s.loop_filter)
ff_draw_horiz_band(s, s->mb_y * 16, 16);
else if (s->mb_y)
ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
s->first_slice_line = 0;
}
/* raw bottom MB row */
s->mb_x = 0;
ff_init_block_index(s);
for(;s->mb_x < s->mb_width; s->mb_x++) {
ff_update_block_index(s);
vc1_put_signed_blocks_clamped(v);
if(v->s.loop_filter) vc1_loop_filter_iblk_delayed(v, v->pq);
}
if (v->s.loop_filter)
ff_draw_horiz_band(s, (s->end_mb_y-1)*16, 16);
ff_er_add_slice(s, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, (AC_END|DC_END|MV_END));
}
static void vc1_decode_p_blocks(VC1Context *v)
{
MpegEncContext *s = &v->s;
int apply_loop_filter;
/* select codingmode used for VLC tables selection */
switch(v->c_ac_table_index){
case 0:
v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
break;
case 1:
v->codingset = CS_HIGH_MOT_INTRA;
break;
case 2:
v->codingset = CS_MID_RATE_INTRA;
break;
}
switch(v->c_ac_table_index){
case 0:
v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
break;
case 1:
v->codingset2 = CS_HIGH_MOT_INTER;
break;
case 2:
v->codingset2 = CS_MID_RATE_INTER;
break;
}
apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
s->first_slice_line = 1;
memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
for(s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
s->mb_x = 0;
ff_init_block_index(s);
for(; s->mb_x < s->mb_width; s->mb_x++) {
ff_update_block_index(s);
vc1_decode_p_mb(v);
if (s->mb_y != s->start_mb_y && apply_loop_filter)
vc1_apply_p_loop_filter(v);
if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
ff_er_add_slice(s, 0, s->start_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
return;
}
}
memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
memmove(v->ttblk_base, v->ttblk, sizeof(v->ttblk_base[0])*s->mb_stride);
memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0])*s->mb_stride);
memmove(v->luma_mv_base, v->luma_mv, sizeof(v->luma_mv_base[0])*s->mb_stride);
if (s->mb_y != s->start_mb_y) ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
s->first_slice_line = 0;
}
if (apply_loop_filter) {
s->mb_x = 0;
ff_init_block_index(s);
for (; s->mb_x < s->mb_width; s->mb_x++) {
ff_update_block_index(s);
vc1_apply_p_loop_filter(v);
}
}
if (s->end_mb_y >= s->start_mb_y)
ff_draw_horiz_band(s, (s->end_mb_y-1) * 16, 16);
ff_er_add_slice(s, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, (AC_END|DC_END|MV_END));
}
static void vc1_decode_b_blocks(VC1Context *v)
{
MpegEncContext *s = &v->s;
/* select codingmode used for VLC tables selection */
switch(v->c_ac_table_index){
case 0:
v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
break;
case 1:
v->codingset = CS_HIGH_MOT_INTRA;
break;
case 2:
v->codingset = CS_MID_RATE_INTRA;
break;
}
switch(v->c_ac_table_index){
case 0:
v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
break;
case 1:
v->codingset2 = CS_HIGH_MOT_INTER;
break;
case 2:
v->codingset2 = CS_MID_RATE_INTER;
break;
}
s->first_slice_line = 1;
for(s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
s->mb_x = 0;
ff_init_block_index(s);
for(; s->mb_x < s->mb_width; s->mb_x++) {
ff_update_block_index(s);
vc1_decode_b_mb(v);
if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
ff_er_add_slice(s, 0, s->start_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
return;
}
if(v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
}
if (!v->s.loop_filter)
ff_draw_horiz_band(s, s->mb_y * 16, 16);
else if (s->mb_y)
ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
s->first_slice_line = 0;
}
if (v->s.loop_filter)
ff_draw_horiz_band(s, (s->end_mb_y-1)*16, 16);
ff_er_add_slice(s, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, (AC_END|DC_END|MV_END));
}
static void vc1_decode_skip_blocks(VC1Context *v)
{
MpegEncContext *s = &v->s;
ff_er_add_slice(s, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, (AC_END|DC_END|MV_END));
s->first_slice_line = 1;
for(s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
s->mb_x = 0;
ff_init_block_index(s);
ff_update_block_index(s);
memcpy(s->dest[0], s->last_picture.f.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
memcpy(s->dest[1], s->last_picture.f.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
memcpy(s->dest[2], s->last_picture.f.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
ff_draw_horiz_band(s, s->mb_y * 16, 16);
s->first_slice_line = 0;
}
s->pict_type = AV_PICTURE_TYPE_P;
}
static void vc1_decode_blocks(VC1Context *v)
{
v->s.esc3_level_length = 0;
if(v->x8_type){
ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
}else{
v->cur_blk_idx = 0;
v->left_blk_idx = -1;
v->topleft_blk_idx = 1;
v->top_blk_idx = 2;
switch(v->s.pict_type) {
case AV_PICTURE_TYPE_I:
if(v->profile == PROFILE_ADVANCED)
vc1_decode_i_blocks_adv(v);
else
vc1_decode_i_blocks(v);
break;
case AV_PICTURE_TYPE_P:
if(v->p_frame_skipped)
vc1_decode_skip_blocks(v);
else
vc1_decode_p_blocks(v);
break;
case AV_PICTURE_TYPE_B:
if(v->bi_type){
if(v->profile == PROFILE_ADVANCED)
vc1_decode_i_blocks_adv(v);
else
vc1_decode_i_blocks(v);
}else
vc1_decode_b_blocks(v);
break;
}
}
}
#if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
typedef struct {
/**
* Transform coefficients for both sprites in 16.16 fixed point format,
* in the order they appear in the bitstream:
* x scale
* rotation 1 (unused)
* x offset
* rotation 2 (unused)
* y scale
* y offset
* alpha
*/
int coefs[2][7];
int effect_type, effect_flag;
int effect_pcount1, effect_pcount2; ///< amount of effect parameters stored in effect_params
int effect_params1[15], effect_params2[10]; ///< effect parameters in 16.16 fixed point format
} SpriteData;
static inline int get_fp_val(GetBitContext* gb)
{
return (get_bits_long(gb, 30) - (1<<29)) << 1;
}
static void vc1_sprite_parse_transform(GetBitContext* gb, int c[7])
{
c[1] = c[3] = 0;
switch (get_bits(gb, 2)) {
case 0:
c[0] = 1<<16;
c[2] = get_fp_val(gb);
c[4] = 1<<16;
break;
case 1:
c[0] = c[4] = get_fp_val(gb);
c[2] = get_fp_val(gb);
break;
case 2:
c[0] = get_fp_val(gb);
c[2] = get_fp_val(gb);
c[4] = get_fp_val(gb);
break;
case 3:
c[0] = get_fp_val(gb);
c[1] = get_fp_val(gb);
c[2] = get_fp_val(gb);
c[3] = get_fp_val(gb);
c[4] = get_fp_val(gb);
break;
}
c[5] = get_fp_val(gb);
if (get_bits1(gb))
c[6] = get_fp_val(gb);
else
c[6] = 1<<16;
}
static void vc1_parse_sprites(VC1Context *v, GetBitContext* gb, SpriteData* sd)
{
AVCodecContext *avctx = v->s.avctx;
int sprite, i;
for (sprite = 0; sprite <= v->two_sprites; sprite++) {
vc1_sprite_parse_transform(gb, sd->coefs[sprite]);
if (sd->coefs[sprite][1] || sd->coefs[sprite][3])
av_log_ask_for_sample(avctx, "Rotation coefficients are not zero");
av_log(avctx, AV_LOG_DEBUG, sprite ? "S2:" : "S1:");
for (i = 0; i < 7; i++)
av_log(avctx, AV_LOG_DEBUG, " %d.%.3d",
sd->coefs[sprite][i] / (1<<16),
(abs(sd->coefs[sprite][i]) & 0xFFFF) * 1000 / (1<<16));
av_log(avctx, AV_LOG_DEBUG, "\n");
}
skip_bits(gb, 2);
if (sd->effect_type = get_bits_long(gb, 30)) {
switch (sd->effect_pcount1 = get_bits(gb, 4)) {
case 7:
vc1_sprite_parse_transform(gb, sd->effect_params1);
break;
case 14:
vc1_sprite_parse_transform(gb, sd->effect_params1);
vc1_sprite_parse_transform(gb, sd->effect_params1 + 7);
break;
default:
for (i = 0; i < sd->effect_pcount1; i++)
sd->effect_params1[i] = get_fp_val(gb);
}
if (sd->effect_type != 13 || sd->effect_params1[0] != sd->coefs[0][6]) {
// effect 13 is simple alpha blending and matches the opacity above
av_log(avctx, AV_LOG_DEBUG, "Effect: %d; params: ", sd->effect_type);
for (i = 0; i < sd->effect_pcount1; i++)
av_log(avctx, AV_LOG_DEBUG, " %d.%.2d",
sd->effect_params1[i] / (1<<16),
(abs(sd->effect_params1[i]) & 0xFFFF) * 1000 / (1<<16));
av_log(avctx, AV_LOG_DEBUG, "\n");
}
sd->effect_pcount2 = get_bits(gb, 16);
if (sd->effect_pcount2 > 10) {
av_log(avctx, AV_LOG_ERROR, "Too many effect parameters\n");
return;
} else if (sd->effect_pcount2) {
i = -1;
av_log(avctx, AV_LOG_DEBUG, "Effect params 2: ");
while (++i < sd->effect_pcount2){
sd->effect_params2[i] = get_fp_val(gb);
av_log(avctx, AV_LOG_DEBUG, " %d.%.2d",
sd->effect_params2[i] / (1<<16),
(abs(sd->effect_params2[i]) & 0xFFFF) * 1000 / (1<<16));
}
av_log(avctx, AV_LOG_DEBUG, "\n");
}
}
if (sd->effect_flag = get_bits1(gb))
av_log(avctx, AV_LOG_DEBUG, "Effect flag set\n");
if (get_bits_count(gb) >= gb->size_in_bits +
(avctx->codec_id == CODEC_ID_WMV3IMAGE ? 64 : 0))
av_log(avctx, AV_LOG_ERROR, "Buffer overrun\n");
if (get_bits_count(gb) < gb->size_in_bits - 8)
av_log(avctx, AV_LOG_WARNING, "Buffer not fully read\n");
}
static void vc1_draw_sprites(VC1Context *v, SpriteData* sd)
{
int i, plane, row, sprite;
int sr_cache[2][2] = { { -1, -1 }, { -1, -1 } };
uint8_t* src_h[2][2];
int xoff[2], xadv[2], yoff[2], yadv[2], alpha;
int ysub[2];
MpegEncContext *s = &v->s;
for (i = 0; i < 2; i++) {
xoff[i] = av_clip(sd->coefs[i][2], 0, v->sprite_width-1 << 16);
xadv[i] = sd->coefs[i][0];
if (xadv[i] != 1<<16 || (v->sprite_width<<16) - (v->output_width<<16) - xoff[i])
xadv[i] = av_clip(xadv[i], 0, ((v->sprite_width<<16) - xoff[i] - 1) / v->output_width);
yoff[i] = av_clip(sd->coefs[i][5], 0, v->sprite_height-1 << 16);
yadv[i] = av_clip(sd->coefs[i][4], 0, ((v->sprite_height<<16) - yoff[i]) / v->output_height);
}
alpha = av_clip(sd->coefs[1][6], 0, (1<<16) - 1);
for (plane = 0; plane < (s->flags&CODEC_FLAG_GRAY ? 1 : 3); plane++) {
int width = v->output_width>>!!plane;
for (row = 0; row < v->output_height>>!!plane; row++) {
uint8_t *dst = v->sprite_output_frame.data[plane] +
v->sprite_output_frame.linesize[plane] * row;
for (sprite = 0; sprite <= v->two_sprites; sprite++) {
uint8_t *iplane = s->current_picture.f.data[plane];
int iline = s->current_picture.f.linesize[plane];
int ycoord = yoff[sprite] + yadv[sprite]*row;
int yline = ycoord>>16;
ysub[sprite] = ycoord&0xFFFF;
if (sprite) {
iplane = s->last_picture.f.data[plane];
iline = s->last_picture.f.linesize[plane];
}
if (!(xoff[sprite]&0xFFFF) && xadv[sprite] == 1<<16) {
src_h[sprite][0] = iplane+(xoff[sprite]>>16)+ yline *iline;
if (ysub[sprite])
src_h[sprite][1] = iplane+(xoff[sprite]>>16)+(yline+1)*iline;
} else {
if (sr_cache[sprite][0] != yline) {
if (sr_cache[sprite][1] == yline) {
FFSWAP(uint8_t*, v->sr_rows[sprite][0], v->sr_rows[sprite][1]);
FFSWAP(int, sr_cache[sprite][0], sr_cache[sprite][1]);
} else {
v->vc1dsp.sprite_h(v->sr_rows[sprite][0], iplane+yline*iline, xoff[sprite], xadv[sprite], width);
sr_cache[sprite][0] = yline;
}
}
if (ysub[sprite] && sr_cache[sprite][1] != yline + 1) {
v->vc1dsp.sprite_h(v->sr_rows[sprite][1], iplane+(yline+1)*iline, xoff[sprite], xadv[sprite], width);
sr_cache[sprite][1] = yline + 1;
}
src_h[sprite][0] = v->sr_rows[sprite][0];
src_h[sprite][1] = v->sr_rows[sprite][1];
}
}
if (!v->two_sprites) {
if (ysub[0]) {
v->vc1dsp.sprite_v_single(dst, src_h[0][0], src_h[0][1], ysub[0], width);
} else {
memcpy(dst, src_h[0][0], width);
}
} else {
if (ysub[0] && ysub[1]) {
v->vc1dsp.sprite_v_double_twoscale(dst, src_h[0][0], src_h[0][1], ysub[0],
src_h[1][0], src_h[1][1], ysub[1], alpha, width);
} else if (ysub[0]) {
v->vc1dsp.sprite_v_double_onescale(dst, src_h[0][0], src_h[0][1], ysub[0],
src_h[1][0], alpha, width);
} else if (ysub[1]) {
v->vc1dsp.sprite_v_double_onescale(dst, src_h[1][0], src_h[1][1], ysub[1],
src_h[0][0], (1<<16)-1-alpha, width);
} else {
v->vc1dsp.sprite_v_double_noscale(dst, src_h[0][0], src_h[1][0], alpha, width);
}
}
}
if (!plane) {
for (i = 0; i < 2; i++) {
xoff[i] >>= 1;
yoff[i] >>= 1;
}
}
}
}
static int vc1_decode_sprites(VC1Context *v, GetBitContext* gb)
{
MpegEncContext *s = &v->s;
AVCodecContext *avctx = s->avctx;
SpriteData sd;
vc1_parse_sprites(v, gb, &sd);
if (!s->current_picture.f.data[0]) {
av_log(avctx, AV_LOG_ERROR, "Got no sprites\n");
return -1;
}
if (v->two_sprites && (!s->last_picture_ptr || !s->last_picture.f.data[0])) {
av_log(avctx, AV_LOG_WARNING, "Need two sprites, only got one\n");
v->two_sprites = 0;
}
if (v->sprite_output_frame.data[0])
avctx->release_buffer(avctx, &v->sprite_output_frame);
v->sprite_output_frame.buffer_hints = FF_BUFFER_HINTS_VALID;
v->sprite_output_frame.reference = 0;
if (avctx->get_buffer(avctx, &v->sprite_output_frame) < 0) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return -1;
}
vc1_draw_sprites(v, &sd);
return 0;
}
static void vc1_sprite_flush(AVCodecContext *avctx)
{
VC1Context *v = avctx->priv_data;
MpegEncContext *s = &v->s;
AVFrame *f = &s->current_picture.f;
int plane, i;
/* Windows Media Image codecs have a convergence interval of two keyframes.
Since we can't enforce it, clear to black the missing sprite. This is
wrong but it looks better than doing nothing. */
if (f->data[0])
for (plane = 0; plane < (s->flags&CODEC_FLAG_GRAY ? 1 : 3); plane++)
for (i = 0; i < v->sprite_height>>!!plane; i++)
memset(f->data[plane]+i*f->linesize[plane],
plane ? 128 : 0, f->linesize[plane]);
}
#endif
static av_cold int vc1_decode_init_alloc_tables(VC1Context *v)
{
MpegEncContext *s = &v->s;
int i;
/* Allocate mb bitplanes */
v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
v->n_allocated_blks = s->mb_width + 2;
v->block = av_malloc(sizeof(*v->block) * v->n_allocated_blks);
v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
v->cbp = v->cbp_base + s->mb_stride;
v->ttblk_base = av_malloc(sizeof(v->ttblk_base[0]) * 2 * s->mb_stride);
v->ttblk = v->ttblk_base + s->mb_stride;
v->is_intra_base = av_malloc(sizeof(v->is_intra_base[0]) * 2 * s->mb_stride);
v->is_intra = v->is_intra_base + s->mb_stride;
v->luma_mv_base = av_malloc(sizeof(v->luma_mv_base[0]) * 2 * s->mb_stride);
v->luma_mv = v->luma_mv_base + s->mb_stride;
/* allocate block type info in that way so it could be used with s->block_index[] */
v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
/* Init coded blocks info */
if (v->profile == PROFILE_ADVANCED)
{
// if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
// return -1;
// if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
// return -1;
}
ff_intrax8_common_init(&v->x8,s);
if (s->avctx->codec_id == CODEC_ID_WMV3IMAGE || s->avctx->codec_id == CODEC_ID_VC1IMAGE) {
for (i = 0; i < 4; i++)
if (!(v->sr_rows[i>>1][i%2] = av_malloc(v->output_width))) return -1;
}
if (!v->mv_type_mb_plane || !v->direct_mb_plane || !v->acpred_plane || !v->over_flags_plane ||
!v->block || !v->cbp_base || !v->ttblk_base || !v->is_intra_base || !v->luma_mv_base ||
!v->mb_type_base)
return -1;
return 0;
}
/** Initialize a VC1/WMV3 decoder
* @todo TODO: Handle VC-1 IDUs (Transport level?)
* @todo TODO: Decypher remaining bits in extra_data
*/
static av_cold int vc1_decode_init(AVCodecContext *avctx)
{
VC1Context *v = avctx->priv_data;
MpegEncContext *s = &v->s;
GetBitContext gb;
int i;
/* save the container output size for WMImage */
v->output_width = avctx->width;
v->output_height = avctx->height;
if (!avctx->extradata_size || !avctx->extradata) return -1;
if (!(avctx->flags & CODEC_FLAG_GRAY))
avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts);
else
avctx->pix_fmt = PIX_FMT_GRAY8;
avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
v->s.avctx = avctx;
avctx->flags |= CODEC_FLAG_EMU_EDGE;
v->s.flags |= CODEC_FLAG_EMU_EDGE;
if(avctx->idct_algo==FF_IDCT_AUTO){
avctx->idct_algo=FF_IDCT_WMV2;
}
if (vc1_init_common(v) < 0) return -1;
ff_vc1dsp_init(&v->vc1dsp);
if (avctx->codec_id == CODEC_ID_WMV3 || avctx->codec_id == CODEC_ID_WMV3IMAGE)
{
int count = 0;
// looks like WMV3 has a sequence header stored in the extradata
// advanced sequence header may be before the first frame
// the last byte of the extradata is a version number, 1 for the
// samples we can decode
init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
if (vc1_decode_sequence_header(avctx, v, &gb) < 0)
return -1;
count = avctx->extradata_size*8 - get_bits_count(&gb);
if (count>0)
{
av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
count, get_bits(&gb, count));
}
else if (count < 0)
{
av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
}
} else { // VC1/WVC1/WVP2
const uint8_t *start = avctx->extradata;
uint8_t *end = avctx->extradata + avctx->extradata_size;
const uint8_t *next;
int size, buf2_size;
uint8_t *buf2 = NULL;
int seq_initialized = 0, ep_initialized = 0;
if(avctx->extradata_size < 16) {
av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
return -1;
}
buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
start = find_next_marker(start, end); // in WVC1 extradata first byte is its size, but can be 0 in mkv
next = start;
for(; next < end; start = next){
next = find_next_marker(start + 4, end);
size = next - start - 4;
if(size <= 0) continue;
buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
init_get_bits(&gb, buf2, buf2_size * 8);
switch(AV_RB32(start)){
case VC1_CODE_SEQHDR:
if(vc1_decode_sequence_header(avctx, v, &gb) < 0){
av_free(buf2);
return -1;
}
seq_initialized = 1;
break;
case VC1_CODE_ENTRYPOINT:
if(vc1_decode_entry_point(avctx, v, &gb) < 0){
av_free(buf2);
return -1;
}
ep_initialized = 1;
break;
}
}
av_free(buf2);
if(!seq_initialized || !ep_initialized){
av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
return -1;
}
v->res_sprite = (avctx->codec_tag == MKTAG('W','V','P','2'));
}
avctx->profile = v->profile;
if (v->profile == PROFILE_ADVANCED)
avctx->level = v->level;
avctx->has_b_frames= !!(avctx->max_b_frames);
s->mb_width = (avctx->coded_width+15)>>4;
s->mb_height = (avctx->coded_height+15)>>4;
if (v->profile == PROFILE_ADVANCED || v->res_fasttx) {
for (i = 0; i < 64; i++) {
#define transpose(x) ((x>>3) | ((x&7)<<3))
v->zz_8x8[0][i] = transpose(wmv1_scantable[0][i]);
v->zz_8x8[1][i] = transpose(wmv1_scantable[1][i]);
v->zz_8x8[2][i] = transpose(wmv1_scantable[2][i]);
v->zz_8x8[3][i] = transpose(wmv1_scantable[3][i]);
}
v->left_blk_sh = 0;
v->top_blk_sh = 3;
} else {
memcpy(v->zz_8x8, wmv1_scantable, 4*64);
v->left_blk_sh = 3;
v->top_blk_sh = 0;
}
if (avctx->codec_id == CODEC_ID_WMV3IMAGE || avctx->codec_id == CODEC_ID_VC1IMAGE) {
v->sprite_width = avctx->coded_width;
v->sprite_height = avctx->coded_height;
avctx->coded_width = avctx->width = v->output_width;
avctx->coded_height = avctx->height = v->output_height;
// prevent 16.16 overflows
if (v->sprite_width > 1<<14 ||
v->sprite_height > 1<<14 ||
v->output_width > 1<<14 ||
v->output_height > 1<<14) return -1;
}
return 0;
}
/** Close a VC1/WMV3 decoder
* @warning Initial try at using MpegEncContext stuff
*/
static av_cold int vc1_decode_end(AVCodecContext *avctx)
{
VC1Context *v = avctx->priv_data;
int i;
if ((avctx->codec_id == CODEC_ID_WMV3IMAGE || avctx->codec_id == CODEC_ID_VC1IMAGE)
&& v->sprite_output_frame.data[0])
avctx->release_buffer(avctx, &v->sprite_output_frame);
for (i = 0; i < 4; i++)
av_freep(&v->sr_rows[i>>1][i%2]);
av_freep(&v->hrd_rate);
av_freep(&v->hrd_buffer);
MPV_common_end(&v->s);
av_freep(&v->mv_type_mb_plane);
av_freep(&v->direct_mb_plane);
av_freep(&v->acpred_plane);
av_freep(&v->over_flags_plane);
av_freep(&v->mb_type_base);
av_freep(&v->block);
av_freep(&v->cbp_base);
av_freep(&v->ttblk_base);
av_freep(&v->is_intra_base); // FIXME use v->mb_type[]
av_freep(&v->luma_mv_base);
ff_intrax8_common_end(&v->x8);
return 0;
}
/** Decode a VC1/WMV3 frame
* @todo TODO: Handle VC-1 IDUs (Transport level?)
*/
static int vc1_decode_frame(AVCodecContext *avctx,
void *data, int *data_size,
AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size, n_slices = 0, i;
VC1Context *v = avctx->priv_data;
MpegEncContext *s = &v->s;
AVFrame *pict = data;
uint8_t *buf2 = NULL;
const uint8_t *buf_start = buf;
struct {
uint8_t *buf;
GetBitContext gb;
int mby_start;
} *slices = NULL;
/* no supplementary picture */
if (buf_size == 0 || (buf_size == 4 && AV_RB32(buf) == VC1_CODE_ENDOFSEQ)) {
/* special case for last picture */
if (s->low_delay==0 && s->next_picture_ptr) {
*pict= *(AVFrame*)s->next_picture_ptr;
s->next_picture_ptr= NULL;
*data_size = sizeof(AVFrame);
}
return 0;
}
if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
if (v->profile < PROFILE_ADVANCED)
avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
else
avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
}
//for advanced profile we may need to parse and unescape data
if (avctx->codec_id == CODEC_ID_VC1 || avctx->codec_id == CODEC_ID_VC1IMAGE) {
int buf_size2 = 0;
buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
const uint8_t *start, *end, *next;
int size;
next = buf;
for(start = buf, end = buf + buf_size; next < end; start = next){
next = find_next_marker(start + 4, end);
size = next - start - 4;
if(size <= 0) continue;
switch(AV_RB32(start)){
case VC1_CODE_FRAME:
if (avctx->hwaccel ||
s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
buf_start = start;
buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
break;
case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
init_get_bits(&s->gb, buf2, buf_size2*8);
vc1_decode_entry_point(avctx, v, &s->gb);
break;
case VC1_CODE_SLICE: {
int buf_size3;
slices = av_realloc(slices, sizeof(*slices) * (n_slices+1));
if (!slices) goto err;
slices[n_slices].buf = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
if (!slices[n_slices].buf) goto err;
buf_size3 = vc1_unescape_buffer(start + 4, size,
slices[n_slices].buf);
init_get_bits(&slices[n_slices].gb, slices[n_slices].buf,
buf_size3 << 3);
slices[n_slices].mby_start = get_bits(&slices[n_slices].gb, 9);
n_slices++;
break;
}
}
}
}else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
const uint8_t *divider;
divider = find_next_marker(buf, buf + buf_size);
if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
goto err;
}
buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
// TODO
if(!v->warn_interlaced++)
av_log(v->s.avctx, AV_LOG_ERROR, "Interlaced WVC1 support is not implemented\n");
goto err;
}else{
buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
}
init_get_bits(&s->gb, buf2, buf_size2*8);
} else
init_get_bits(&s->gb, buf, buf_size*8);
if (v->res_sprite) {
v->new_sprite = !get_bits1(&s->gb);
v->two_sprites = get_bits1(&s->gb);
/* res_sprite means a Windows Media Image stream, CODEC_ID_*IMAGE means
we're using the sprite compositor. These are intentionally kept separate
so you can get the raw sprites by using the wmv3 decoder for WMVP or
the vc1 one for WVP2 */
if (avctx->codec_id == CODEC_ID_WMV3IMAGE || avctx->codec_id == CODEC_ID_VC1IMAGE) {
if (v->new_sprite) {
// switch AVCodecContext parameters to those of the sprites
avctx->width = avctx->coded_width = v->sprite_width;
avctx->height = avctx->coded_height = v->sprite_height;
} else {
goto image;
}
}
}
if (s->context_initialized &&
(s->width != avctx->coded_width ||
s->height != avctx->coded_height)) {
vc1_decode_end(avctx);
}
if (!s->context_initialized) {
if (ff_msmpeg4_decode_init(avctx) < 0 || vc1_decode_init_alloc_tables(v) < 0)
return -1;
s->low_delay = !avctx->has_b_frames || v->res_sprite;
if (v->profile == PROFILE_ADVANCED) {
s->h_edge_pos = avctx->coded_width;
s->v_edge_pos = avctx->coded_height;
}
}
/* We need to set current_picture_ptr before reading the header,
* otherwise we cannot store anything in there. */
if (s->current_picture_ptr == NULL || s->current_picture_ptr->f.data[0]) {
int i= ff_find_unused_picture(s, 0);
s->current_picture_ptr= &s->picture[i];
}
// do parse frame header
if(v->profile < PROFILE_ADVANCED) {
if(vc1_parse_frame_header(v, &s->gb) == -1) {
goto err;
}
} else {
if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
goto err;
}
}
if ((avctx->codec_id == CODEC_ID_WMV3IMAGE || avctx->codec_id == CODEC_ID_VC1IMAGE)
&& s->pict_type!=AV_PICTURE_TYPE_I) {
av_log(v->s.avctx, AV_LOG_ERROR, "Sprite decoder: expected I-frame\n");
goto err;
}
// process pulldown flags
s->current_picture_ptr->f.repeat_pict = 0;
// Pulldown flags are only valid when 'broadcast' has been set.
// So ticks_per_frame will be 2
if (v->rff){
// repeat field
s->current_picture_ptr->f.repeat_pict = 1;
}else if (v->rptfrm){
// repeat frames
s->current_picture_ptr->f.repeat_pict = v->rptfrm * 2;
}
// for skipping the frame
s->current_picture.f.pict_type = s->pict_type;
s->current_picture.f.key_frame = s->pict_type == AV_PICTURE_TYPE_I;
/* skip B-frames if we don't have reference frames */
if(s->last_picture_ptr==NULL && (s->pict_type==AV_PICTURE_TYPE_B || s->dropable)){
goto err;
}
if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==AV_PICTURE_TYPE_B)
|| (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=AV_PICTURE_TYPE_I)
|| avctx->skip_frame >= AVDISCARD_ALL) {
goto end;
}
if(s->next_p_frame_damaged){
if(s->pict_type==AV_PICTURE_TYPE_B)
goto end;
else
s->next_p_frame_damaged=0;
}
if(MPV_frame_start(s, avctx) < 0) {
goto err;
}
s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
if ((CONFIG_VC1_VDPAU_DECODER)
&&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
else if (avctx->hwaccel) {
if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
goto err;
if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
goto err;
if (avctx->hwaccel->end_frame(avctx) < 0)
goto err;
} else {
ff_er_frame_start(s);
v->bits = buf_size * 8;
for (i = 0; i <= n_slices; i++) {
if (i && get_bits1(&s->gb))
vc1_parse_frame_header_adv(v, &s->gb);
s->start_mb_y = (i == 0) ? 0 : FFMAX(0, slices[i-1].mby_start);
s->end_mb_y = (i == n_slices) ? s->mb_height : FFMIN(s->mb_height, slices[i].mby_start);
vc1_decode_blocks(v);
if (i != n_slices) s->gb = slices[i].gb;
}
//av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), s->gb.size_in_bits);
// if(get_bits_count(&s->gb) > buf_size * 8)
// return -1;
ff_er_frame_end(s);
}
MPV_frame_end(s);
assert(s->current_picture.f.pict_type == s->current_picture_ptr->f.pict_type);
assert(s->current_picture.f.pict_type == s->pict_type);
if (avctx->codec_id == CODEC_ID_WMV3IMAGE || avctx->codec_id == CODEC_ID_VC1IMAGE) {
image:
avctx->width = avctx->coded_width = v->output_width;
avctx->height = avctx->coded_height = v->output_height;
if (avctx->skip_frame >= AVDISCARD_NONREF) goto end;
#if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
if (vc1_decode_sprites(v, &s->gb)) goto err;
#endif
*pict = v->sprite_output_frame;
*data_size = sizeof(AVFrame);
} else {
if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
*pict= *(AVFrame*)s->current_picture_ptr;
} else if (s->last_picture_ptr != NULL) {
*pict= *(AVFrame*)s->last_picture_ptr;
}
if(s->last_picture_ptr || s->low_delay){
*data_size = sizeof(AVFrame);
ff_print_debug_info(s, pict);
}
}
end:
av_free(buf2);
for (i = 0; i < n_slices; i++)
av_free(slices[i].buf);
av_free(slices);
return buf_size;
err:
av_free(buf2);
for (i = 0; i < n_slices; i++)
av_free(slices[i].buf);
av_free(slices);
return -1;
}
static const AVProfile profiles[] = {
{ FF_PROFILE_VC1_SIMPLE, "Simple" },
{ FF_PROFILE_VC1_MAIN, "Main" },
{ FF_PROFILE_VC1_COMPLEX, "Complex" },
{ FF_PROFILE_VC1_ADVANCED, "Advanced" },
{ FF_PROFILE_UNKNOWN },
};
AVCodec ff_vc1_decoder = {
.name = "vc1",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_VC1,
.priv_data_size = sizeof(VC1Context),
.init = vc1_decode_init,
.close = vc1_decode_end,
.decode = vc1_decode_frame,
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY,
.long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
.pix_fmts = ff_hwaccel_pixfmt_list_420,
.profiles = NULL_IF_CONFIG_SMALL(profiles)
};
#if CONFIG_WMV3_DECODER
AVCodec ff_wmv3_decoder = {
.name = "wmv3",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_WMV3,
.priv_data_size = sizeof(VC1Context),
.init = vc1_decode_init,
.close = vc1_decode_end,
.decode = vc1_decode_frame,
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY,
.long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
.pix_fmts = ff_hwaccel_pixfmt_list_420,
.profiles = NULL_IF_CONFIG_SMALL(profiles)
};
#endif
#if CONFIG_WMV3_VDPAU_DECODER
AVCodec ff_wmv3_vdpau_decoder = {
.name = "wmv3_vdpau",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_WMV3,
.priv_data_size = sizeof(VC1Context),
.init = vc1_decode_init,
.close = vc1_decode_end,
.decode = vc1_decode_frame,
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
.long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
.pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE},
.profiles = NULL_IF_CONFIG_SMALL(profiles)
};
#endif
#if CONFIG_VC1_VDPAU_DECODER
AVCodec ff_vc1_vdpau_decoder = {
.name = "vc1_vdpau",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_VC1,
.priv_data_size = sizeof(VC1Context),
.init = vc1_decode_init,
.close = vc1_decode_end,
.decode = vc1_decode_frame,
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
.long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
.pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_VC1, PIX_FMT_NONE},
.profiles = NULL_IF_CONFIG_SMALL(profiles)
};
#endif
#if CONFIG_WMV3IMAGE_DECODER
AVCodec ff_wmv3image_decoder = {
.name = "wmv3image",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_WMV3IMAGE,
.priv_data_size = sizeof(VC1Context),
.init = vc1_decode_init,
.close = vc1_decode_end,
.decode = vc1_decode_frame,
.capabilities = CODEC_CAP_DR1,
.flush = vc1_sprite_flush,
.long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 Image"),
.pix_fmts = ff_pixfmt_list_420
};
#endif
#if CONFIG_VC1IMAGE_DECODER
AVCodec ff_vc1image_decoder = {
.name = "vc1image",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_VC1IMAGE,
.priv_data_size = sizeof(VC1Context),
.init = vc1_decode_init,
.close = vc1_decode_end,
.decode = vc1_decode_frame,
.capabilities = CODEC_CAP_DR1,
.flush = vc1_sprite_flush,
.long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 Image v2"),
.pix_fmts = ff_pixfmt_list_420
};
#endif