1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libavutil/mips/generic_macros_msa.h
gxw 92fc0bfa54 avutil/mips: refactor msa SLDI_Bn_0 and SLDI_Bn macros.
Changing details as following:
1. The previous order of parameters are irregular and difficult to
   understand. Adjust the order of the parameters according to the
   rule: (RTYPE, input registers, input mask/input index/..., output registers).
   Most of the existing msa macros follow the rule.
2. Remove the redundant macro SLDI_Bn_0 and use SLDI_Bn instead.

Reviewed-by: Shiyou Yin <yinshiyou-hf@loongson.cn>
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2019-09-16 00:04:18 +02:00

2854 lines
141 KiB
C

/*
* Copyright (c) 2015 Manojkumar Bhosale (Manojkumar.Bhosale@imgtec.com)
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVUTIL_MIPS_GENERIC_MACROS_MSA_H
#define AVUTIL_MIPS_GENERIC_MACROS_MSA_H
#include <stdint.h>
#include <msa.h>
#include <config.h>
#if HAVE_MSA2
#include <msa2.h>
#endif
#define ALIGNMENT 16
#define ALLOC_ALIGNED(align) __attribute__ ((aligned((align) << 1)))
#define LD_V(RTYPE, psrc) *((RTYPE *)(psrc))
#define LD_UB(...) LD_V(v16u8, __VA_ARGS__)
#define LD_SB(...) LD_V(v16i8, __VA_ARGS__)
#define LD_UH(...) LD_V(v8u16, __VA_ARGS__)
#define LD_SH(...) LD_V(v8i16, __VA_ARGS__)
#define LD_UW(...) LD_V(v4u32, __VA_ARGS__)
#define LD_SW(...) LD_V(v4i32, __VA_ARGS__)
#define ST_V(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in)
#define ST_UB(...) ST_V(v16u8, __VA_ARGS__)
#define ST_SB(...) ST_V(v16i8, __VA_ARGS__)
#define ST_UH(...) ST_V(v8u16, __VA_ARGS__)
#define ST_SH(...) ST_V(v8i16, __VA_ARGS__)
#define ST_UW(...) ST_V(v4u32, __VA_ARGS__)
#define ST_SW(...) ST_V(v4i32, __VA_ARGS__)
#if (__mips_isa_rev >= 6)
#define LH(psrc) \
( { \
uint16_t val_lh_m = *(uint16_t *)(psrc); \
val_lh_m; \
} )
#define LW(psrc) \
( { \
uint32_t val_lw_m = *(uint32_t *)(psrc); \
val_lw_m; \
} )
#if (__mips == 64)
#define LD(psrc) \
( { \
uint64_t val_ld_m = *(uint64_t *)(psrc); \
val_ld_m; \
} )
#else // !(__mips == 64)
#define LD(psrc) \
( { \
uint8_t *psrc_ld_m = (uint8_t *) (psrc); \
uint32_t val0_ld_m, val1_ld_m; \
uint64_t val_ld_m = 0; \
\
val0_ld_m = LW(psrc_ld_m); \
val1_ld_m = LW(psrc_ld_m + 4); \
\
val_ld_m = (uint64_t) (val1_ld_m); \
val_ld_m = (uint64_t) ((val_ld_m << 32) & 0xFFFFFFFF00000000); \
val_ld_m = (uint64_t) (val_ld_m | (uint64_t) val0_ld_m); \
\
val_ld_m; \
} )
#endif // (__mips == 64)
#define SH(val, pdst) *(uint16_t *)(pdst) = (val);
#define SW(val, pdst) *(uint32_t *)(pdst) = (val);
#define SD(val, pdst) *(uint64_t *)(pdst) = (val);
#else // !(__mips_isa_rev >= 6)
#define LH(psrc) \
( { \
uint8_t *psrc_lh_m = (uint8_t *) (psrc); \
uint16_t val_lh_m; \
\
__asm__ volatile ( \
"ulh %[val_lh_m], %[psrc_lh_m] \n\t" \
\
: [val_lh_m] "=r" (val_lh_m) \
: [psrc_lh_m] "m" (*psrc_lh_m) \
); \
\
val_lh_m; \
} )
#define LW(psrc) \
( { \
uint8_t *psrc_lw_m = (uint8_t *) (psrc); \
uint32_t val_lw_m; \
\
__asm__ volatile ( \
"ulw %[val_lw_m], %[psrc_lw_m] \n\t" \
\
: [val_lw_m] "=r" (val_lw_m) \
: [psrc_lw_m] "m" (*psrc_lw_m) \
); \
\
val_lw_m; \
} )
#if (__mips == 64)
#define LD(psrc) \
( { \
uint8_t *psrc_ld_m = (uint8_t *) (psrc); \
uint64_t val_ld_m = 0; \
\
__asm__ volatile ( \
"uld %[val_ld_m], %[psrc_ld_m] \n\t" \
\
: [val_ld_m] "=r" (val_ld_m) \
: [psrc_ld_m] "m" (*psrc_ld_m) \
); \
\
val_ld_m; \
} )
#else // !(__mips == 64)
#define LD(psrc) \
( { \
uint8_t *psrc_ld_m = (uint8_t *) (psrc); \
uint32_t val0_ld_m, val1_ld_m; \
uint64_t val_ld_m = 0; \
\
val0_ld_m = LW(psrc_ld_m); \
val1_ld_m = LW(psrc_ld_m + 4); \
\
val_ld_m = (uint64_t) (val1_ld_m); \
val_ld_m = (uint64_t) ((val_ld_m << 32) & 0xFFFFFFFF00000000); \
val_ld_m = (uint64_t) (val_ld_m | (uint64_t) val0_ld_m); \
\
val_ld_m; \
} )
#endif // (__mips == 64)
#define SH(val, pdst) \
{ \
uint8_t *pdst_sh_m = (uint8_t *) (pdst); \
uint16_t val_sh_m = (val); \
\
__asm__ volatile ( \
"ush %[val_sh_m], %[pdst_sh_m] \n\t" \
\
: [pdst_sh_m] "=m" (*pdst_sh_m) \
: [val_sh_m] "r" (val_sh_m) \
); \
}
#define SW(val, pdst) \
{ \
uint8_t *pdst_sw_m = (uint8_t *) (pdst); \
uint32_t val_sw_m = (val); \
\
__asm__ volatile ( \
"usw %[val_sw_m], %[pdst_sw_m] \n\t" \
\
: [pdst_sw_m] "=m" (*pdst_sw_m) \
: [val_sw_m] "r" (val_sw_m) \
); \
}
#define SD(val, pdst) \
{ \
uint8_t *pdst_sd_m = (uint8_t *) (pdst); \
uint32_t val0_sd_m, val1_sd_m; \
\
val0_sd_m = (uint32_t) ((val) & 0x00000000FFFFFFFF); \
val1_sd_m = (uint32_t) (((val) >> 32) & 0x00000000FFFFFFFF); \
\
SW(val0_sd_m, pdst_sd_m); \
SW(val1_sd_m, pdst_sd_m + 4); \
}
#endif // (__mips_isa_rev >= 6)
/* Description : Load 4 words with stride
Arguments : Inputs - psrc (source pointer to load from)
- stride
Outputs - out0, out1, out2, out3
Details : Loads word in 'out0' from (psrc)
Loads word in 'out1' from (psrc + stride)
Loads word in 'out2' from (psrc + 2 * stride)
Loads word in 'out3' from (psrc + 3 * stride)
*/
#define LW4(psrc, stride, out0, out1, out2, out3) \
{ \
out0 = LW((psrc)); \
out1 = LW((psrc) + stride); \
out2 = LW((psrc) + 2 * stride); \
out3 = LW((psrc) + 3 * stride); \
}
#define LW2(psrc, stride, out0, out1) \
{ \
out0 = LW((psrc)); \
out1 = LW((psrc) + stride); \
}
/* Description : Load double words with stride
Arguments : Inputs - psrc (source pointer to load from)
- stride
Outputs - out0, out1
Details : Loads double word in 'out0' from (psrc)
Loads double word in 'out1' from (psrc + stride)
*/
#define LD2(psrc, stride, out0, out1) \
{ \
out0 = LD((psrc)); \
out1 = LD((psrc) + stride); \
}
#define LD4(psrc, stride, out0, out1, out2, out3) \
{ \
LD2((psrc), stride, out0, out1); \
LD2((psrc) + 2 * stride, stride, out2, out3); \
}
/* Description : Store 4 words with stride
Arguments : Inputs - in0, in1, in2, in3, pdst, stride
Details : Stores word from 'in0' to (pdst)
Stores word from 'in1' to (pdst + stride)
Stores word from 'in2' to (pdst + 2 * stride)
Stores word from 'in3' to (pdst + 3 * stride)
*/
#define SW4(in0, in1, in2, in3, pdst, stride) \
{ \
SW(in0, (pdst)) \
SW(in1, (pdst) + stride); \
SW(in2, (pdst) + 2 * stride); \
SW(in3, (pdst) + 3 * stride); \
}
/* Description : Store 4 double words with stride
Arguments : Inputs - in0, in1, in2, in3, pdst, stride
Details : Stores double word from 'in0' to (pdst)
Stores double word from 'in1' to (pdst + stride)
Stores double word from 'in2' to (pdst + 2 * stride)
Stores double word from 'in3' to (pdst + 3 * stride)
*/
#define SD4(in0, in1, in2, in3, pdst, stride) \
{ \
SD(in0, (pdst)) \
SD(in1, (pdst) + stride); \
SD(in2, (pdst) + 2 * stride); \
SD(in3, (pdst) + 3 * stride); \
}
/* Description : Load vector elements with stride
Arguments : Inputs - psrc (source pointer to load from)
- stride
Outputs - out0, out1
Return Type - as per RTYPE
Details : Loads elements in 'out0' from (psrc)
Loads elements in 'out1' from (psrc + stride)
*/
#define LD_V2(RTYPE, psrc, stride, out0, out1) \
{ \
out0 = LD_V(RTYPE, (psrc)); \
out1 = LD_V(RTYPE, (psrc) + stride); \
}
#define LD_UB2(...) LD_V2(v16u8, __VA_ARGS__)
#define LD_SB2(...) LD_V2(v16i8, __VA_ARGS__)
#define LD_UH2(...) LD_V2(v8u16, __VA_ARGS__)
#define LD_SH2(...) LD_V2(v8i16, __VA_ARGS__)
#define LD_SW2(...) LD_V2(v4i32, __VA_ARGS__)
#define LD_V3(RTYPE, psrc, stride, out0, out1, out2) \
{ \
LD_V2(RTYPE, (psrc), stride, out0, out1); \
out2 = LD_V(RTYPE, (psrc) + 2 * stride); \
}
#define LD_UB3(...) LD_V3(v16u8, __VA_ARGS__)
#define LD_SB3(...) LD_V3(v16i8, __VA_ARGS__)
#define LD_V4(RTYPE, psrc, stride, out0, out1, out2, out3) \
{ \
LD_V2(RTYPE, (psrc), stride, out0, out1); \
LD_V2(RTYPE, (psrc) + 2 * stride , stride, out2, out3); \
}
#define LD_UB4(...) LD_V4(v16u8, __VA_ARGS__)
#define LD_SB4(...) LD_V4(v16i8, __VA_ARGS__)
#define LD_UH4(...) LD_V4(v8u16, __VA_ARGS__)
#define LD_SH4(...) LD_V4(v8i16, __VA_ARGS__)
#define LD_V5(RTYPE, psrc, stride, out0, out1, out2, out3, out4) \
{ \
LD_V4(RTYPE, (psrc), stride, out0, out1, out2, out3); \
out4 = LD_V(RTYPE, (psrc) + 4 * stride); \
}
#define LD_UB5(...) LD_V5(v16u8, __VA_ARGS__)
#define LD_SB5(...) LD_V5(v16i8, __VA_ARGS__)
#define LD_V6(RTYPE, psrc, stride, out0, out1, out2, out3, out4, out5) \
{ \
LD_V4(RTYPE, (psrc), stride, out0, out1, out2, out3); \
LD_V2(RTYPE, (psrc) + 4 * stride, stride, out4, out5); \
}
#define LD_UB6(...) LD_V6(v16u8, __VA_ARGS__)
#define LD_SB6(...) LD_V6(v16i8, __VA_ARGS__)
#define LD_UH6(...) LD_V6(v8u16, __VA_ARGS__)
#define LD_SH6(...) LD_V6(v8i16, __VA_ARGS__)
#define LD_V7(RTYPE, psrc, stride, \
out0, out1, out2, out3, out4, out5, out6) \
{ \
LD_V5(RTYPE, (psrc), stride, out0, out1, out2, out3, out4); \
LD_V2(RTYPE, (psrc) + 5 * stride, stride, out5, out6); \
}
#define LD_UB7(...) LD_V7(v16u8, __VA_ARGS__)
#define LD_SB7(...) LD_V7(v16i8, __VA_ARGS__)
#define LD_V8(RTYPE, psrc, stride, \
out0, out1, out2, out3, out4, out5, out6, out7) \
{ \
LD_V4(RTYPE, (psrc), stride, out0, out1, out2, out3); \
LD_V4(RTYPE, (psrc) + 4 * stride, stride, out4, out5, out6, out7); \
}
#define LD_UB8(...) LD_V8(v16u8, __VA_ARGS__)
#define LD_SB8(...) LD_V8(v16i8, __VA_ARGS__)
#define LD_UH8(...) LD_V8(v8u16, __VA_ARGS__)
#define LD_SH8(...) LD_V8(v8i16, __VA_ARGS__)
#define LD_V16(RTYPE, psrc, stride, \
out0, out1, out2, out3, out4, out5, out6, out7, \
out8, out9, out10, out11, out12, out13, out14, out15) \
{ \
LD_V8(RTYPE, (psrc), stride, \
out0, out1, out2, out3, out4, out5, out6, out7); \
LD_V8(RTYPE, (psrc) + 8 * stride, stride, \
out8, out9, out10, out11, out12, out13, out14, out15); \
}
#define LD_SH16(...) LD_V16(v8i16, __VA_ARGS__)
/* Description : Store vectors with stride
Arguments : Inputs - in0, in1, stride
Outputs - pdst (destination pointer to store to)
Details : Stores elements from 'in0' to (pdst)
Stores elements from 'in1' to (pdst + stride)
*/
#define ST_V2(RTYPE, in0, in1, pdst, stride) \
{ \
ST_V(RTYPE, in0, (pdst)); \
ST_V(RTYPE, in1, (pdst) + stride); \
}
#define ST_UB2(...) ST_V2(v16u8, __VA_ARGS__)
#define ST_SB2(...) ST_V2(v16i8, __VA_ARGS__)
#define ST_UH2(...) ST_V2(v8u16, __VA_ARGS__)
#define ST_SH2(...) ST_V2(v8i16, __VA_ARGS__)
#define ST_SW2(...) ST_V2(v4i32, __VA_ARGS__)
#define ST_V4(RTYPE, in0, in1, in2, in3, pdst, stride) \
{ \
ST_V2(RTYPE, in0, in1, (pdst), stride); \
ST_V2(RTYPE, in2, in3, (pdst) + 2 * stride, stride); \
}
#define ST_UB4(...) ST_V4(v16u8, __VA_ARGS__)
#define ST_SB4(...) ST_V4(v16i8, __VA_ARGS__)
#define ST_SH4(...) ST_V4(v8i16, __VA_ARGS__)
#define ST_SW4(...) ST_V4(v4i32, __VA_ARGS__)
#define ST_V6(RTYPE, in0, in1, in2, in3, in4, in5, pdst, stride) \
{ \
ST_V4(RTYPE, in0, in1, in2, in3, (pdst), stride); \
ST_V2(RTYPE, in4, in5, (pdst) + 4 * stride, stride); \
}
#define ST_SH6(...) ST_V6(v8i16, __VA_ARGS__)
#define ST_V8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride) \
{ \
ST_V4(RTYPE, in0, in1, in2, in3, (pdst), stride); \
ST_V4(RTYPE, in4, in5, in6, in7, (pdst) + 4 * stride, stride); \
}
#define ST_UB8(...) ST_V8(v16u8, __VA_ARGS__)
#define ST_SH8(...) ST_V8(v8i16, __VA_ARGS__)
#define ST_SW8(...) ST_V8(v4i32, __VA_ARGS__)
/* Description : Store half word elements of vector with stride
* Arguments : Inputs - in source vector
* - pdst (destination pointer to store to)
* - stride
* Details : Stores half word 'idx0' from 'in' to (pdst)
* Stores half word 'idx1' from 'in' to (pdst + stride)
* Similar for other elements
*/
#define ST_H1(in, idx, pdst) \
{ \
uint16_t out0_m; \
out0_m = __msa_copy_u_h((v8i16) in, idx); \
SH(out0_m, (pdst)); \
}
#define ST_H2(in, idx0, idx1, pdst, stride) \
{ \
uint16_t out0_m, out1_m; \
out0_m = __msa_copy_u_h((v8i16) in, idx0); \
out1_m = __msa_copy_u_h((v8i16) in, idx1); \
SH(out0_m, (pdst)); \
SH(out1_m, (pdst) + stride); \
}
#define ST_H4(in, idx0, idx1, idx2, idx3, pdst, stride) \
{ \
uint16_t out0_m, out1_m, out2_m, out3_m; \
out0_m = __msa_copy_u_h((v8i16) in, idx0); \
out1_m = __msa_copy_u_h((v8i16) in, idx1); \
out2_m = __msa_copy_u_h((v8i16) in, idx2); \
out3_m = __msa_copy_u_h((v8i16) in, idx3); \
SH(out0_m, (pdst)); \
SH(out1_m, (pdst) + stride); \
SH(out2_m, (pdst) + 2 * stride); \
SH(out3_m, (pdst) + 3 * stride); \
}
#define ST_H8(in, idx0, idx1, idx2, idx3, idx4, idx5, \
idx6, idx7, pdst, stride) \
{ \
ST_H4(in, idx0, idx1, idx2, idx3, pdst, stride) \
ST_H4(in, idx4, idx5, idx6, idx7, (pdst) + 4*stride, stride) \
}
/* Description : Store word elements of vector with stride
* Arguments : Inputs - in source vector
* - pdst (destination pointer to store to)
* - stride
* Details : Stores word 'idx0' from 'in' to (pdst)
* Stores word 'idx1' from 'in' to (pdst + stride)
* Similar for other elements
*/
#define ST_W1(in, idx, pdst) \
{ \
uint32_t out0_m; \
out0_m = __msa_copy_u_w((v4i32) in, idx); \
SW(out0_m, (pdst)); \
}
#define ST_W2(in, idx0, idx1, pdst, stride) \
{ \
uint32_t out0_m, out1_m; \
out0_m = __msa_copy_u_w((v4i32) in, idx0); \
out1_m = __msa_copy_u_w((v4i32) in, idx1); \
SW(out0_m, (pdst)); \
SW(out1_m, (pdst) + stride); \
}
#define ST_W4(in, idx0, idx1, idx2, idx3, pdst, stride) \
{ \
uint32_t out0_m, out1_m, out2_m, out3_m; \
out0_m = __msa_copy_u_w((v4i32) in, idx0); \
out1_m = __msa_copy_u_w((v4i32) in, idx1); \
out2_m = __msa_copy_u_w((v4i32) in, idx2); \
out3_m = __msa_copy_u_w((v4i32) in, idx3); \
SW(out0_m, (pdst)); \
SW(out1_m, (pdst) + stride); \
SW(out2_m, (pdst) + 2*stride); \
SW(out3_m, (pdst) + 3*stride); \
}
#define ST_W8(in0, in1, idx0, idx1, idx2, idx3, \
idx4, idx5, idx6, idx7, pdst, stride) \
{ \
ST_W4(in0, idx0, idx1, idx2, idx3, pdst, stride) \
ST_W4(in1, idx4, idx5, idx6, idx7, pdst + 4*stride, stride) \
}
/* Description : Store double word elements of vector with stride
* Arguments : Inputs - in source vector
* - pdst (destination pointer to store to)
* - stride
* Details : Stores double word 'idx0' from 'in' to (pdst)
* Stores double word 'idx1' from 'in' to (pdst + stride)
* Similar for other elements
*/
#define ST_D1(in, idx, pdst) \
{ \
uint64_t out0_m; \
out0_m = __msa_copy_u_d((v2i64) in, idx); \
SD(out0_m, (pdst)); \
}
#define ST_D2(in, idx0, idx1, pdst, stride) \
{ \
uint64_t out0_m, out1_m; \
out0_m = __msa_copy_u_d((v2i64) in, idx0); \
out1_m = __msa_copy_u_d((v2i64) in, idx1); \
SD(out0_m, (pdst)); \
SD(out1_m, (pdst) + stride); \
}
#define ST_D4(in0, in1, idx0, idx1, idx2, idx3, pdst, stride) \
{ \
uint64_t out0_m, out1_m, out2_m, out3_m; \
out0_m = __msa_copy_u_d((v2i64) in0, idx0); \
out1_m = __msa_copy_u_d((v2i64) in0, idx1); \
out2_m = __msa_copy_u_d((v2i64) in1, idx2); \
out3_m = __msa_copy_u_d((v2i64) in1, idx3); \
SD(out0_m, (pdst)); \
SD(out1_m, (pdst) + stride); \
SD(out2_m, (pdst) + 2 * stride); \
SD(out3_m, (pdst) + 3 * stride); \
}
#define ST_D8(in0, in1, in2, in3, idx0, idx1, idx2, idx3, \
idx4, idx5, idx6, idx7, pdst, stride) \
{ \
ST_D4(in0, in1, idx0, idx1, idx2, idx3, pdst, stride) \
ST_D4(in2, in3, idx4, idx5, idx6, idx7, pdst + 4 * stride, stride) \
}
/* Description : Store as 12x8 byte block to destination memory from
input vectors
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride
Details : Index 0 double word element from input vector 'in0' is copied
and stored to destination memory at (pblk_12x8_m) followed by
index 2 word element from same input vector 'in0' at
(pblk_12x8_m + 8)
Similar to remaining lines
*/
#define ST12x8_UB(in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride) \
{ \
uint64_t out0_m, out1_m, out2_m, out3_m; \
uint64_t out4_m, out5_m, out6_m, out7_m; \
uint32_t out8_m, out9_m, out10_m, out11_m; \
uint32_t out12_m, out13_m, out14_m, out15_m; \
uint8_t *pblk_12x8_m = (uint8_t *) (pdst); \
\
out0_m = __msa_copy_u_d((v2i64) in0, 0); \
out1_m = __msa_copy_u_d((v2i64) in1, 0); \
out2_m = __msa_copy_u_d((v2i64) in2, 0); \
out3_m = __msa_copy_u_d((v2i64) in3, 0); \
out4_m = __msa_copy_u_d((v2i64) in4, 0); \
out5_m = __msa_copy_u_d((v2i64) in5, 0); \
out6_m = __msa_copy_u_d((v2i64) in6, 0); \
out7_m = __msa_copy_u_d((v2i64) in7, 0); \
\
out8_m = __msa_copy_u_w((v4i32) in0, 2); \
out9_m = __msa_copy_u_w((v4i32) in1, 2); \
out10_m = __msa_copy_u_w((v4i32) in2, 2); \
out11_m = __msa_copy_u_w((v4i32) in3, 2); \
out12_m = __msa_copy_u_w((v4i32) in4, 2); \
out13_m = __msa_copy_u_w((v4i32) in5, 2); \
out14_m = __msa_copy_u_w((v4i32) in6, 2); \
out15_m = __msa_copy_u_w((v4i32) in7, 2); \
\
SD(out0_m, pblk_12x8_m); \
SW(out8_m, pblk_12x8_m + 8); \
pblk_12x8_m += stride; \
SD(out1_m, pblk_12x8_m); \
SW(out9_m, pblk_12x8_m + 8); \
pblk_12x8_m += stride; \
SD(out2_m, pblk_12x8_m); \
SW(out10_m, pblk_12x8_m + 8); \
pblk_12x8_m += stride; \
SD(out3_m, pblk_12x8_m); \
SW(out11_m, pblk_12x8_m + 8); \
pblk_12x8_m += stride; \
SD(out4_m, pblk_12x8_m); \
SW(out12_m, pblk_12x8_m + 8); \
pblk_12x8_m += stride; \
SD(out5_m, pblk_12x8_m); \
SW(out13_m, pblk_12x8_m + 8); \
pblk_12x8_m += stride; \
SD(out6_m, pblk_12x8_m); \
SW(out14_m, pblk_12x8_m + 8); \
pblk_12x8_m += stride; \
SD(out7_m, pblk_12x8_m); \
SW(out15_m, pblk_12x8_m + 8); \
}
/* Description : average with rounding (in0 + in1 + 1) / 2.
Arguments : Inputs - in0, in1, in2, in3,
Outputs - out0, out1
Return Type - as per RTYPE
Details : Each byte element from 'in0' vector is added with each byte
element from 'in1' vector. The addition of the elements plus 1
(for rounding) is done unsigned with full precision,
i.e. the result has one extra bit. Unsigned division by 2
(or logical shift right by one bit) is performed before writing
the result to vector 'out0'
Similar for the pair of 'in2' and 'in3'
*/
#define AVER_UB2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_aver_u_b((v16u8) in0, (v16u8) in1); \
out1 = (RTYPE) __msa_aver_u_b((v16u8) in2, (v16u8) in3); \
}
#define AVER_UB2_UB(...) AVER_UB2(v16u8, __VA_ARGS__)
#define AVER_UB4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
AVER_UB2(RTYPE, in0, in1, in2, in3, out0, out1) \
AVER_UB2(RTYPE, in4, in5, in6, in7, out2, out3) \
}
#define AVER_UB4_UB(...) AVER_UB4(v16u8, __VA_ARGS__)
/* Description : Immediate number of columns to slide
Arguments : Inputs - s, d, slide_val
Outputs - out
Return Type - as per RTYPE
Details : Byte elements from 'd' vector are slide into 's' by
number of elements specified by 'slide_val'
*/
#define SLDI_B(RTYPE, d, s, slide_val, out) \
{ \
out = (RTYPE) __msa_sldi_b((v16i8) d, (v16i8) s, slide_val); \
}
#define SLDI_B2(RTYPE, d0, s0, d1, s1, slide_val, out0, out1) \
{ \
SLDI_B(RTYPE, d0, s0, slide_val, out0) \
SLDI_B(RTYPE, d1, s1, slide_val, out1) \
}
#define SLDI_B2_UB(...) SLDI_B2(v16u8, __VA_ARGS__)
#define SLDI_B2_SB(...) SLDI_B2(v16i8, __VA_ARGS__)
#define SLDI_B2_SH(...) SLDI_B2(v8i16, __VA_ARGS__)
#define SLDI_B2_SW(...) SLDI_B2(v4i32, __VA_ARGS__)
#define SLDI_B3(RTYPE, d0, s0, d1, s1, d2, s2, slide_val, \
out0, out1, out2) \
{ \
SLDI_B2(RTYPE, d0, s0, d1, s1, slide_val, out0, out1) \
SLDI_B(RTYPE, d2, s2, slide_val, out2) \
}
#define SLDI_B3_UB(...) SLDI_B3(v16u8, __VA_ARGS__)
#define SLDI_B3_SB(...) SLDI_B3(v16i8, __VA_ARGS__)
#define SLDI_B3_UH(...) SLDI_B3(v8u16, __VA_ARGS__)
#define SLDI_B4(RTYPE, d0, s0, d1, s1, d2, s2, d3, s3, \
slide_val, out0, out1, out2, out3) \
{ \
SLDI_B2(RTYPE, d0, s0, d1, s1, slide_val, out0, out1) \
SLDI_B2(RTYPE, d2, s2, d3, s3, slide_val, out2, out3) \
}
#define SLDI_B4_UB(...) SLDI_B4(v16u8, __VA_ARGS__)
#define SLDI_B4_SB(...) SLDI_B4(v16i8, __VA_ARGS__)
#define SLDI_B4_SH(...) SLDI_B4(v8i16, __VA_ARGS__)
/* Description : Shuffle byte vector elements as per mask vector
Arguments : Inputs - in0, in1, in2, in3, mask0, mask1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Selective byte elements from in0 & in1 are copied to out0 as
per control vector mask0
Selective byte elements from in2 & in3 are copied to out1 as
per control vector mask1
*/
#define VSHF_B2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) \
{ \
out0 = (RTYPE) __msa_vshf_b((v16i8) mask0, (v16i8) in1, (v16i8) in0); \
out1 = (RTYPE) __msa_vshf_b((v16i8) mask1, (v16i8) in3, (v16i8) in2); \
}
#define VSHF_B2_UB(...) VSHF_B2(v16u8, __VA_ARGS__)
#define VSHF_B2_SB(...) VSHF_B2(v16i8, __VA_ARGS__)
#define VSHF_B2_UH(...) VSHF_B2(v8u16, __VA_ARGS__)
#define VSHF_B2_SH(...) VSHF_B2(v8i16, __VA_ARGS__)
#define VSHF_B3(RTYPE, in0, in1, in2, in3, in4, in5, mask0, mask1, mask2, \
out0, out1, out2) \
{ \
VSHF_B2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1); \
out2 = (RTYPE) __msa_vshf_b((v16i8) mask2, (v16i8) in5, (v16i8) in4); \
}
#define VSHF_B3_SB(...) VSHF_B3(v16i8, __VA_ARGS__)
#define VSHF_B4(RTYPE, in0, in1, mask0, mask1, mask2, mask3, \
out0, out1, out2, out3) \
{ \
VSHF_B2(RTYPE, in0, in1, in0, in1, mask0, mask1, out0, out1); \
VSHF_B2(RTYPE, in0, in1, in0, in1, mask2, mask3, out2, out3); \
}
#define VSHF_B4_SB(...) VSHF_B4(v16i8, __VA_ARGS__)
#define VSHF_B4_SH(...) VSHF_B4(v8i16, __VA_ARGS__)
/* Description : Shuffle halfword vector elements as per mask vector
Arguments : Inputs - in0, in1, in2, in3, mask0, mask1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Selective halfword elements from in0 & in1 are copied to out0
as per control vector mask0
Selective halfword elements from in2 & in3 are copied to out1
as per control vector mask1
*/
#define VSHF_H2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) \
{ \
out0 = (RTYPE) __msa_vshf_h((v8i16) mask0, (v8i16) in1, (v8i16) in0); \
out1 = (RTYPE) __msa_vshf_h((v8i16) mask1, (v8i16) in3, (v8i16) in2); \
}
#define VSHF_H2_SH(...) VSHF_H2(v8i16, __VA_ARGS__)
#define VSHF_H3(RTYPE, in0, in1, in2, in3, in4, in5, mask0, mask1, mask2, \
out0, out1, out2) \
{ \
VSHF_H2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1); \
out2 = (RTYPE) __msa_vshf_h((v8i16) mask2, (v8i16) in5, (v8i16) in4); \
}
#define VSHF_H3_SH(...) VSHF_H3(v8i16, __VA_ARGS__)
/* Description : Shuffle byte vector elements as per mask vector
Arguments : Inputs - in0, in1, in2, in3, mask0, mask1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Selective byte elements from in0 & in1 are copied to out0 as
per control vector mask0
Selective byte elements from in2 & in3 are copied to out1 as
per control vector mask1
*/
#define VSHF_W2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) \
{ \
out0 = (RTYPE) __msa_vshf_w((v4i32) mask0, (v4i32) in1, (v4i32) in0); \
out1 = (RTYPE) __msa_vshf_w((v4i32) mask1, (v4i32) in3, (v4i32) in2); \
}
#define VSHF_W2_SB(...) VSHF_W2(v16i8, __VA_ARGS__)
/* Description : Dot product of byte vector elements
Arguments : Inputs - mult0, mult1
cnst0, cnst1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Unsigned byte elements from mult0 are multiplied with
unsigned byte elements from cnst0 producing a result
twice the size of input i.e. unsigned halfword.
Then this multiplication results of adjacent odd-even elements
are added together and stored to the out vector
(2 unsigned halfword results)
*/
#define DOTP_UB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \
{ \
out0 = (RTYPE) __msa_dotp_u_h((v16u8) mult0, (v16u8) cnst0); \
out1 = (RTYPE) __msa_dotp_u_h((v16u8) mult1, (v16u8) cnst1); \
}
#define DOTP_UB2_UH(...) DOTP_UB2(v8u16, __VA_ARGS__)
#define DOTP_UB4(RTYPE, mult0, mult1, mult2, mult3, \
cnst0, cnst1, cnst2, cnst3, \
out0, out1, out2, out3) \
{ \
DOTP_UB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \
DOTP_UB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \
}
#define DOTP_UB4_UH(...) DOTP_UB4(v8u16, __VA_ARGS__)
/* Description : Dot product of byte vector elements
Arguments : Inputs - mult0, mult1
cnst0, cnst1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Signed byte elements from mult0 are multiplied with
signed byte elements from cnst0 producing a result
twice the size of input i.e. signed halfword.
Then this multiplication results of adjacent odd-even elements
are added together and stored to the out vector
(2 signed halfword results)
*/
#define DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \
{ \
out0 = (RTYPE) __msa_dotp_s_h((v16i8) mult0, (v16i8) cnst0); \
out1 = (RTYPE) __msa_dotp_s_h((v16i8) mult1, (v16i8) cnst1); \
}
#define DOTP_SB2_SH(...) DOTP_SB2(v8i16, __VA_ARGS__)
#define DOTP_SB3(RTYPE, mult0, mult1, mult2, cnst0, cnst1, cnst2, \
out0, out1, out2) \
{ \
DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \
out2 = (RTYPE) __msa_dotp_s_h((v16i8) mult2, (v16i8) cnst2); \
}
#define DOTP_SB3_SH(...) DOTP_SB3(v8i16, __VA_ARGS__)
#define DOTP_SB4(RTYPE, mult0, mult1, mult2, mult3, \
cnst0, cnst1, cnst2, cnst3, out0, out1, out2, out3) \
{ \
DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \
DOTP_SB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \
}
#define DOTP_SB4_SH(...) DOTP_SB4(v8i16, __VA_ARGS__)
/* Description : Dot product of halfword vector elements
Arguments : Inputs - mult0, mult1
cnst0, cnst1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Signed halfword elements from mult0 are multiplied with
signed halfword elements from cnst0 producing a result
twice the size of input i.e. signed word.
Then this multiplication results of adjacent odd-even elements
are added together and stored to the out vector
(2 signed word results)
*/
#define DOTP_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \
{ \
out0 = (RTYPE) __msa_dotp_s_w((v8i16) mult0, (v8i16) cnst0); \
out1 = (RTYPE) __msa_dotp_s_w((v8i16) mult1, (v8i16) cnst1); \
}
#define DOTP_SH2_SW(...) DOTP_SH2(v4i32, __VA_ARGS__)
#define DOTP_SH4(RTYPE, mult0, mult1, mult2, mult3, \
cnst0, cnst1, cnst2, cnst3, \
out0, out1, out2, out3) \
{ \
DOTP_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \
DOTP_SH2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \
}
#define DOTP_SH4_SW(...) DOTP_SH4(v4i32, __VA_ARGS__)
/* Description : Dot product & addition of byte vector elements
Arguments : Inputs - mult0, mult1
cnst0, cnst1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Signed byte elements from mult0 are multiplied with
signed byte elements from cnst0 producing a result
twice the size of input i.e. signed halfword.
Then this multiplication results of adjacent odd-even elements
are added to the out vector
(2 signed halfword results)
*/
#define DPADD_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \
{ \
out0 = (RTYPE) __msa_dpadd_s_h((v8i16) out0, \
(v16i8) mult0, (v16i8) cnst0); \
out1 = (RTYPE) __msa_dpadd_s_h((v8i16) out1, \
(v16i8) mult1, (v16i8) cnst1); \
}
#define DPADD_SB2_SH(...) DPADD_SB2(v8i16, __VA_ARGS__)
#define DPADD_SB4(RTYPE, mult0, mult1, mult2, mult3, \
cnst0, cnst1, cnst2, cnst3, out0, out1, out2, out3) \
{ \
DPADD_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \
DPADD_SB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \
}
#define DPADD_SB4_SH(...) DPADD_SB4(v8i16, __VA_ARGS__)
/* Description : Dot product & addition of byte vector elements
Arguments : Inputs - mult0, mult1
cnst0, cnst1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Unsigned byte elements from mult0 are multiplied with
unsigned byte elements from cnst0 producing a result
twice the size of input i.e. unsigned halfword.
Then this multiplication results of adjacent odd-even elements
are added to the out vector
(2 unsigned halfword results)
*/
#define DPADD_UB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \
{ \
out0 = (RTYPE) __msa_dpadd_u_h((v8u16) out0, \
(v16u8) mult0, (v16u8) cnst0); \
out1 = (RTYPE) __msa_dpadd_u_h((v8u16) out1, \
(v16u8) mult1, (v16u8) cnst1); \
}
#define DPADD_UB2_UH(...) DPADD_UB2(v8u16, __VA_ARGS__)
/* Description : Dot product & addition of halfword vector elements
Arguments : Inputs - mult0, mult1
cnst0, cnst1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Signed halfword elements from mult0 are multiplied with
signed halfword elements from cnst0 producing a result
twice the size of input i.e. signed word.
Then this multiplication results of adjacent odd-even elements
are added to the out vector
(2 signed word results)
*/
#define DPADD_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \
{ \
out0 = (RTYPE) __msa_dpadd_s_w((v4i32) out0, \
(v8i16) mult0, (v8i16) cnst0); \
out1 = (RTYPE) __msa_dpadd_s_w((v4i32) out1, \
(v8i16) mult1, (v8i16) cnst1); \
}
#define DPADD_SH2_SW(...) DPADD_SH2(v4i32, __VA_ARGS__)
#define DPADD_SH4(RTYPE, mult0, mult1, mult2, mult3, \
cnst0, cnst1, cnst2, cnst3, out0, out1, out2, out3) \
{ \
DPADD_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \
DPADD_SH2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \
}
#define DPADD_SH4_SW(...) DPADD_SH4(v4i32, __VA_ARGS__)
/* Description : Minimum values between unsigned elements of
either vector are copied to the output vector
Arguments : Inputs - in0, in1, min_vec
Outputs - in0, in1, (in place)
Return Type - as per RTYPE
Details : Minimum of unsigned halfword element values from 'in0' and
'min_value' are written to output vector 'in0'
*/
#define MIN_UH2(RTYPE, in0, in1, min_vec) \
{ \
in0 = (RTYPE) __msa_min_u_h((v8u16) in0, min_vec); \
in1 = (RTYPE) __msa_min_u_h((v8u16) in1, min_vec); \
}
#define MIN_UH2_UH(...) MIN_UH2(v8u16, __VA_ARGS__)
#define MIN_UH4(RTYPE, in0, in1, in2, in3, min_vec) \
{ \
MIN_UH2(RTYPE, in0, in1, min_vec); \
MIN_UH2(RTYPE, in2, in3, min_vec); \
}
#define MIN_UH4_UH(...) MIN_UH4(v8u16, __VA_ARGS__)
/* Description : Clips all halfword elements of input vector between min & max
out = ((in) < (min)) ? (min) : (((in) > (max)) ? (max) : (in))
Arguments : Inputs - in (input vector)
- min (min threshold)
- max (max threshold)
Outputs - in (output vector with clipped elements)
Return Type - signed halfword
*/
#define CLIP_SH(in, min, max) \
{ \
in = __msa_max_s_h((v8i16) min, (v8i16) in); \
in = __msa_min_s_h((v8i16) max, (v8i16) in); \
}
/* Description : Clips all signed halfword elements of input vector
between 0 & 255
Arguments : Inputs - in (input vector)
Outputs - in (output vector with clipped elements)
Return Type - signed halfwords
*/
#define CLIP_SH_0_255(in) \
{ \
in = __msa_maxi_s_h((v8i16) in, 0); \
in = (v8i16) __msa_sat_u_h((v8u16) in, 7); \
}
#define CLIP_SH2_0_255(in0, in1) \
{ \
CLIP_SH_0_255(in0); \
CLIP_SH_0_255(in1); \
}
#define CLIP_SH4_0_255(in0, in1, in2, in3) \
{ \
CLIP_SH2_0_255(in0, in1); \
CLIP_SH2_0_255(in2, in3); \
}
#define CLIP_SH8_0_255(in0, in1, in2, in3, \
in4, in5, in6, in7) \
{ \
CLIP_SH4_0_255(in0, in1, in2, in3); \
CLIP_SH4_0_255(in4, in5, in6, in7); \
}
/* Description : Clips all signed word elements of input vector
between 0 & 255
Arguments : Inputs - in (input vector)
Outputs - in (output vector with clipped elements)
Return Type - signed word
*/
#define CLIP_SW_0_255(in) \
{ \
in = __msa_maxi_s_w((v4i32) in, 0); \
in = (v4i32) __msa_sat_u_w((v4u32) in, 7); \
}
#define CLIP_SW2_0_255(in0, in1) \
{ \
CLIP_SW_0_255(in0); \
CLIP_SW_0_255(in1); \
}
#define CLIP_SW4_0_255(in0, in1, in2, in3) \
{ \
CLIP_SW2_0_255(in0, in1); \
CLIP_SW2_0_255(in2, in3); \
}
#define CLIP_SW8_0_255(in0, in1, in2, in3, \
in4, in5, in6, in7) \
{ \
CLIP_SW4_0_255(in0, in1, in2, in3); \
CLIP_SW4_0_255(in4, in5, in6, in7); \
}
/* Description : Addition of 4 signed word elements
4 signed word elements of input vector are added together and
resulted integer sum is returned
Arguments : Inputs - in (signed word vector)
Outputs - sum_m (i32 sum)
Return Type - signed word
*/
#define HADD_SW_S32(in) \
( { \
v2i64 res0_m, res1_m; \
int32_t sum_m; \
\
res0_m = __msa_hadd_s_d((v4i32) in, (v4i32) in); \
res1_m = __msa_splati_d(res0_m, 1); \
res0_m += res1_m; \
sum_m = __msa_copy_s_w((v4i32) res0_m, 0); \
sum_m; \
} )
/* Description : Addition of 8 unsigned halfword elements
8 unsigned halfword elements of input vector are added
together and resulted integer sum is returned
Arguments : Inputs - in (unsigned halfword vector)
Outputs - sum_m (u32 sum)
Return Type - unsigned word
*/
#define HADD_UH_U32(in) \
( { \
v4u32 res_m; \
v2u64 res0_m, res1_m; \
uint32_t sum_m; \
\
res_m = __msa_hadd_u_w((v8u16) in, (v8u16) in); \
res0_m = __msa_hadd_u_d(res_m, res_m); \
res1_m = (v2u64) __msa_splati_d((v2i64) res0_m, 1); \
res0_m += res1_m; \
sum_m = __msa_copy_u_w((v4i32) res0_m, 0); \
sum_m; \
} )
/* Description : Horizontal addition of signed byte vector elements
Arguments : Inputs - in0, in1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Each signed odd byte element from 'in0' is added to
even signed byte element from 'in0' (pairwise) and the
halfword result is stored in 'out0'
*/
#define HADD_SB2(RTYPE, in0, in1, out0, out1) \
{ \
out0 = (RTYPE) __msa_hadd_s_h((v16i8) in0, (v16i8) in0); \
out1 = (RTYPE) __msa_hadd_s_h((v16i8) in1, (v16i8) in1); \
}
#define HADD_SB2_SH(...) HADD_SB2(v8i16, __VA_ARGS__)
#define HADD_SB4(RTYPE, in0, in1, in2, in3, out0, out1, out2, out3) \
{ \
HADD_SB2(RTYPE, in0, in1, out0, out1); \
HADD_SB2(RTYPE, in2, in3, out2, out3); \
}
#define HADD_SB4_UH(...) HADD_SB4(v8u16, __VA_ARGS__)
#define HADD_SB4_SH(...) HADD_SB4(v8i16, __VA_ARGS__)
/* Description : Horizontal addition of unsigned byte vector elements
Arguments : Inputs - in0, in1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Each unsigned odd byte element from 'in0' is added to
even unsigned byte element from 'in0' (pairwise) and the
halfword result is stored in 'out0'
*/
#define HADD_UB2(RTYPE, in0, in1, out0, out1) \
{ \
out0 = (RTYPE) __msa_hadd_u_h((v16u8) in0, (v16u8) in0); \
out1 = (RTYPE) __msa_hadd_u_h((v16u8) in1, (v16u8) in1); \
}
#define HADD_UB2_UH(...) HADD_UB2(v8u16, __VA_ARGS__)
#define HADD_UB3(RTYPE, in0, in1, in2, out0, out1, out2) \
{ \
HADD_UB2(RTYPE, in0, in1, out0, out1); \
out2 = (RTYPE) __msa_hadd_u_h((v16u8) in2, (v16u8) in2); \
}
#define HADD_UB3_UH(...) HADD_UB3(v8u16, __VA_ARGS__)
#define HADD_UB4(RTYPE, in0, in1, in2, in3, out0, out1, out2, out3) \
{ \
HADD_UB2(RTYPE, in0, in1, out0, out1); \
HADD_UB2(RTYPE, in2, in3, out2, out3); \
}
#define HADD_UB4_UB(...) HADD_UB4(v16u8, __VA_ARGS__)
#define HADD_UB4_UH(...) HADD_UB4(v8u16, __VA_ARGS__)
#define HADD_UB4_SH(...) HADD_UB4(v8i16, __VA_ARGS__)
/* Description : Horizontal subtraction of unsigned byte vector elements
Arguments : Inputs - in0, in1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Each unsigned odd byte element from 'in0' is subtracted from
even unsigned byte element from 'in0' (pairwise) and the
halfword result is stored in 'out0'
*/
#define HSUB_UB2(RTYPE, in0, in1, out0, out1) \
{ \
out0 = (RTYPE) __msa_hsub_u_h((v16u8) in0, (v16u8) in0); \
out1 = (RTYPE) __msa_hsub_u_h((v16u8) in1, (v16u8) in1); \
}
#define HSUB_UB2_UH(...) HSUB_UB2(v8u16, __VA_ARGS__)
#define HSUB_UB2_SH(...) HSUB_UB2(v8i16, __VA_ARGS__)
#define HSUB_UB4(RTYPE, in0, in1, in2, in3, out0, out1, out2, out3) \
{ \
HSUB_UB2(RTYPE, in0, in1, out0, out1); \
HSUB_UB2(RTYPE, in2, in3, out2, out3); \
}
#define HSUB_UB4_UH(...) HSUB_UB4(v8u16, __VA_ARGS__)
#define HSUB_UB4_SH(...) HSUB_UB4(v8i16, __VA_ARGS__)
/* Description : SAD (Sum of Absolute Difference)
Arguments : Inputs - in0, in1, ref0, ref1 (unsigned byte src & ref)
Outputs - sad_m (halfword vector with sad)
Return Type - unsigned halfword
Details : Absolute difference of all the byte elements from 'in0' with
'ref0' is calculated and preserved in 'diff0'. From the 16
unsigned absolute diff values, even-odd pairs are added
together to generate 8 halfword results.
*/
#if HAVE_MSA2
#define SAD_UB2_UH(in0, in1, ref0, ref1) \
( { \
v8u16 sad_m = { 0 }; \
sad_m += __builtin_msa2_sad_adj2_u_w2x_b((v16u8) in0, (v16u8) ref0); \
sad_m += __builtin_msa2_sad_adj2_u_w2x_b((v16u8) in1, (v16u8) ref1); \
sad_m; \
} )
#else
#define SAD_UB2_UH(in0, in1, ref0, ref1) \
( { \
v16u8 diff0_m, diff1_m; \
v8u16 sad_m = { 0 }; \
\
diff0_m = __msa_asub_u_b((v16u8) in0, (v16u8) ref0); \
diff1_m = __msa_asub_u_b((v16u8) in1, (v16u8) ref1); \
\
sad_m += __msa_hadd_u_h((v16u8) diff0_m, (v16u8) diff0_m); \
sad_m += __msa_hadd_u_h((v16u8) diff1_m, (v16u8) diff1_m); \
\
sad_m; \
} )
#endif // #if HAVE_MSA2
/* Description : Insert specified word elements from input vectors to 1
destination vector
Arguments : Inputs - in0, in1, in2, in3 (4 input vectors)
Outputs - out (output vector)
Return Type - as per RTYPE
*/
#define INSERT_W2(RTYPE, in0, in1, out) \
{ \
out = (RTYPE) __msa_insert_w((v4i32) out, 0, in0); \
out = (RTYPE) __msa_insert_w((v4i32) out, 1, in1); \
}
#define INSERT_W2_UB(...) INSERT_W2(v16u8, __VA_ARGS__)
#define INSERT_W2_SB(...) INSERT_W2(v16i8, __VA_ARGS__)
#define INSERT_W4(RTYPE, in0, in1, in2, in3, out) \
{ \
out = (RTYPE) __msa_insert_w((v4i32) out, 0, in0); \
out = (RTYPE) __msa_insert_w((v4i32) out, 1, in1); \
out = (RTYPE) __msa_insert_w((v4i32) out, 2, in2); \
out = (RTYPE) __msa_insert_w((v4i32) out, 3, in3); \
}
#define INSERT_W4_UB(...) INSERT_W4(v16u8, __VA_ARGS__)
#define INSERT_W4_SB(...) INSERT_W4(v16i8, __VA_ARGS__)
#define INSERT_W4_SH(...) INSERT_W4(v8i16, __VA_ARGS__)
#define INSERT_W4_SW(...) INSERT_W4(v4i32, __VA_ARGS__)
/* Description : Insert specified double word elements from input vectors to 1
destination vector
Arguments : Inputs - in0, in1 (2 input vectors)
Outputs - out (output vector)
Return Type - as per RTYPE
*/
#define INSERT_D2(RTYPE, in0, in1, out) \
{ \
out = (RTYPE) __msa_insert_d((v2i64) out, 0, in0); \
out = (RTYPE) __msa_insert_d((v2i64) out, 1, in1); \
}
#define INSERT_D2_UB(...) INSERT_D2(v16u8, __VA_ARGS__)
#define INSERT_D2_SB(...) INSERT_D2(v16i8, __VA_ARGS__)
#define INSERT_D2_SH(...) INSERT_D2(v8i16, __VA_ARGS__)
#define INSERT_D2_SD(...) INSERT_D2(v2i64, __VA_ARGS__)
/* Description : Interleave even byte elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Even byte elements of 'in0' and even byte
elements of 'in1' are interleaved and copied to 'out0'
Even byte elements of 'in2' and even byte
elements of 'in3' are interleaved and copied to 'out1'
*/
#define ILVEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvev_b((v16i8) in1, (v16i8) in0); \
out1 = (RTYPE) __msa_ilvev_b((v16i8) in3, (v16i8) in2); \
}
#define ILVEV_B2_UB(...) ILVEV_B2(v16u8, __VA_ARGS__)
#define ILVEV_B2_SB(...) ILVEV_B2(v16i8, __VA_ARGS__)
#define ILVEV_B2_SH(...) ILVEV_B2(v8i16, __VA_ARGS__)
#define ILVEV_B2_SD(...) ILVEV_B2(v2i64, __VA_ARGS__)
/* Description : Interleave even halfword elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Even halfword elements of 'in0' and even halfword
elements of 'in1' are interleaved and copied to 'out0'
Even halfword elements of 'in2' and even halfword
elements of 'in3' are interleaved and copied to 'out1'
*/
#define ILVEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvev_h((v8i16) in1, (v8i16) in0); \
out1 = (RTYPE) __msa_ilvev_h((v8i16) in3, (v8i16) in2); \
}
#define ILVEV_H2_UB(...) ILVEV_H2(v16u8, __VA_ARGS__)
#define ILVEV_H2_SH(...) ILVEV_H2(v8i16, __VA_ARGS__)
#define ILVEV_H2_SW(...) ILVEV_H2(v4i32, __VA_ARGS__)
/* Description : Interleave even word elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Even word elements of 'in0' and even word
elements of 'in1' are interleaved and copied to 'out0'
Even word elements of 'in2' and even word
elements of 'in3' are interleaved and copied to 'out1'
*/
#define ILVEV_W2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvev_w((v4i32) in1, (v4i32) in0); \
out1 = (RTYPE) __msa_ilvev_w((v4i32) in3, (v4i32) in2); \
}
#define ILVEV_W2_UB(...) ILVEV_W2(v16u8, __VA_ARGS__)
#define ILVEV_W2_SB(...) ILVEV_W2(v16i8, __VA_ARGS__)
#define ILVEV_W2_UH(...) ILVEV_W2(v8u16, __VA_ARGS__)
#define ILVEV_W2_SD(...) ILVEV_W2(v2i64, __VA_ARGS__)
/* Description : Interleave even double word elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Even double word elements of 'in0' and even double word
elements of 'in1' are interleaved and copied to 'out0'
Even double word elements of 'in2' and even double word
elements of 'in3' are interleaved and copied to 'out1'
*/
#define ILVEV_D2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvev_d((v2i64) in1, (v2i64) in0); \
out1 = (RTYPE) __msa_ilvev_d((v2i64) in3, (v2i64) in2); \
}
#define ILVEV_D2_UB(...) ILVEV_D2(v16u8, __VA_ARGS__)
#define ILVEV_D2_SB(...) ILVEV_D2(v16i8, __VA_ARGS__)
#define ILVEV_D2_SW(...) ILVEV_D2(v4i32, __VA_ARGS__)
/* Description : Interleave left half of byte elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Left half of byte elements of in0 and left half of byte
elements of in1 are interleaved and copied to out0.
Left half of byte elements of in2 and left half of byte
elements of in3 are interleaved and copied to out1.
*/
#define ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvl_b((v16i8) in0, (v16i8) in1); \
out1 = (RTYPE) __msa_ilvl_b((v16i8) in2, (v16i8) in3); \
}
#define ILVL_B2_UB(...) ILVL_B2(v16u8, __VA_ARGS__)
#define ILVL_B2_SB(...) ILVL_B2(v16i8, __VA_ARGS__)
#define ILVL_B2_UH(...) ILVL_B2(v8u16, __VA_ARGS__)
#define ILVL_B2_SH(...) ILVL_B2(v8i16, __VA_ARGS__)
#define ILVL_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1); \
ILVL_B2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define ILVL_B4_UB(...) ILVL_B4(v16u8, __VA_ARGS__)
#define ILVL_B4_SB(...) ILVL_B4(v16i8, __VA_ARGS__)
#define ILVL_B4_UH(...) ILVL_B4(v8u16, __VA_ARGS__)
#define ILVL_B4_SH(...) ILVL_B4(v8i16, __VA_ARGS__)
/* Description : Interleave left half of halfword elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Left half of halfword elements of in0 and left half of halfword
elements of in1 are interleaved and copied to out0.
Left half of halfword elements of in2 and left half of halfword
elements of in3 are interleaved and copied to out1.
*/
#define ILVL_H2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvl_h((v8i16) in0, (v8i16) in1); \
out1 = (RTYPE) __msa_ilvl_h((v8i16) in2, (v8i16) in3); \
}
#define ILVL_H2_SH(...) ILVL_H2(v8i16, __VA_ARGS__)
#define ILVL_H2_SW(...) ILVL_H2(v4i32, __VA_ARGS__)
#define ILVL_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
ILVL_H2(RTYPE, in0, in1, in2, in3, out0, out1); \
ILVL_H2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define ILVL_H4_SH(...) ILVL_H4(v8i16, __VA_ARGS__)
#define ILVL_H4_SW(...) ILVL_H4(v4i32, __VA_ARGS__)
/* Description : Interleave left half of word elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Left half of word elements of in0 and left half of word
elements of in1 are interleaved and copied to out0.
Left half of word elements of in2 and left half of word
elements of in3 are interleaved and copied to out1.
*/
#define ILVL_W2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvl_w((v4i32) in0, (v4i32) in1); \
out1 = (RTYPE) __msa_ilvl_w((v4i32) in2, (v4i32) in3); \
}
#define ILVL_W2_UB(...) ILVL_W2(v16u8, __VA_ARGS__)
#define ILVL_W2_SB(...) ILVL_W2(v16i8, __VA_ARGS__)
#define ILVL_W2_SH(...) ILVL_W2(v8i16, __VA_ARGS__)
/* Description : Interleave right half of byte elements from vectors
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7
Outputs - out0, out1, out2, out3
Return Type - as per RTYPE
Details : Right half of byte elements of in0 and right half of byte
elements of in1 are interleaved and copied to out0.
Right half of byte elements of in2 and right half of byte
elements of in3 are interleaved and copied to out1.
Similar for other pairs
*/
#define ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvr_b((v16i8) in0, (v16i8) in1); \
out1 = (RTYPE) __msa_ilvr_b((v16i8) in2, (v16i8) in3); \
}
#define ILVR_B2_UB(...) ILVR_B2(v16u8, __VA_ARGS__)
#define ILVR_B2_SB(...) ILVR_B2(v16i8, __VA_ARGS__)
#define ILVR_B2_UH(...) ILVR_B2(v8u16, __VA_ARGS__)
#define ILVR_B2_SH(...) ILVR_B2(v8i16, __VA_ARGS__)
#define ILVR_B2_SW(...) ILVR_B2(v4i32, __VA_ARGS__)
#define ILVR_B3(RTYPE, in0, in1, in2, in3, in4, in5, out0, out1, out2) \
{ \
ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1); \
out2 = (RTYPE) __msa_ilvr_b((v16i8) in4, (v16i8) in5); \
}
#define ILVR_B3_UB(...) ILVR_B3(v16u8, __VA_ARGS__)
#define ILVR_B3_SB(...) ILVR_B3(v16i8, __VA_ARGS__)
#define ILVR_B3_UH(...) ILVR_B3(v8u16, __VA_ARGS__)
#define ILVR_B3_SH(...) ILVR_B3(v8i16, __VA_ARGS__)
#define ILVR_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1); \
ILVR_B2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define ILVR_B4_UB(...) ILVR_B4(v16u8, __VA_ARGS__)
#define ILVR_B4_SB(...) ILVR_B4(v16i8, __VA_ARGS__)
#define ILVR_B4_UH(...) ILVR_B4(v8u16, __VA_ARGS__)
#define ILVR_B4_SH(...) ILVR_B4(v8i16, __VA_ARGS__)
#define ILVR_B4_SW(...) ILVR_B4(v4i32, __VA_ARGS__)
#define ILVR_B8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
in8, in9, in10, in11, in12, in13, in14, in15, \
out0, out1, out2, out3, out4, out5, out6, out7) \
{ \
ILVR_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3); \
ILVR_B4(RTYPE, in8, in9, in10, in11, in12, in13, in14, in15, \
out4, out5, out6, out7); \
}
#define ILVR_B8_UH(...) ILVR_B8(v8u16, __VA_ARGS__)
/* Description : Interleave right half of halfword elements from vectors
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7
Outputs - out0, out1, out2, out3
Return Type - as per RTYPE
Details : Right half of halfword elements of in0 and right half of
halfword elements of in1 are interleaved and copied to out0.
Right half of halfword elements of in2 and right half of
halfword elements of in3 are interleaved and copied to out1.
Similar for other pairs
*/
#define ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvr_h((v8i16) in0, (v8i16) in1); \
out1 = (RTYPE) __msa_ilvr_h((v8i16) in2, (v8i16) in3); \
}
#define ILVR_H2_SH(...) ILVR_H2(v8i16, __VA_ARGS__)
#define ILVR_H2_SW(...) ILVR_H2(v4i32, __VA_ARGS__)
#define ILVR_H3(RTYPE, in0, in1, in2, in3, in4, in5, out0, out1, out2) \
{ \
ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1); \
out2 = (RTYPE) __msa_ilvr_h((v8i16) in4, (v8i16) in5); \
}
#define ILVR_H3_SH(...) ILVR_H3(v8i16, __VA_ARGS__)
#define ILVR_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1); \
ILVR_H2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define ILVR_H4_SH(...) ILVR_H4(v8i16, __VA_ARGS__)
#define ILVR_H4_SW(...) ILVR_H4(v4i32, __VA_ARGS__)
#define ILVR_W2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvr_w((v4i32) in0, (v4i32) in1); \
out1 = (RTYPE) __msa_ilvr_w((v4i32) in2, (v4i32) in3); \
}
#define ILVR_W2_UB(...) ILVR_W2(v16u8, __VA_ARGS__)
#define ILVR_W2_SB(...) ILVR_W2(v16i8, __VA_ARGS__)
#define ILVR_W2_SH(...) ILVR_W2(v8i16, __VA_ARGS__)
#define ILVR_W4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
ILVR_W2(RTYPE, in0, in1, in2, in3, out0, out1); \
ILVR_W2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define ILVR_W4_SB(...) ILVR_W4(v16i8, __VA_ARGS__)
#define ILVR_W4_UB(...) ILVR_W4(v16u8, __VA_ARGS__)
/* Description : Interleave right half of double word elements from vectors
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7
Outputs - out0, out1, out2, out3
Return Type - as per RTYPE
Details : Right half of double word elements of in0 and right half of
double word elements of in1 are interleaved and copied to out0.
Right half of double word elements of in2 and right half of
double word elements of in3 are interleaved and copied to out1.
*/
#define ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvr_d((v2i64) in0, (v2i64) in1); \
out1 = (RTYPE) __msa_ilvr_d((v2i64) in2, (v2i64) in3); \
}
#define ILVR_D2_UB(...) ILVR_D2(v16u8, __VA_ARGS__)
#define ILVR_D2_SB(...) ILVR_D2(v16i8, __VA_ARGS__)
#define ILVR_D2_SH(...) ILVR_D2(v8i16, __VA_ARGS__)
#define ILVR_D3(RTYPE, in0, in1, in2, in3, in4, in5, out0, out1, out2) \
{ \
ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1); \
out2 = (RTYPE) __msa_ilvr_d((v2i64) in4, (v2i64) in5); \
}
#define ILVR_D3_SB(...) ILVR_D3(v16i8, __VA_ARGS__)
#define ILVR_D4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1); \
ILVR_D2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define ILVR_D4_SB(...) ILVR_D4(v16i8, __VA_ARGS__)
#define ILVR_D4_UB(...) ILVR_D4(v16u8, __VA_ARGS__)
/* Description : Interleave left half of double word elements from vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Left half of double word elements of in0 and left half of
double word elements of in1 are interleaved and copied to out0.
Left half of double word elements of in2 and left half of
double word elements of in3 are interleaved and copied to out1.
*/
#define ILVL_D2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvl_d((v2i64) in0, (v2i64) in1); \
out1 = (RTYPE) __msa_ilvl_d((v2i64) in2, (v2i64) in3); \
}
#define ILVL_D2_UB(...) ILVL_D2(v16u8, __VA_ARGS__)
#define ILVL_D2_SB(...) ILVL_D2(v16i8, __VA_ARGS__)
#define ILVL_D2_SH(...) ILVL_D2(v8i16, __VA_ARGS__)
/* Description : Interleave both left and right half of input vectors
Arguments : Inputs - in0, in1
Outputs - out0, out1
Return Type - as per RTYPE
Details : Right half of byte elements from 'in0' and 'in1' are
interleaved and stored to 'out0'
Left half of byte elements from 'in0' and 'in1' are
interleaved and stored to 'out1'
*/
#define ILVRL_B2(RTYPE, in0, in1, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvr_b((v16i8) in0, (v16i8) in1); \
out1 = (RTYPE) __msa_ilvl_b((v16i8) in0, (v16i8) in1); \
}
#define ILVRL_B2_UB(...) ILVRL_B2(v16u8, __VA_ARGS__)
#define ILVRL_B2_SB(...) ILVRL_B2(v16i8, __VA_ARGS__)
#define ILVRL_B2_UH(...) ILVRL_B2(v8u16, __VA_ARGS__)
#define ILVRL_B2_SH(...) ILVRL_B2(v8i16, __VA_ARGS__)
#define ILVRL_B2_SW(...) ILVRL_B2(v4i32, __VA_ARGS__)
#define ILVRL_H2(RTYPE, in0, in1, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvr_h((v8i16) in0, (v8i16) in1); \
out1 = (RTYPE) __msa_ilvl_h((v8i16) in0, (v8i16) in1); \
}
#define ILVRL_H2_UB(...) ILVRL_H2(v16u8, __VA_ARGS__)
#define ILVRL_H2_SB(...) ILVRL_H2(v16i8, __VA_ARGS__)
#define ILVRL_H2_SH(...) ILVRL_H2(v8i16, __VA_ARGS__)
#define ILVRL_H2_SW(...) ILVRL_H2(v4i32, __VA_ARGS__)
#define ILVRL_W2(RTYPE, in0, in1, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvr_w((v4i32) in0, (v4i32) in1); \
out1 = (RTYPE) __msa_ilvl_w((v4i32) in0, (v4i32) in1); \
}
#define ILVRL_W2_UB(...) ILVRL_W2(v16u8, __VA_ARGS__)
#define ILVRL_W2_SH(...) ILVRL_W2(v8i16, __VA_ARGS__)
#define ILVRL_W2_SW(...) ILVRL_W2(v4i32, __VA_ARGS__)
/* Description : Maximum values between signed elements of vector and
5-bit signed immediate value are copied to the output vector
Arguments : Inputs - in0, in1, in2, in3, max_val
Outputs - in0, in1, in2, in3 (in place)
Return Type - as per RTYPE
Details : Maximum of signed halfword element values from 'in0' and
'max_val' are written to output vector 'in0'
*/
#define MAXI_SH2(RTYPE, in0, in1, max_val) \
{ \
in0 = (RTYPE) __msa_maxi_s_h((v8i16) in0, max_val); \
in1 = (RTYPE) __msa_maxi_s_h((v8i16) in1, max_val); \
}
#define MAXI_SH2_UH(...) MAXI_SH2(v8u16, __VA_ARGS__)
#define MAXI_SH2_SH(...) MAXI_SH2(v8i16, __VA_ARGS__)
#define MAXI_SH4(RTYPE, in0, in1, in2, in3, max_val) \
{ \
MAXI_SH2(RTYPE, in0, in1, max_val); \
MAXI_SH2(RTYPE, in2, in3, max_val); \
}
#define MAXI_SH4_UH(...) MAXI_SH4(v8u16, __VA_ARGS__)
#define MAXI_SH4_SH(...) MAXI_SH4(v8i16, __VA_ARGS__)
#define MAXI_SH8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, max_val) \
{ \
MAXI_SH4(RTYPE, in0, in1, in2, in3, max_val); \
MAXI_SH4(RTYPE, in4, in5, in6, in7, max_val); \
}
#define MAXI_SH8_UH(...) MAXI_SH8(v8u16, __VA_ARGS__)
#define MAXI_SH8_SH(...) MAXI_SH8(v8i16, __VA_ARGS__)
/* Description : Saturate the halfword element values to the max
unsigned value of (sat_val+1 bits)
The element data width remains unchanged
Arguments : Inputs - in0, in1, in2, in3, sat_val
Outputs - in0, in1, in2, in3 (in place)
Return Type - as per RTYPE
Details : Each unsigned halfword element from 'in0' is saturated to the
value generated with (sat_val+1) bit range
Results are in placed to original vectors
*/
#define SAT_UH2(RTYPE, in0, in1, sat_val) \
{ \
in0 = (RTYPE) __msa_sat_u_h((v8u16) in0, sat_val); \
in1 = (RTYPE) __msa_sat_u_h((v8u16) in1, sat_val); \
}
#define SAT_UH2_UH(...) SAT_UH2(v8u16, __VA_ARGS__)
#define SAT_UH2_SH(...) SAT_UH2(v8i16, __VA_ARGS__)
#define SAT_UH4(RTYPE, in0, in1, in2, in3, sat_val) \
{ \
SAT_UH2(RTYPE, in0, in1, sat_val); \
SAT_UH2(RTYPE, in2, in3, sat_val); \
}
#define SAT_UH4_UH(...) SAT_UH4(v8u16, __VA_ARGS__)
#define SAT_UH4_SH(...) SAT_UH4(v8i16, __VA_ARGS__)
#define SAT_UH8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, sat_val) \
{ \
SAT_UH4(RTYPE, in0, in1, in2, in3, sat_val); \
SAT_UH4(RTYPE, in4, in5, in6, in7, sat_val); \
}
#define SAT_UH8_UH(...) SAT_UH8(v8u16, __VA_ARGS__)
#define SAT_UH8_SH(...) SAT_UH8(v8i16, __VA_ARGS__)
/* Description : Saturate the halfword element values to the max
unsigned value of (sat_val+1 bits)
The element data width remains unchanged
Arguments : Inputs - in0, in1, in2, in3, sat_val
Outputs - in0, in1, in2, in3 (in place)
Return Type - as per RTYPE
Details : Each unsigned halfword element from 'in0' is saturated to the
value generated with (sat_val+1) bit range
Results are in placed to original vectors
*/
#define SAT_SH2(RTYPE, in0, in1, sat_val) \
{ \
in0 = (RTYPE) __msa_sat_s_h((v8i16) in0, sat_val); \
in1 = (RTYPE) __msa_sat_s_h((v8i16) in1, sat_val); \
}
#define SAT_SH2_SH(...) SAT_SH2(v8i16, __VA_ARGS__)
#define SAT_SH3(RTYPE, in0, in1, in2, sat_val) \
{ \
SAT_SH2(RTYPE, in0, in1, sat_val); \
in2 = (RTYPE) __msa_sat_s_h((v8i16) in2, sat_val); \
}
#define SAT_SH3_SH(...) SAT_SH3(v8i16, __VA_ARGS__)
#define SAT_SH4(RTYPE, in0, in1, in2, in3, sat_val) \
{ \
SAT_SH2(RTYPE, in0, in1, sat_val); \
SAT_SH2(RTYPE, in2, in3, sat_val); \
}
#define SAT_SH4_SH(...) SAT_SH4(v8i16, __VA_ARGS__)
/* Description : Saturate the word element values to the max
unsigned value of (sat_val+1 bits)
The element data width remains unchanged
Arguments : Inputs - in0, in1, in2, in3, sat_val
Outputs - in0, in1, in2, in3 (in place)
Return Type - as per RTYPE
Details : Each unsigned word element from 'in0' is saturated to the
value generated with (sat_val+1) bit range
Results are in placed to original vectors
*/
#define SAT_SW2(RTYPE, in0, in1, sat_val) \
{ \
in0 = (RTYPE) __msa_sat_s_w((v4i32) in0, sat_val); \
in1 = (RTYPE) __msa_sat_s_w((v4i32) in1, sat_val); \
}
#define SAT_SW2_SW(...) SAT_SW2(v4i32, __VA_ARGS__)
#define SAT_SW4(RTYPE, in0, in1, in2, in3, sat_val) \
{ \
SAT_SW2(RTYPE, in0, in1, sat_val); \
SAT_SW2(RTYPE, in2, in3, sat_val); \
}
#define SAT_SW4_SW(...) SAT_SW4(v4i32, __VA_ARGS__)
/* Description : Indexed halfword element values are replicated to all
elements in output vector
Arguments : Inputs - in, idx0, idx1
Outputs - out0, out1
Return Type - as per RTYPE
Details : 'idx0' element value from 'in' vector is replicated to all
elements in 'out0' vector
Valid index range for halfword operation is 0-7
*/
#define SPLATI_H2(RTYPE, in, idx0, idx1, out0, out1) \
{ \
out0 = (RTYPE) __msa_splati_h((v8i16) in, idx0); \
out1 = (RTYPE) __msa_splati_h((v8i16) in, idx1); \
}
#define SPLATI_H2_SB(...) SPLATI_H2(v16i8, __VA_ARGS__)
#define SPLATI_H2_SH(...) SPLATI_H2(v8i16, __VA_ARGS__)
#define SPLATI_H3(RTYPE, in, idx0, idx1, idx2, \
out0, out1, out2) \
{ \
SPLATI_H2(RTYPE, in, idx0, idx1, out0, out1); \
out2 = (RTYPE) __msa_splati_h((v8i16) in, idx2); \
}
#define SPLATI_H3_SB(...) SPLATI_H3(v16i8, __VA_ARGS__)
#define SPLATI_H3_SH(...) SPLATI_H3(v8i16, __VA_ARGS__)
#define SPLATI_H4(RTYPE, in, idx0, idx1, idx2, idx3, \
out0, out1, out2, out3) \
{ \
SPLATI_H2(RTYPE, in, idx0, idx1, out0, out1); \
SPLATI_H2(RTYPE, in, idx2, idx3, out2, out3); \
}
#define SPLATI_H4_SB(...) SPLATI_H4(v16i8, __VA_ARGS__)
#define SPLATI_H4_SH(...) SPLATI_H4(v8i16, __VA_ARGS__)
/* Description : Indexed word element values are replicated to all
elements in output vector
Arguments : Inputs - in, stidx
Outputs - out0, out1
Return Type - as per RTYPE
Details : 'stidx' element value from 'in' vector is replicated to all
elements in 'out0' vector
'stidx + 1' element value from 'in' vector is replicated to all
elements in 'out1' vector
Valid index range for halfword operation is 0-3
*/
#define SPLATI_W2(RTYPE, in, stidx, out0, out1) \
{ \
out0 = (RTYPE) __msa_splati_w((v4i32) in, stidx); \
out1 = (RTYPE) __msa_splati_w((v4i32) in, (stidx+1)); \
}
#define SPLATI_W2_SH(...) SPLATI_W2(v8i16, __VA_ARGS__)
#define SPLATI_W2_SW(...) SPLATI_W2(v4i32, __VA_ARGS__)
#define SPLATI_W4(RTYPE, in, out0, out1, out2, out3) \
{ \
SPLATI_W2(RTYPE, in, 0, out0, out1); \
SPLATI_W2(RTYPE, in, 2, out2, out3); \
}
#define SPLATI_W4_SH(...) SPLATI_W4(v8i16, __VA_ARGS__)
#define SPLATI_W4_SW(...) SPLATI_W4(v4i32, __VA_ARGS__)
/* Description : Pack even byte elements of vector pairs
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Even byte elements of in0 are copied to the left half of
out0 & even byte elements of in1 are copied to the right
half of out0.
Even byte elements of in2 are copied to the left half of
out1 & even byte elements of in3 are copied to the right
half of out1.
*/
#define PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_pckev_b((v16i8) in0, (v16i8) in1); \
out1 = (RTYPE) __msa_pckev_b((v16i8) in2, (v16i8) in3); \
}
#define PCKEV_B2_SB(...) PCKEV_B2(v16i8, __VA_ARGS__)
#define PCKEV_B2_UB(...) PCKEV_B2(v16u8, __VA_ARGS__)
#define PCKEV_B2_SH(...) PCKEV_B2(v8i16, __VA_ARGS__)
#define PCKEV_B2_SW(...) PCKEV_B2(v4i32, __VA_ARGS__)
#define PCKEV_B3(RTYPE, in0, in1, in2, in3, in4, in5, out0, out1, out2) \
{ \
PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1); \
out2 = (RTYPE) __msa_pckev_b((v16i8) in4, (v16i8) in5); \
}
#define PCKEV_B3_UB(...) PCKEV_B3(v16u8, __VA_ARGS__)
#define PCKEV_B3_SB(...) PCKEV_B3(v16i8, __VA_ARGS__)
#define PCKEV_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1); \
PCKEV_B2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define PCKEV_B4_SB(...) PCKEV_B4(v16i8, __VA_ARGS__)
#define PCKEV_B4_UB(...) PCKEV_B4(v16u8, __VA_ARGS__)
#define PCKEV_B4_SH(...) PCKEV_B4(v8i16, __VA_ARGS__)
#define PCKEV_B4_SW(...) PCKEV_B4(v4i32, __VA_ARGS__)
/* Description : Pack even halfword elements of vector pairs
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Even halfword elements of in0 are copied to the left half of
out0 & even halfword elements of in1 are copied to the right
half of out0.
Even halfword elements of in2 are copied to the left half of
out1 & even halfword elements of in3 are copied to the right
half of out1.
*/
#define PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_pckev_h((v8i16) in0, (v8i16) in1); \
out1 = (RTYPE) __msa_pckev_h((v8i16) in2, (v8i16) in3); \
}
#define PCKEV_H2_SH(...) PCKEV_H2(v8i16, __VA_ARGS__)
#define PCKEV_H2_SW(...) PCKEV_H2(v4i32, __VA_ARGS__)
#define PCKEV_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1); \
PCKEV_H2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define PCKEV_H4_SH(...) PCKEV_H4(v8i16, __VA_ARGS__)
#define PCKEV_H4_SW(...) PCKEV_H4(v4i32, __VA_ARGS__)
/* Description : Pack even double word elements of vector pairs
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Even double elements of in0 are copied to the left half of
out0 & even double elements of in1 are copied to the right
half of out0.
Even double elements of in2 are copied to the left half of
out1 & even double elements of in3 are copied to the right
half of out1.
*/
#define PCKEV_D2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_pckev_d((v2i64) in0, (v2i64) in1); \
out1 = (RTYPE) __msa_pckev_d((v2i64) in2, (v2i64) in3); \
}
#define PCKEV_D2_UB(...) PCKEV_D2(v16u8, __VA_ARGS__)
#define PCKEV_D2_SB(...) PCKEV_D2(v16i8, __VA_ARGS__)
#define PCKEV_D2_SH(...) PCKEV_D2(v8i16, __VA_ARGS__)
#define PCKEV_D4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
PCKEV_D2(RTYPE, in0, in1, in2, in3, out0, out1); \
PCKEV_D2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define PCKEV_D4_UB(...) PCKEV_D4(v16u8, __VA_ARGS__)
/* Description : Pack odd double word elements of vector pairs
Arguments : Inputs - in0, in1
Outputs - out0, out1
Return Type - as per RTYPE
Details : As operation is on same input 'in0' vector, index 1 double word
element is overwritten to index 0 and result is written to out0
As operation is on same input 'in1' vector, index 1 double word
element is overwritten to index 0 and result is written to out1
*/
#define PCKOD_D2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_pckod_d((v2i64) in0, (v2i64) in1); \
out1 = (RTYPE) __msa_pckod_d((v2i64) in2, (v2i64) in3); \
}
#define PCKOD_D2_UB(...) PCKOD_D2(v16u8, __VA_ARGS__)
#define PCKOD_D2_SH(...) PCKOD_D2(v8i16, __VA_ARGS__)
#define PCKOD_D2_SD(...) PCKOD_D2(v2i64, __VA_ARGS__)
/* Description : Each byte element is logically xor'ed with immediate 128
Arguments : Inputs - in0, in1
Outputs - in0, in1 (in-place)
Return Type - as per RTYPE
Details : Each unsigned byte element from input vector 'in0' is
logically xor'ed with 128 and result is in-place stored in
'in0' vector
Each unsigned byte element from input vector 'in1' is
logically xor'ed with 128 and result is in-place stored in
'in1' vector
Similar for other pairs
*/
#define XORI_B2_128(RTYPE, in0, in1) \
{ \
in0 = (RTYPE) __msa_xori_b((v16u8) in0, 128); \
in1 = (RTYPE) __msa_xori_b((v16u8) in1, 128); \
}
#define XORI_B2_128_UB(...) XORI_B2_128(v16u8, __VA_ARGS__)
#define XORI_B2_128_SB(...) XORI_B2_128(v16i8, __VA_ARGS__)
#define XORI_B2_128_SH(...) XORI_B2_128(v8i16, __VA_ARGS__)
#define XORI_B3_128(RTYPE, in0, in1, in2) \
{ \
XORI_B2_128(RTYPE, in0, in1); \
in2 = (RTYPE) __msa_xori_b((v16u8) in2, 128); \
}
#define XORI_B3_128_SB(...) XORI_B3_128(v16i8, __VA_ARGS__)
#define XORI_B4_128(RTYPE, in0, in1, in2, in3) \
{ \
XORI_B2_128(RTYPE, in0, in1); \
XORI_B2_128(RTYPE, in2, in3); \
}
#define XORI_B4_128_UB(...) XORI_B4_128(v16u8, __VA_ARGS__)
#define XORI_B4_128_SB(...) XORI_B4_128(v16i8, __VA_ARGS__)
#define XORI_B4_128_SH(...) XORI_B4_128(v8i16, __VA_ARGS__)
#define XORI_B5_128(RTYPE, in0, in1, in2, in3, in4) \
{ \
XORI_B3_128(RTYPE, in0, in1, in2); \
XORI_B2_128(RTYPE, in3, in4); \
}
#define XORI_B5_128_SB(...) XORI_B5_128(v16i8, __VA_ARGS__)
#define XORI_B6_128(RTYPE, in0, in1, in2, in3, in4, in5) \
{ \
XORI_B4_128(RTYPE, in0, in1, in2, in3); \
XORI_B2_128(RTYPE, in4, in5); \
}
#define XORI_B6_128_SB(...) XORI_B6_128(v16i8, __VA_ARGS__)
#define XORI_B7_128(RTYPE, in0, in1, in2, in3, in4, in5, in6) \
{ \
XORI_B4_128(RTYPE, in0, in1, in2, in3); \
XORI_B3_128(RTYPE, in4, in5, in6); \
}
#define XORI_B7_128_SB(...) XORI_B7_128(v16i8, __VA_ARGS__)
#define XORI_B8_128(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7) \
{ \
XORI_B4_128(RTYPE, in0, in1, in2, in3); \
XORI_B4_128(RTYPE, in4, in5, in6, in7); \
}
#define XORI_B8_128_SB(...) XORI_B8_128(v16i8, __VA_ARGS__)
#define XORI_B8_128_UB(...) XORI_B8_128(v16u8, __VA_ARGS__)
/* Description : Addition of signed halfword elements and signed saturation
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Return Type - as per RTYPE
Details : Signed halfword elements from 'in0' are added to signed
halfword elements of 'in1'. The result is then signed saturated
between -32768 to +32767 (as per halfword data type)
Similar for other pairs
*/
#define ADDS_SH2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_adds_s_h((v8i16) in0, (v8i16) in1); \
out1 = (RTYPE) __msa_adds_s_h((v8i16) in2, (v8i16) in3); \
}
#define ADDS_SH2_SH(...) ADDS_SH2(v8i16, __VA_ARGS__)
#define ADDS_SH4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
ADDS_SH2(RTYPE, in0, in1, in2, in3, out0, out1); \
ADDS_SH2(RTYPE, in4, in5, in6, in7, out2, out3); \
}
#define ADDS_SH4_UH(...) ADDS_SH4(v8u16, __VA_ARGS__)
#define ADDS_SH4_SH(...) ADDS_SH4(v8i16, __VA_ARGS__)
/* Description : Shift left all elements of vector (generic for all data types)
Arguments : Inputs - in0, in1, in2, in3, shift
Outputs - in0, in1, in2, in3 (in place)
Return Type - as per input vector RTYPE
Details : Each element of vector 'in0' is left shifted by 'shift' and
result is in place written to 'in0'
Similar for other pairs
*/
#define SLLI_2V(in0, in1, shift) \
{ \
in0 = in0 << shift; \
in1 = in1 << shift; \
}
#define SLLI_4V(in0, in1, in2, in3, shift) \
{ \
in0 = in0 << shift; \
in1 = in1 << shift; \
in2 = in2 << shift; \
in3 = in3 << shift; \
}
/* Description : Arithmetic shift right all elements of vector
(generic for all data types)
Arguments : Inputs - in0, in1, in2, in3, shift
Outputs - in0, in1, in2, in3 (in place)
Return Type - as per input vector RTYPE
Details : Each element of vector 'in0' is right shifted by 'shift' and
result is in place written to 'in0'
Here, 'shift' is GP variable passed in
Similar for other pairs
*/
#define SRA_4V(in0, in1, in2, in3, shift) \
{ \
in0 = in0 >> shift; \
in1 = in1 >> shift; \
in2 = in2 >> shift; \
in3 = in3 >> shift; \
}
/* Description : Shift right logical all halfword elements of vector
Arguments : Inputs - in0, in1, in2, in3, shift
Outputs - in0, in1, in2, in3 (in place)
Return Type - as per RTYPE
Details : Each element of vector 'in0' is shifted right logical by
number of bits respective element holds in vector 'shift' and
result is in place written to 'in0'
Here, 'shift' is a vector passed in
Similar for other pairs
*/
#define SRL_H4(RTYPE, in0, in1, in2, in3, shift) \
{ \
in0 = (RTYPE) __msa_srl_h((v8i16) in0, (v8i16) shift); \
in1 = (RTYPE) __msa_srl_h((v8i16) in1, (v8i16) shift); \
in2 = (RTYPE) __msa_srl_h((v8i16) in2, (v8i16) shift); \
in3 = (RTYPE) __msa_srl_h((v8i16) in3, (v8i16) shift); \
}
#define SRL_H4_UH(...) SRL_H4(v8u16, __VA_ARGS__)
#define SRLR_H4(RTYPE, in0, in1, in2, in3, shift) \
{ \
in0 = (RTYPE) __msa_srlr_h((v8i16) in0, (v8i16) shift); \
in1 = (RTYPE) __msa_srlr_h((v8i16) in1, (v8i16) shift); \
in2 = (RTYPE) __msa_srlr_h((v8i16) in2, (v8i16) shift); \
in3 = (RTYPE) __msa_srlr_h((v8i16) in3, (v8i16) shift); \
}
#define SRLR_H4_UH(...) SRLR_H4(v8u16, __VA_ARGS__)
#define SRLR_H4_SH(...) SRLR_H4(v8i16, __VA_ARGS__)
#define SRLR_H8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, shift) \
{ \
SRLR_H4(RTYPE, in0, in1, in2, in3, shift); \
SRLR_H4(RTYPE, in4, in5, in6, in7, shift); \
}
#define SRLR_H8_UH(...) SRLR_H8(v8u16, __VA_ARGS__)
#define SRLR_H8_SH(...) SRLR_H8(v8i16, __VA_ARGS__)
/* Description : Shift right arithmetic rounded halfwords
Arguments : Inputs - in0, in1, shift
Outputs - in0, in1, (in place)
Return Type - as per RTYPE
Details : Each element of vector 'in0' is shifted right arithmetic by
number of bits respective element holds in vector 'shift'.
The last discarded bit is added to shifted value for rounding
and the result is in place written to 'in0'
Here, 'shift' is a vector passed in
Similar for other pairs
*/
#define SRAR_H2(RTYPE, in0, in1, shift) \
{ \
in0 = (RTYPE) __msa_srar_h((v8i16) in0, (v8i16) shift); \
in1 = (RTYPE) __msa_srar_h((v8i16) in1, (v8i16) shift); \
}
#define SRAR_H2_UH(...) SRAR_H2(v8u16, __VA_ARGS__)
#define SRAR_H2_SH(...) SRAR_H2(v8i16, __VA_ARGS__)
#define SRAR_H3(RTYPE, in0, in1, in2, shift) \
{ \
SRAR_H2(RTYPE, in0, in1, shift) \
in2 = (RTYPE) __msa_srar_h((v8i16) in2, (v8i16) shift); \
}
#define SRAR_H3_SH(...) SRAR_H3(v8i16, __VA_ARGS__)
#define SRAR_H4(RTYPE, in0, in1, in2, in3, shift) \
{ \
SRAR_H2(RTYPE, in0, in1, shift) \
SRAR_H2(RTYPE, in2, in3, shift) \
}
#define SRAR_H4_UH(...) SRAR_H4(v8u16, __VA_ARGS__)
#define SRAR_H4_SH(...) SRAR_H4(v8i16, __VA_ARGS__)
/* Description : Shift right arithmetic rounded words
Arguments : Inputs - in0, in1, shift
Outputs - in0, in1, (in place)
Return Type - as per RTYPE
Details : Each element of vector 'in0' is shifted right arithmetic by
number of bits respective element holds in vector 'shift'.
The last discarded bit is added to shifted value for rounding
and the result is in place written to 'in0'
Here, 'shift' is a vector passed in
Similar for other pairs
*/
#define SRAR_W2(RTYPE, in0, in1, shift) \
{ \
in0 = (RTYPE) __msa_srar_w((v4i32) in0, (v4i32) shift); \
in1 = (RTYPE) __msa_srar_w((v4i32) in1, (v4i32) shift); \
}
#define SRAR_W2_SW(...) SRAR_W2(v4i32, __VA_ARGS__)
#define SRAR_W4(RTYPE, in0, in1, in2, in3, shift) \
{ \
SRAR_W2(RTYPE, in0, in1, shift) \
SRAR_W2(RTYPE, in2, in3, shift) \
}
#define SRAR_W4_SW(...) SRAR_W4(v4i32, __VA_ARGS__)
/* Description : Shift right arithmetic rounded (immediate)
Arguments : Inputs - in0, in1, in2, in3, shift
Outputs - in0, in1, in2, in3 (in place)
Return Type - as per RTYPE
Details : Each element of vector 'in0' is shifted right arithmetic by
value in 'shift'.
The last discarded bit is added to shifted value for rounding
and the result is in place written to 'in0'
Similar for other pairs
*/
#define SRARI_H2(RTYPE, in0, in1, shift) \
{ \
in0 = (RTYPE) __msa_srari_h((v8i16) in0, shift); \
in1 = (RTYPE) __msa_srari_h((v8i16) in1, shift); \
}
#define SRARI_H2_UH(...) SRARI_H2(v8u16, __VA_ARGS__)
#define SRARI_H2_SH(...) SRARI_H2(v8i16, __VA_ARGS__)
#define SRARI_H4(RTYPE, in0, in1, in2, in3, shift) \
{ \
SRARI_H2(RTYPE, in0, in1, shift); \
SRARI_H2(RTYPE, in2, in3, shift); \
}
#define SRARI_H4_UH(...) SRARI_H4(v8u16, __VA_ARGS__)
#define SRARI_H4_SH(...) SRARI_H4(v8i16, __VA_ARGS__)
/* Description : Shift right arithmetic rounded (immediate)
Arguments : Inputs - in0, in1, shift
Outputs - in0, in1 (in place)
Return Type - as per RTYPE
Details : Each element of vector 'in0' is shifted right arithmetic by
value in 'shift'.
The last discarded bit is added to shifted value for rounding
and the result is in place written to 'in0'
Similar for other pairs
*/
#define SRARI_W2(RTYPE, in0, in1, shift) \
{ \
in0 = (RTYPE) __msa_srari_w((v4i32) in0, shift); \
in1 = (RTYPE) __msa_srari_w((v4i32) in1, shift); \
}
#define SRARI_W2_SW(...) SRARI_W2(v4i32, __VA_ARGS__)
#define SRARI_W4(RTYPE, in0, in1, in2, in3, shift) \
{ \
SRARI_W2(RTYPE, in0, in1, shift); \
SRARI_W2(RTYPE, in2, in3, shift); \
}
#define SRARI_W4_SH(...) SRARI_W4(v8i16, __VA_ARGS__)
#define SRARI_W4_SW(...) SRARI_W4(v4i32, __VA_ARGS__)
/* Description : Multiplication of pairs of vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Details : Each element from 'in0' is multiplied with elements from 'in1'
and result is written to 'out0'
Similar for other pairs
*/
#define MUL2(in0, in1, in2, in3, out0, out1) \
{ \
out0 = in0 * in1; \
out1 = in2 * in3; \
}
#define MUL4(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, out3) \
{ \
MUL2(in0, in1, in2, in3, out0, out1); \
MUL2(in4, in5, in6, in7, out2, out3); \
}
/* Description : Addition of 2 pairs of vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Details : Each element from 2 pairs vectors is added and 2 results are
produced
*/
#define ADD2(in0, in1, in2, in3, out0, out1) \
{ \
out0 = in0 + in1; \
out1 = in2 + in3; \
}
#define ADD4(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, out3) \
{ \
ADD2(in0, in1, in2, in3, out0, out1); \
ADD2(in4, in5, in6, in7, out2, out3); \
}
/* Description : Subtraction of 2 pairs of vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1
Details : Each element from 2 pairs vectors is subtracted and 2 results
are produced
*/
#define SUB2(in0, in1, in2, in3, out0, out1) \
{ \
out0 = in0 - in1; \
out1 = in2 - in3; \
}
#define SUB4(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, out3) \
{ \
out0 = in0 - in1; \
out1 = in2 - in3; \
out2 = in4 - in5; \
out3 = in6 - in7; \
}
/* Description : Sign extend byte elements from right half of the vector
Arguments : Input - in (byte vector)
Output - out (sign extended halfword vector)
Return Type - signed halfword
Details : Sign bit of byte elements from input vector 'in' is
extracted and interleaved with same vector 'in' to generate
8 halfword elements keeping sign intact
*/
#define UNPCK_R_SB_SH(in, out) \
{ \
v16i8 sign_m; \
\
sign_m = __msa_clti_s_b((v16i8) in, 0); \
out = (v8i16) __msa_ilvr_b(sign_m, (v16i8) in); \
}
/* Description : Sign extend halfword elements from right half of the vector
Arguments : Inputs - in (input halfword vector)
Outputs - out (sign extended word vectors)
Return Type - signed word
Details : Sign bit of halfword elements from input vector 'in' is
extracted and interleaved with same vector 'in0' to generate
4 word elements keeping sign intact
*/
#if HAVE_MSA2
#define UNPCK_R_SH_SW(in, out) \
{ \
out = (v4i32) __builtin_msa2_w2x_lo_s_h((v8i16) in); \
}
#else
#define UNPCK_R_SH_SW(in, out) \
{ \
v8i16 sign_m; \
\
sign_m = __msa_clti_s_h((v8i16) in, 0); \
out = (v4i32) __msa_ilvr_h(sign_m, (v8i16) in); \
}
#endif // #if HAVE_MSA2
/* Description : Sign extend byte elements from input vector and return
halfword results in pair of vectors
Arguments : Inputs - in (1 input byte vector)
Outputs - out0, out1 (sign extended 2 halfword vectors)
Return Type - signed halfword
Details : Sign bit of byte elements from input vector 'in' is
extracted and interleaved right with same vector 'in0' to
generate 8 signed halfword elements in 'out0'
Then interleaved left with same vector 'in0' to
generate 8 signed halfword elements in 'out1'
*/
#if HAVE_MSA2
#define UNPCK_SB_SH(in, out0, out1) \
{ \
out0 = (v4i32) __builtin_msa2_w2x_lo_s_b((v16i8) in); \
out1 = (v4i32) __builtin_msa2_w2x_hi_s_b((v16i8) in); \
}
#else
#define UNPCK_SB_SH(in, out0, out1) \
{ \
v16i8 tmp_m; \
\
tmp_m = __msa_clti_s_b((v16i8) in, 0); \
ILVRL_B2_SH(tmp_m, in, out0, out1); \
}
#endif // #if HAVE_MSA2
/* Description : Zero extend unsigned byte elements to halfword elements
Arguments : Inputs - in (1 input unsigned byte vector)
Outputs - out0, out1 (unsigned 2 halfword vectors)
Return Type - signed halfword
Details : Zero extended right half of vector is returned in 'out0'
Zero extended left half of vector is returned in 'out1'
*/
#define UNPCK_UB_SH(in, out0, out1) \
{ \
v16i8 zero_m = { 0 }; \
\
ILVRL_B2_SH(zero_m, in, out0, out1); \
}
/* Description : Sign extend halfword elements from input vector and return
result in pair of vectors
Arguments : Inputs - in (1 input halfword vector)
Outputs - out0, out1 (sign extended 2 word vectors)
Return Type - signed word
Details : Sign bit of halfword elements from input vector 'in' is
extracted and interleaved right with same vector 'in0' to
generate 4 signed word elements in 'out0'
Then interleaved left with same vector 'in0' to
generate 4 signed word elements in 'out1'
*/
#if HAVE_MSA2
#define UNPCK_SH_SW(in, out0, out1) \
{ \
out0 = (v4i32) __builtin_msa2_w2x_lo_s_h((v8i16) in); \
out1 = (v4i32) __builtin_msa2_w2x_hi_s_h((v8i16) in); \
}
#else
#define UNPCK_SH_SW(in, out0, out1) \
{ \
v8i16 tmp_m; \
\
tmp_m = __msa_clti_s_h((v8i16) in, 0); \
ILVRL_H2_SW(tmp_m, in, out0, out1); \
}
#endif // #if HAVE_MSA2
/* Description : Swap two variables
Arguments : Inputs - in0, in1
Outputs - in0, in1 (in-place)
Details : Swapping of two input variables using xor
*/
#define SWAP(in0, in1) \
{ \
in0 = in0 ^ in1; \
in1 = in0 ^ in1; \
in0 = in0 ^ in1; \
}
/* Description : Butterfly of 4 input vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1, out2, out3
Details : Butterfly operation
*/
#define BUTTERFLY_4(in0, in1, in2, in3, out0, out1, out2, out3) \
{ \
out0 = in0 + in3; \
out1 = in1 + in2; \
\
out2 = in1 - in2; \
out3 = in0 - in3; \
}
/* Description : Butterfly of 8 input vectors
Arguments : Inputs - in0 ... in7
Outputs - out0 .. out7
Details : Butterfly operation
*/
#define BUTTERFLY_8(in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3, out4, out5, out6, out7) \
{ \
out0 = in0 + in7; \
out1 = in1 + in6; \
out2 = in2 + in5; \
out3 = in3 + in4; \
\
out4 = in3 - in4; \
out5 = in2 - in5; \
out6 = in1 - in6; \
out7 = in0 - in7; \
}
/* Description : Butterfly of 16 input vectors
Arguments : Inputs - in0 ... in15
Outputs - out0 .. out15
Details : Butterfly operation
*/
#define BUTTERFLY_16(in0, in1, in2, in3, in4, in5, in6, in7, \
in8, in9, in10, in11, in12, in13, in14, in15, \
out0, out1, out2, out3, out4, out5, out6, out7, \
out8, out9, out10, out11, out12, out13, out14, out15) \
{ \
out0 = in0 + in15; \
out1 = in1 + in14; \
out2 = in2 + in13; \
out3 = in3 + in12; \
out4 = in4 + in11; \
out5 = in5 + in10; \
out6 = in6 + in9; \
out7 = in7 + in8; \
\
out8 = in7 - in8; \
out9 = in6 - in9; \
out10 = in5 - in10; \
out11 = in4 - in11; \
out12 = in3 - in12; \
out13 = in2 - in13; \
out14 = in1 - in14; \
out15 = in0 - in15; \
}
/* Description : Transposes input 4x4 byte block
Arguments : Inputs - in0, in1, in2, in3 (input 4x4 byte block)
Outputs - out0, out1, out2, out3 (output 4x4 byte block)
Return Type - unsigned byte
Details :
*/
#define TRANSPOSE4x4_UB_UB(in0, in1, in2, in3, out0, out1, out2, out3) \
{ \
v16i8 zero_m = { 0 }; \
v16i8 s0_m, s1_m, s2_m, s3_m; \
\
ILVR_D2_SB(in1, in0, in3, in2, s0_m, s1_m); \
ILVRL_B2_SB(s1_m, s0_m, s2_m, s3_m); \
\
out0 = (v16u8) __msa_ilvr_b(s3_m, s2_m); \
out1 = (v16u8) __msa_sldi_b(zero_m, (v16i8) out0, 4); \
out2 = (v16u8) __msa_sldi_b(zero_m, (v16i8) out1, 4); \
out3 = (v16u8) __msa_sldi_b(zero_m, (v16i8) out2, 4); \
}
/* Description : Transposes input 8x4 byte block into 4x8
Arguments : Inputs - in0, in1, in2, in3 (input 8x4 byte block)
Outputs - out0, out1, out2, out3 (output 4x8 byte block)
Return Type - as per RTYPE
Details :
*/
#define TRANSPOSE8x4_UB(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
v16i8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \
\
ILVEV_W2_SB(in0, in4, in1, in5, tmp0_m, tmp1_m); \
tmp2_m = __msa_ilvr_b(tmp1_m, tmp0_m); \
ILVEV_W2_SB(in2, in6, in3, in7, tmp0_m, tmp1_m); \
\
tmp3_m = __msa_ilvr_b(tmp1_m, tmp0_m); \
ILVRL_H2_SB(tmp3_m, tmp2_m, tmp0_m, tmp1_m); \
\
ILVRL_W2(RTYPE, tmp1_m, tmp0_m, out0, out2); \
out1 = (RTYPE) __msa_ilvl_d((v2i64) out2, (v2i64) out0); \
out3 = (RTYPE) __msa_ilvl_d((v2i64) out0, (v2i64) out2); \
}
#define TRANSPOSE8x4_UB_UB(...) TRANSPOSE8x4_UB(v16u8, __VA_ARGS__)
#define TRANSPOSE8x4_UB_UH(...) TRANSPOSE8x4_UB(v8u16, __VA_ARGS__)
/* Description : Transposes input 8x8 byte block
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7
(input 8x8 byte block)
Outputs - out0, out1, out2, out3, out4, out5, out6, out7
(output 8x8 byte block)
Return Type - as per RTYPE
Details :
*/
#define TRANSPOSE8x8_UB(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3, out4, out5, out6, out7) \
{ \
v16i8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \
v16i8 tmp4_m, tmp5_m, tmp6_m, tmp7_m; \
v16i8 zeros = { 0 }; \
\
ILVR_B4_SB(in2, in0, in3, in1, in6, in4, in7, in5, \
tmp0_m, tmp1_m, tmp2_m, tmp3_m); \
ILVRL_B2_SB(tmp1_m, tmp0_m, tmp4_m, tmp5_m); \
ILVRL_B2_SB(tmp3_m, tmp2_m, tmp6_m, tmp7_m); \
ILVRL_W2(RTYPE, tmp6_m, tmp4_m, out0, out2); \
ILVRL_W2(RTYPE, tmp7_m, tmp5_m, out4, out6); \
SLDI_B4(RTYPE, zeros, out0, zeros, out2, zeros, out4, zeros, out6, \
8, out1, out3, out5, out7); \
}
#define TRANSPOSE8x8_UB_UB(...) TRANSPOSE8x8_UB(v16u8, __VA_ARGS__)
#define TRANSPOSE8x8_UB_UH(...) TRANSPOSE8x8_UB(v8u16, __VA_ARGS__)
/* Description : Transposes 16x4 block into 4x16 with byte elements in vectors
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7,
in8, in9, in10, in11, in12, in13, in14, in15
Outputs - out0, out1, out2, out3
Return Type - unsigned byte
Details :
*/
#define TRANSPOSE16x4_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7, \
in8, in9, in10, in11, in12, in13, in14, in15, \
out0, out1, out2, out3) \
{ \
v2i64 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \
\
ILVEV_W2_SD(in0, in4, in8, in12, tmp0_m, tmp1_m); \
out1 = (v16u8) __msa_ilvev_d(tmp1_m, tmp0_m); \
\
ILVEV_W2_SD(in1, in5, in9, in13, tmp0_m, tmp1_m); \
out3 = (v16u8) __msa_ilvev_d(tmp1_m, tmp0_m); \
\
ILVEV_W2_SD(in2, in6, in10, in14, tmp0_m, tmp1_m); \
\
tmp2_m = __msa_ilvev_d(tmp1_m, tmp0_m); \
ILVEV_W2_SD(in3, in7, in11, in15, tmp0_m, tmp1_m); \
\
tmp3_m = __msa_ilvev_d(tmp1_m, tmp0_m); \
ILVEV_B2_SD(out1, out3, tmp2_m, tmp3_m, tmp0_m, tmp1_m); \
out0 = (v16u8) __msa_ilvev_h((v8i16) tmp1_m, (v8i16) tmp0_m); \
out2 = (v16u8) __msa_ilvod_h((v8i16) tmp1_m, (v8i16) tmp0_m); \
\
tmp0_m = (v2i64) __msa_ilvod_b((v16i8) out3, (v16i8) out1); \
tmp1_m = (v2i64) __msa_ilvod_b((v16i8) tmp3_m, (v16i8) tmp2_m); \
out1 = (v16u8) __msa_ilvev_h((v8i16) tmp1_m, (v8i16) tmp0_m); \
out3 = (v16u8) __msa_ilvod_h((v8i16) tmp1_m, (v8i16) tmp0_m); \
}
/* Description : Transposes 16x8 block into 8x16 with byte elements in vectors
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7,
in8, in9, in10, in11, in12, in13, in14, in15
Outputs - out0, out1, out2, out3, out4, out5, out6, out7
Return Type - unsigned byte
Details :
*/
#define TRANSPOSE16x8_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7, \
in8, in9, in10, in11, in12, in13, in14, in15, \
out0, out1, out2, out3, out4, out5, out6, out7) \
{ \
v16u8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \
v16u8 tmp4_m, tmp5_m, tmp6_m, tmp7_m; \
\
ILVEV_D2_UB(in0, in8, in1, in9, out7, out6); \
ILVEV_D2_UB(in2, in10, in3, in11, out5, out4); \
ILVEV_D2_UB(in4, in12, in5, in13, out3, out2); \
ILVEV_D2_UB(in6, in14, in7, in15, out1, out0); \
\
tmp0_m = (v16u8) __msa_ilvev_b((v16i8) out6, (v16i8) out7); \
tmp4_m = (v16u8) __msa_ilvod_b((v16i8) out6, (v16i8) out7); \
tmp1_m = (v16u8) __msa_ilvev_b((v16i8) out4, (v16i8) out5); \
tmp5_m = (v16u8) __msa_ilvod_b((v16i8) out4, (v16i8) out5); \
out5 = (v16u8) __msa_ilvev_b((v16i8) out2, (v16i8) out3); \
tmp6_m = (v16u8) __msa_ilvod_b((v16i8) out2, (v16i8) out3); \
out7 = (v16u8) __msa_ilvev_b((v16i8) out0, (v16i8) out1); \
tmp7_m = (v16u8) __msa_ilvod_b((v16i8) out0, (v16i8) out1); \
\
ILVEV_H2_UB(tmp0_m, tmp1_m, out5, out7, tmp2_m, tmp3_m); \
out0 = (v16u8) __msa_ilvev_w((v4i32) tmp3_m, (v4i32) tmp2_m); \
out4 = (v16u8) __msa_ilvod_w((v4i32) tmp3_m, (v4i32) tmp2_m); \
\
tmp2_m = (v16u8) __msa_ilvod_h((v8i16) tmp1_m, (v8i16) tmp0_m); \
tmp3_m = (v16u8) __msa_ilvod_h((v8i16) out7, (v8i16) out5); \
out2 = (v16u8) __msa_ilvev_w((v4i32) tmp3_m, (v4i32) tmp2_m); \
out6 = (v16u8) __msa_ilvod_w((v4i32) tmp3_m, (v4i32) tmp2_m); \
\
ILVEV_H2_UB(tmp4_m, tmp5_m, tmp6_m, tmp7_m, tmp2_m, tmp3_m); \
out1 = (v16u8) __msa_ilvev_w((v4i32) tmp3_m, (v4i32) tmp2_m); \
out5 = (v16u8) __msa_ilvod_w((v4i32) tmp3_m, (v4i32) tmp2_m); \
\
tmp2_m = (v16u8) __msa_ilvod_h((v8i16) tmp5_m, (v8i16) tmp4_m); \
tmp3_m = (v16u8) __msa_ilvod_h((v8i16) tmp7_m, (v8i16) tmp6_m); \
out3 = (v16u8) __msa_ilvev_w((v4i32) tmp3_m, (v4i32) tmp2_m); \
out7 = (v16u8) __msa_ilvod_w((v4i32) tmp3_m, (v4i32) tmp2_m); \
}
/* Description : Transposes 4x4 block with half word elements in vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1, out2, out3
Return Type - signed halfword
Details :
*/
#define TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, out0, out1, out2, out3) \
{ \
v8i16 s0_m, s1_m; \
\
ILVR_H2_SH(in1, in0, in3, in2, s0_m, s1_m); \
ILVRL_W2_SH(s1_m, s0_m, out0, out2); \
out1 = (v8i16) __msa_ilvl_d((v2i64) out0, (v2i64) out0); \
out3 = (v8i16) __msa_ilvl_d((v2i64) out0, (v2i64) out2); \
}
/* Description : Transposes 8x8 block with half word elements in vectors
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7
Outputs - out0, out1, out2, out3, out4, out5, out6, out7
Return Type - as per RTYPE
Details :
*/
#define TRANSPOSE8x8_H(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3, out4, out5, out6, out7) \
{ \
v8i16 s0_m, s1_m; \
v8i16 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \
v8i16 tmp4_m, tmp5_m, tmp6_m, tmp7_m; \
\
ILVR_H2_SH(in6, in4, in7, in5, s0_m, s1_m); \
ILVRL_H2_SH(s1_m, s0_m, tmp0_m, tmp1_m); \
ILVL_H2_SH(in6, in4, in7, in5, s0_m, s1_m); \
ILVRL_H2_SH(s1_m, s0_m, tmp2_m, tmp3_m); \
ILVR_H2_SH(in2, in0, in3, in1, s0_m, s1_m); \
ILVRL_H2_SH(s1_m, s0_m, tmp4_m, tmp5_m); \
ILVL_H2_SH(in2, in0, in3, in1, s0_m, s1_m); \
ILVRL_H2_SH(s1_m, s0_m, tmp6_m, tmp7_m); \
PCKEV_D4(RTYPE, tmp0_m, tmp4_m, tmp1_m, tmp5_m, tmp2_m, tmp6_m, \
tmp3_m, tmp7_m, out0, out2, out4, out6); \
out1 = (RTYPE) __msa_pckod_d((v2i64) tmp0_m, (v2i64) tmp4_m); \
out3 = (RTYPE) __msa_pckod_d((v2i64) tmp1_m, (v2i64) tmp5_m); \
out5 = (RTYPE) __msa_pckod_d((v2i64) tmp2_m, (v2i64) tmp6_m); \
out7 = (RTYPE) __msa_pckod_d((v2i64) tmp3_m, (v2i64) tmp7_m); \
}
#define TRANSPOSE8x8_UH_UH(...) TRANSPOSE8x8_H(v8u16, __VA_ARGS__)
#define TRANSPOSE8x8_SH_SH(...) TRANSPOSE8x8_H(v8i16, __VA_ARGS__)
/* Description : Transposes 4x4 block with word elements in vectors
Arguments : Inputs - in0, in1, in2, in3
Outputs - out0, out1, out2, out3
Return Type - signed word
Details :
*/
#define TRANSPOSE4x4_SW_SW(in0, in1, in2, in3, out0, out1, out2, out3) \
{ \
v4i32 s0_m, s1_m, s2_m, s3_m; \
\
ILVRL_W2_SW(in1, in0, s0_m, s1_m); \
ILVRL_W2_SW(in3, in2, s2_m, s3_m); \
\
out0 = (v4i32) __msa_ilvr_d((v2i64) s2_m, (v2i64) s0_m); \
out1 = (v4i32) __msa_ilvl_d((v2i64) s2_m, (v2i64) s0_m); \
out2 = (v4i32) __msa_ilvr_d((v2i64) s3_m, (v2i64) s1_m); \
out3 = (v4i32) __msa_ilvl_d((v2i64) s3_m, (v2i64) s1_m); \
}
/* Description : Average byte elements from pair of vectors and store 8x4 byte
block in destination memory
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride
Details : Each byte element from input vector pair 'in0' and 'in1' are
averaged (a + b)/2 and stored in 'tmp0_m'
Each byte element from input vector pair 'in2' and 'in3' are
averaged (a + b)/2 and stored in 'tmp1_m'
Each byte element from input vector pair 'in4' and 'in5' are
averaged (a + b)/2 and stored in 'tmp2_m'
Each byte element from input vector pair 'in6' and 'in7' are
averaged (a + b)/2 and stored in 'tmp3_m'
The half vector results from all 4 vectors are stored in
destination memory as 8x4 byte block
*/
#define AVE_ST8x4_UB(in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride) \
{ \
uint64_t out0_m, out1_m, out2_m, out3_m; \
v16u8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \
\
tmp0_m = __msa_ave_u_b((v16u8) in0, (v16u8) in1); \
tmp1_m = __msa_ave_u_b((v16u8) in2, (v16u8) in3); \
tmp2_m = __msa_ave_u_b((v16u8) in4, (v16u8) in5); \
tmp3_m = __msa_ave_u_b((v16u8) in6, (v16u8) in7); \
\
out0_m = __msa_copy_u_d((v2i64) tmp0_m, 0); \
out1_m = __msa_copy_u_d((v2i64) tmp1_m, 0); \
out2_m = __msa_copy_u_d((v2i64) tmp2_m, 0); \
out3_m = __msa_copy_u_d((v2i64) tmp3_m, 0); \
SD4(out0_m, out1_m, out2_m, out3_m, pdst, stride); \
}
/* Description : Average byte elements from pair of vectors and store 16x4 byte
block in destination memory
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride
Details : Each byte element from input vector pair 'in0' and 'in1' are
averaged (a + b)/2 and stored in 'tmp0_m'
Each byte element from input vector pair 'in2' and 'in3' are
averaged (a + b)/2 and stored in 'tmp1_m'
Each byte element from input vector pair 'in4' and 'in5' are
averaged (a + b)/2 and stored in 'tmp2_m'
Each byte element from input vector pair 'in6' and 'in7' are
averaged (a + b)/2 and stored in 'tmp3_m'
The results from all 4 vectors are stored in destination
memory as 16x4 byte block
*/
#define AVE_ST16x4_UB(in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride) \
{ \
v16u8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \
\
tmp0_m = __msa_ave_u_b((v16u8) in0, (v16u8) in1); \
tmp1_m = __msa_ave_u_b((v16u8) in2, (v16u8) in3); \
tmp2_m = __msa_ave_u_b((v16u8) in4, (v16u8) in5); \
tmp3_m = __msa_ave_u_b((v16u8) in6, (v16u8) in7); \
\
ST_UB4(tmp0_m, tmp1_m, tmp2_m, tmp3_m, pdst, stride); \
}
/* Description : Average rounded byte elements from pair of vectors and store
8x4 byte block in destination memory
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride
Details : Each byte element from input vector pair 'in0' and 'in1' are
average rounded (a + b + 1)/2 and stored in 'tmp0_m'
Each byte element from input vector pair 'in2' and 'in3' are
average rounded (a + b + 1)/2 and stored in 'tmp1_m'
Each byte element from input vector pair 'in4' and 'in5' are
average rounded (a + b + 1)/2 and stored in 'tmp2_m'
Each byte element from input vector pair 'in6' and 'in7' are
average rounded (a + b + 1)/2 and stored in 'tmp3_m'
The half vector results from all 4 vectors are stored in
destination memory as 8x4 byte block
*/
#define AVER_ST8x4_UB(in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride) \
{ \
uint64_t out0_m, out1_m, out2_m, out3_m; \
v16u8 tp0_m, tp1_m, tp2_m, tp3_m; \
\
AVER_UB4_UB(in0, in1, in2, in3, in4, in5, in6, in7, \
tp0_m, tp1_m, tp2_m, tp3_m); \
\
out0_m = __msa_copy_u_d((v2i64) tp0_m, 0); \
out1_m = __msa_copy_u_d((v2i64) tp1_m, 0); \
out2_m = __msa_copy_u_d((v2i64) tp2_m, 0); \
out3_m = __msa_copy_u_d((v2i64) tp3_m, 0); \
SD4(out0_m, out1_m, out2_m, out3_m, pdst, stride); \
}
/* Description : Average rounded byte elements from pair of vectors and store
16x4 byte block in destination memory
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride
Details : Each byte element from input vector pair 'in0' and 'in1' are
average rounded (a + b + 1)/2 and stored in 'tmp0_m'
Each byte element from input vector pair 'in2' and 'in3' are
average rounded (a + b + 1)/2 and stored in 'tmp1_m'
Each byte element from input vector pair 'in4' and 'in5' are
average rounded (a + b + 1)/2 and stored in 'tmp2_m'
Each byte element from input vector pair 'in6' and 'in7' are
average rounded (a + b + 1)/2 and stored in 'tmp3_m'
The vector results from all 4 vectors are stored in
destination memory as 16x4 byte block
*/
#define AVER_ST16x4_UB(in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride) \
{ \
v16u8 t0_m, t1_m, t2_m, t3_m; \
\
AVER_UB4_UB(in0, in1, in2, in3, in4, in5, in6, in7, \
t0_m, t1_m, t2_m, t3_m); \
ST_UB4(t0_m, t1_m, t2_m, t3_m, pdst, stride); \
}
/* Description : Average rounded byte elements from pair of vectors,
average rounded with destination and store 8x4 byte block
in destination memory
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride
Details : Each byte element from input vector pair 'in0' and 'in1' are
average rounded (a + b + 1)/2 and stored in 'tmp0_m'
Each byte element from input vector pair 'in2' and 'in3' are
average rounded (a + b + 1)/2 and stored in 'tmp1_m'
Each byte element from input vector pair 'in4' and 'in5' are
average rounded (a + b + 1)/2 and stored in 'tmp2_m'
Each byte element from input vector pair 'in6' and 'in7' are
average rounded (a + b + 1)/2 and stored in 'tmp3_m'
The half vector results from all 4 vectors are stored in
destination memory as 8x4 byte block
*/
#define AVER_DST_ST8x4_UB(in0, in1, in2, in3, in4, in5, in6, in7, \
pdst, stride) \
{ \
v16u8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \
v16u8 dst0_m, dst1_m, dst2_m, dst3_m; \
\
LD_UB4(pdst, stride, dst0_m, dst1_m, dst2_m, dst3_m); \
AVER_UB4_UB(in0, in1, in2, in3, in4, in5, in6, in7, \
tmp0_m, tmp1_m, tmp2_m, tmp3_m); \
AVER_ST8x4_UB(dst0_m, tmp0_m, dst1_m, tmp1_m, \
dst2_m, tmp2_m, dst3_m, tmp3_m, pdst, stride); \
}
/* Description : Average rounded byte elements from pair of vectors,
average rounded with destination and store 16x4 byte block
in destination memory
Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride
Details : Each byte element from input vector pair 'in0' and 'in1' are
average rounded (a + b + 1)/2 and stored in 'tmp0_m'
Each byte element from input vector pair 'in2' and 'in3' are
average rounded (a + b + 1)/2 and stored in 'tmp1_m'
Each byte element from input vector pair 'in4' and 'in5' are
average rounded (a + b + 1)/2 and stored in 'tmp2_m'
Each byte element from input vector pair 'in6' and 'in7' are
average rounded (a + b + 1)/2 and stored in 'tmp3_m'
The vector results from all 4 vectors are stored in
destination memory as 16x4 byte block
*/
#define AVER_DST_ST16x4_UB(in0, in1, in2, in3, in4, in5, in6, in7, \
pdst, stride) \
{ \
v16u8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \
v16u8 dst0_m, dst1_m, dst2_m, dst3_m; \
\
LD_UB4(pdst, stride, dst0_m, dst1_m, dst2_m, dst3_m); \
AVER_UB4_UB(in0, in1, in2, in3, in4, in5, in6, in7, \
tmp0_m, tmp1_m, tmp2_m, tmp3_m); \
AVER_ST16x4_UB(dst0_m, tmp0_m, dst1_m, tmp1_m, \
dst2_m, tmp2_m, dst3_m, tmp3_m, pdst, stride); \
}
/* Description : Add block 4x4
Arguments : Inputs - in0, in1, in2, in3, pdst, stride
Details : Least significant 4 bytes from each input vector are added to
the destination bytes, clipped between 0-255 and then stored.
*/
#define ADDBLK_ST4x4_UB(in0, in1, in2, in3, pdst, stride) \
{ \
uint32_t src0_m, src1_m, src2_m, src3_m; \
uint32_t out0_m, out1_m, out2_m, out3_m; \
v8i16 inp0_m, inp1_m, res0_m, res1_m; \
v16i8 dst0_m = { 0 }; \
v16i8 dst1_m = { 0 }; \
v16i8 zero_m = { 0 }; \
\
ILVR_D2_SH(in1, in0, in3, in2, inp0_m, inp1_m) \
LW4(pdst, stride, src0_m, src1_m, src2_m, src3_m); \
INSERT_W2_SB(src0_m, src1_m, dst0_m); \
INSERT_W2_SB(src2_m, src3_m, dst1_m); \
ILVR_B2_SH(zero_m, dst0_m, zero_m, dst1_m, res0_m, res1_m); \
ADD2(res0_m, inp0_m, res1_m, inp1_m, res0_m, res1_m); \
CLIP_SH2_0_255(res0_m, res1_m); \
PCKEV_B2_SB(res0_m, res0_m, res1_m, res1_m, dst0_m, dst1_m); \
\
out0_m = __msa_copy_u_w((v4i32) dst0_m, 0); \
out1_m = __msa_copy_u_w((v4i32) dst0_m, 1); \
out2_m = __msa_copy_u_w((v4i32) dst1_m, 0); \
out3_m = __msa_copy_u_w((v4i32) dst1_m, 1); \
SW4(out0_m, out1_m, out2_m, out3_m, pdst, stride); \
}
/* Description : Dot product and addition of 3 signed halfword input vectors
Arguments : Inputs - in0, in1, in2, coeff0, coeff1, coeff2
Outputs - out0_m
Return Type - signed halfword
Details : Dot product of 'in0' with 'coeff0'
Dot product of 'in1' with 'coeff1'
Dot product of 'in2' with 'coeff2'
Addition of all the 3 vector results
out0_m = (in0 * coeff0) + (in1 * coeff1) + (in2 * coeff2)
*/
#define DPADD_SH3_SH(in0, in1, in2, coeff0, coeff1, coeff2) \
( { \
v8i16 out0_m; \
\
out0_m = __msa_dotp_s_h((v16i8) in0, (v16i8) coeff0); \
out0_m = __msa_dpadd_s_h(out0_m, (v16i8) in1, (v16i8) coeff1); \
out0_m = __msa_dpadd_s_h(out0_m, (v16i8) in2, (v16i8) coeff2); \
\
out0_m; \
} )
/* Description : Pack even elements of input vectors & xor with 128
Arguments : Inputs - in0, in1
Outputs - out_m
Return Type - unsigned byte
Details : Signed byte even elements from 'in0' and 'in1' are packed
together in one vector and the resulted vector is xor'ed with
128 to shift the range from signed to unsigned byte
*/
#define PCKEV_XORI128_UB(in0, in1) \
( { \
v16u8 out_m; \
out_m = (v16u8) __msa_pckev_b((v16i8) in1, (v16i8) in0); \
out_m = (v16u8) __msa_xori_b((v16u8) out_m, 128); \
out_m; \
} )
/* Description : Converts inputs to unsigned bytes, interleave, average & store
as 8x4 unsigned byte block
Arguments : Inputs - in0, in1, in2, in3, dst0, dst1, pdst, stride
*/
#define CONVERT_UB_AVG_ST8x4_UB(in0, in1, in2, in3, \
dst0, dst1, pdst, stride) \
{ \
v16u8 tmp0_m, tmp1_m; \
uint8_t *pdst_m = (uint8_t *) (pdst); \
\
tmp0_m = PCKEV_XORI128_UB(in0, in1); \
tmp1_m = PCKEV_XORI128_UB(in2, in3); \
AVER_UB2_UB(tmp0_m, dst0, tmp1_m, dst1, tmp0_m, tmp1_m); \
ST_D4(tmp0_m, tmp1_m, 0, 1, 0, 1, pdst_m, stride); \
}
/* Description : Pack even byte elements, extract 0 & 2 index words from pair
of results and store 4 words in destination memory as per
stride
Arguments : Inputs - in0, in1, in2, in3, pdst, stride
*/
#define PCKEV_ST4x4_UB(in0, in1, in2, in3, pdst, stride) \
{ \
uint32_t out0_m, out1_m, out2_m, out3_m; \
v16i8 tmp0_m, tmp1_m; \
\
PCKEV_B2_SB(in1, in0, in3, in2, tmp0_m, tmp1_m); \
\
out0_m = __msa_copy_u_w((v4i32) tmp0_m, 0); \
out1_m = __msa_copy_u_w((v4i32) tmp0_m, 2); \
out2_m = __msa_copy_u_w((v4i32) tmp1_m, 0); \
out3_m = __msa_copy_u_w((v4i32) tmp1_m, 2); \
\
SW4(out0_m, out1_m, out2_m, out3_m, pdst, stride); \
}
/* Description : Pack even byte elements and store byte vector in destination
memory
Arguments : Inputs - in0, in1, pdst
*/
#define PCKEV_ST_SB(in0, in1, pdst) \
{ \
v16i8 tmp_m; \
tmp_m = __msa_pckev_b((v16i8) in1, (v16i8) in0); \
ST_SB(tmp_m, (pdst)); \
}
/* Description : Horizontal 2 tap filter kernel code
Arguments : Inputs - in0, in1, mask, coeff, shift
*/
#define HORIZ_2TAP_FILT_UH(in0, in1, mask, coeff, shift) \
( { \
v16i8 tmp0_m; \
v8u16 tmp1_m; \
\
tmp0_m = __msa_vshf_b((v16i8) mask, (v16i8) in1, (v16i8) in0); \
tmp1_m = __msa_dotp_u_h((v16u8) tmp0_m, (v16u8) coeff); \
tmp1_m = (v8u16) __msa_srari_h((v8i16) tmp1_m, shift); \
tmp1_m = __msa_sat_u_h(tmp1_m, shift); \
\
tmp1_m; \
} )
#endif /* AVUTIL_MIPS_GENERIC_MACROS_MSA_H */