1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-11-23 21:54:53 +02:00
Files
FFmpeg/libavfilter/vf_fspp.c
Andreas Rheinhardt 0c556a6b09 avfilter/vf_fspp: Pre-reorder threshold table
Avoids reordering at runtime.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2025-11-17 12:18:12 +01:00

357 lines
13 KiB
C

/*
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
* Copyright (C) 2005 Nikolaj Poroshin <porosh3@psu.ru>
* Copyright (c) 2014 Arwa Arif <arwaarif1994@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with FFmpeg; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/**
* @file
* Fast Simple Post-processing filter
* This implementation is based on an algorithm described in
* "Aria Nosratinia Embedded Post-Processing for
* Enhancement of Compressed Images (1999)"
* (http://www.utdallas.edu/~aria/papers/vlsisp99.pdf)
* Further, with splitting (I)DCT into horizontal/vertical passes, one of
* them can be performed once per block, not per pixel. This allows for much
* higher speed.
*
* Originally written by Michael Niedermayer and Nikolaj for the MPlayer
* project, and ported by Arwa Arif for FFmpeg.
*/
#include "libavutil/emms.h"
#include "libavutil/imgutils.h"
#include "libavutil/mem.h"
#include "libavutil/mem_internal.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/video_enc_params.h"
#include "avfilter.h"
#include "filters.h"
#include "qp_table.h"
#include "vf_fsppdsp.h"
#include "video.h"
#define BLOCKSZ 12
#define MAX_LEVEL 5
typedef struct FSPPContext {
const struct AVClass *class;
int log2_count;
int strength;
int hsub;
int vsub;
int temp_stride;
int qp;
enum AVVideoEncParamsType qscale_type;
int prev_q;
uint8_t *src;
int16_t *temp;
int8_t *non_b_qp_table;
int non_b_qp_stride;
int use_bframe_qp;
FSPPDSPContext dsp;
DECLARE_ALIGNED(16, int16_t, threshold_mtx_noq)[8 * 8];
DECLARE_ALIGNED(16, int16_t, threshold_mtx)[8 * 8];
} FSPPContext;
#define OFFSET(x) offsetof(FSPPContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption fspp_options[] = {
{ "quality", "set quality", OFFSET(log2_count), AV_OPT_TYPE_INT, {.i64 = 4}, 4, MAX_LEVEL, FLAGS },
{ "qp", "force a constant quantizer parameter", OFFSET(qp), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 64, FLAGS },
{ "strength", "set filter strength", OFFSET(strength), AV_OPT_TYPE_INT, {.i64 = 0}, -15, 32, FLAGS },
{ "use_bframe_qp", "use B-frames' QP", OFFSET(use_bframe_qp), AV_OPT_TYPE_BOOL,{.i64 = 0}, 0, 1, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(fspp);
static const short custom_threshold[64] = {
// values (296) can't be too high
// -it causes too big quant dependence
// or maybe overflow(check), which results in some flashing
// reorder coefficients to the order in which columns are processed
#define REORDER(a,b,c,d,e,f,g,h) c, g, a, e, f, d, b, h
REORDER( 71, 296, 295, 237, 71, 40, 38, 19),
REORDER(245, 193, 185, 121, 102, 73, 53, 27),
REORDER(158, 129, 141, 107, 97, 73, 50, 26),
REORDER(102, 116, 109, 98, 82, 66, 45, 23),
REORDER( 71, 94, 95, 81, 70, 56, 38, 20),
REORDER( 56, 77, 74, 66, 56, 44, 30, 15),
REORDER( 38, 53, 50, 45, 38, 30, 21, 11),
REORDER( 20, 27, 26, 23, 20, 15, 11, 5)
};
static void filter(FSPPContext *p, uint8_t *dst, uint8_t *src,
int dst_stride, int src_stride,
int width, int height,
uint8_t *qp_store, int qp_stride, int is_luma)
{
int x, x0, y, es, qy, t;
const int stride = is_luma ? p->temp_stride : (width + 16);
const int step = 6 - p->log2_count;
const int qpsh = 4 - p->hsub * !is_luma;
const int qpsv = 4 - p->vsub * !is_luma;
DECLARE_ALIGNED(16, int16_t, block_align)[8 * 8 * BLOCKSZ + 8 * 8 * BLOCKSZ];
int16_t *block = block_align;
int16_t *block3 = block_align + 8 * 8 * BLOCKSZ;
memset(block3, 0, 4 * 8 * BLOCKSZ);
if (!src || !dst) return;
for (y = 0; y < height; y++) {
int index = 8 + 8 * stride + y * stride;
memcpy(p->src + index, src + y * src_stride, width);
for (x = 0; x < 8; x++) {
p->src[index - x - 1] = p->src[index + x ];
p->src[index + width + x ] = p->src[index + width - x - 1];
}
}
for (y = 0; y < 8; y++) {
memcpy(p->src + ( 7 - y ) * stride, p->src + ( y + 8 ) * stride, stride);
memcpy(p->src + (height + 8 + y) * stride, p->src + (height - y + 7) * stride, stride);
}
//FIXME (try edge emu)
for (y = 8; y < 24; y++)
memset(p->temp + 8 + y * stride, 0, width * sizeof(int16_t));
for (y = step; y < height + 8; y += step) { //step= 1,2
const int y1 = y - 8 + step; //l5-7 l4-6;
qy = y - 4;
if (qy > height - 1) qy = height - 1;
if (qy < 0) qy = 0;
qy = (qy >> qpsv) * qp_stride;
p->dsp.row_fdct(block, p->src + y * stride + 2 - (y&1), stride, 2);
for (x0 = 0; x0 < width + 8 - 8 * (BLOCKSZ - 1); x0 += 8 * (BLOCKSZ - 1)) {
p->dsp.row_fdct(block + 8 * 8, p->src + y * stride + 8 + x0 + 2 - (y&1), stride, 2 * (BLOCKSZ - 1));
if (p->qp)
p->dsp.column_fidct(p->threshold_mtx, block + 0 * 8, block3 + 0 * 8, 8 * (BLOCKSZ - 1)); //yes, this is a HOTSPOT
else
for (x = 0; x < 8 * (BLOCKSZ - 1); x += 8) {
t = x + x0 - 2; //correct t=x+x0-2-(y&1), but its the same
if (t < 0) t = 0; //t always < width-2
t = qp_store[qy + (t >> qpsh)];
t = ff_norm_qscale(t, p->qscale_type);
if (t != p->prev_q) {
p->prev_q = t;
p->dsp.mul_thrmat(p->threshold_mtx_noq, p->threshold_mtx, t);
}
p->dsp.column_fidct(p->threshold_mtx, block + x * 8, block3 + x * 8, 8); //yes, this is a HOTSPOT
}
p->dsp.row_idct(block3 + 0 * 8, p->temp + (y & 15) * stride + x0 + 2 - (y & 1), stride, 2 * (BLOCKSZ - 1));
memmove(block, block + (BLOCKSZ - 1) * 64, 8 * 8 * sizeof(int16_t)); //cycling
memmove(block3, block3 + (BLOCKSZ - 1) * 64, 6 * 8 * sizeof(int16_t));
}
es = width + 8 - x0; // 8, ...
if (es > 8)
p->dsp.row_fdct(block + 8 * 8, p->src + y * stride + 8 + x0 + 2 - (y & 1), stride, (es - 4) >> 2);
p->dsp.column_fidct(p->threshold_mtx, block, block3, es&(~1));
if (es > 3)
p->dsp.row_idct(block3 + 0 * 8, p->temp + (y & 15) * stride + x0 + 2 - (y & 1), stride, es >> 2);
if (!(y1 & 7) && y1) {
if (y1 & 8)
p->dsp.store_slice(dst + (y1 - 8) * dst_stride, p->temp + 8 + 8 * stride,
dst_stride, stride, width, 8, 5 - p->log2_count);
else
p->dsp.store_slice2(dst + (y1 - 8) * dst_stride, p->temp + 8 + 0 * stride,
dst_stride, stride, width, 8, 5 - p->log2_count);
}
}
if (y & 7) { // height % 8 != 0
if (y & 8)
p->dsp.store_slice(dst + ((y - 8) & ~7) * dst_stride, p->temp + 8 + 8 * stride,
dst_stride, stride, width, y&7, 5 - p->log2_count);
else
p->dsp.store_slice2(dst + ((y - 8) & ~7) * dst_stride, p->temp + 8 + 0 * stride,
dst_stride, stride, width, y&7, 5 - p->log2_count);
}
}
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV440P,
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ422P,
AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GRAY8,
AV_PIX_FMT_NONE
};
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
FSPPContext *fspp = ctx->priv;
const int h = FFALIGN(inlink->h + 16, 16);
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
fspp->hsub = desc->log2_chroma_w;
fspp->vsub = desc->log2_chroma_h;
fspp->temp_stride = FFALIGN(inlink->w + 16, 16);
fspp->temp = av_malloc_array(fspp->temp_stride, h * sizeof(*fspp->temp));
fspp->src = av_malloc_array(fspp->temp_stride, h * sizeof(*fspp->src));
if (!fspp->temp || !fspp->src)
return AVERROR(ENOMEM);
ff_fsppdsp_init(&fspp->dsp);
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
FSPPContext *fspp = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out = in;
int qp_stride = 0;
int8_t *qp_table = NULL;
int ret = 0;
//FIXME: tune custom_threshold[] and remove this !
for (int i = 0, bias = (1 << 4) + fspp->strength; i < 64; ++i)
fspp->threshold_mtx_noq[i] = (int)(custom_threshold[i] * (bias / 71.0) + 0.5);
if (fspp->qp) {
fspp->prev_q = fspp->qp;
fspp->dsp.mul_thrmat(fspp->threshold_mtx_noq, fspp->threshold_mtx, fspp->qp);
}
/* if we are not in a constant user quantizer mode and we don't want to use
* the quantizers from the B-frames (B-frames often have a higher QP), we
* need to save the qp table from the last non B-frame; this is what the
* following code block does */
if (!fspp->qp && (fspp->use_bframe_qp || in->pict_type != AV_PICTURE_TYPE_B)) {
ret = ff_qp_table_extract(in, &qp_table, &qp_stride, NULL, &fspp->qscale_type);
if (ret < 0) {
av_frame_free(&in);
return ret;
}
if (!fspp->use_bframe_qp && in->pict_type != AV_PICTURE_TYPE_B) {
av_freep(&fspp->non_b_qp_table);
fspp->non_b_qp_table = qp_table;
fspp->non_b_qp_stride = qp_stride;
}
}
if (fspp->log2_count && !ctx->is_disabled) {
if (!fspp->use_bframe_qp && fspp->non_b_qp_table) {
qp_table = fspp->non_b_qp_table;
qp_stride = fspp->non_b_qp_stride;
}
if (qp_table || fspp->qp) {
const int cw = AV_CEIL_RSHIFT(inlink->w, fspp->hsub);
const int ch = AV_CEIL_RSHIFT(inlink->h, fspp->vsub);
/* get a new frame if in-place is not possible or if the dimensions
* are not multiple of 8 */
if (!av_frame_is_writable(in) || (inlink->w & 7) || (inlink->h & 7)) {
const int aligned_w = FFALIGN(inlink->w, 8);
const int aligned_h = FFALIGN(inlink->h, 8);
out = ff_get_video_buffer(outlink, aligned_w, aligned_h);
if (!out) {
av_frame_free(&in);
ret = AVERROR(ENOMEM);
goto finish;
}
av_frame_copy_props(out, in);
out->width = in->width;
out->height = in->height;
}
filter(fspp, out->data[0], in->data[0], out->linesize[0], in->linesize[0],
inlink->w, inlink->h, qp_table, qp_stride, 1);
filter(fspp, out->data[1], in->data[1], out->linesize[1], in->linesize[1],
cw, ch, qp_table, qp_stride, 0);
filter(fspp, out->data[2], in->data[2], out->linesize[2], in->linesize[2],
cw, ch, qp_table, qp_stride, 0);
emms_c();
}
}
if (in != out) {
if (in->data[3])
av_image_copy_plane(out->data[3], out->linesize[3],
in ->data[3], in ->linesize[3],
inlink->w, inlink->h);
av_frame_free(&in);
}
ret = ff_filter_frame(outlink, out);
finish:
if (qp_table != fspp->non_b_qp_table)
av_freep(&qp_table);
return ret;
}
static av_cold void uninit(AVFilterContext *ctx)
{
FSPPContext *fspp = ctx->priv;
av_freep(&fspp->temp);
av_freep(&fspp->src);
av_freep(&fspp->non_b_qp_table);
}
static const AVFilterPad fspp_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_input,
.filter_frame = filter_frame,
},
};
const FFFilter ff_vf_fspp = {
.p.name = "fspp",
.p.description = NULL_IF_CONFIG_SMALL("Apply Fast Simple Post-processing filter."),
.p.priv_class = &fspp_class,
.p.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL,
.priv_size = sizeof(FSPPContext),
.uninit = uninit,
FILTER_INPUTS(fspp_inputs),
FILTER_OUTPUTS(ff_video_default_filterpad),
FILTER_PIXFMTS_ARRAY(pix_fmts),
};