1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libavcodec/aacenc_is.c
Claudio Freire df3fa48288 AAC encoder: use signed coeffs when measuring IS energy
I/S energy, especially when it comes to phase cancellations,
needs to use signed coefficients as input, yet it was using
abs'd coefficients. That was a slight bug.
2016-01-17 12:52:54 -03:00

159 lines
7.2 KiB
C

/*
* AAC encoder intensity stereo
* Copyright (C) 2015 Rostislav Pehlivanov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* AAC encoder Intensity Stereo
* @author Rostislav Pehlivanov ( atomnuker gmail com )
*/
#include "aacenc.h"
#include "aacenc_utils.h"
#include "aacenc_is.h"
#include "aacenc_quantization.h"
struct AACISError ff_aac_is_encoding_err(AACEncContext *s, ChannelElement *cpe,
int start, int w, int g, float ener0,
float ener1, float ener01,
int use_pcoeffs, int phase)
{
int i, w2;
SingleChannelElement *sce0 = &cpe->ch[0];
SingleChannelElement *sce1 = &cpe->ch[1];
float *L = use_pcoeffs ? sce0->pcoeffs : sce0->coeffs;
float *R = use_pcoeffs ? sce1->pcoeffs : sce1->coeffs;
float *L34 = &s->scoefs[256*0], *R34 = &s->scoefs[256*1];
float *IS = &s->scoefs[256*2], *I34 = &s->scoefs[256*3];
float dist1 = 0.0f, dist2 = 0.0f;
struct AACISError is_error = {0};
if (ener01 <= 0 || ener0 <= 0) {
is_error.pass = 0;
return is_error;
}
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
int is_band_type, is_sf_idx = FFMAX(1, sce0->sf_idx[w*16+g]-4);
float e01_34 = phase*pos_pow34(ener1/ener0);
float maxval, dist_spec_err = 0.0f;
float minthr = FFMIN(band0->threshold, band1->threshold);
for (i = 0; i < sce0->ics.swb_sizes[g]; i++)
IS[i] = (L[start+(w+w2)*128+i] + phase*R[start+(w+w2)*128+i])*sqrt(ener0/ener01);
abs_pow34_v(L34, &L[start+(w+w2)*128], sce0->ics.swb_sizes[g]);
abs_pow34_v(R34, &R[start+(w+w2)*128], sce0->ics.swb_sizes[g]);
abs_pow34_v(I34, IS, sce0->ics.swb_sizes[g]);
maxval = find_max_val(1, sce0->ics.swb_sizes[g], I34);
is_band_type = find_min_book(maxval, is_sf_idx);
dist1 += quantize_band_cost(s, &L[start + (w+w2)*128], L34,
sce0->ics.swb_sizes[g],
sce0->sf_idx[w*16+g],
sce0->band_type[w*16+g],
s->lambda / band0->threshold, INFINITY, NULL, NULL, 0);
dist1 += quantize_band_cost(s, &R[start + (w+w2)*128], R34,
sce1->ics.swb_sizes[g],
sce1->sf_idx[w*16+g],
sce1->band_type[w*16+g],
s->lambda / band1->threshold, INFINITY, NULL, NULL, 0);
dist2 += quantize_band_cost(s, IS, I34, sce0->ics.swb_sizes[g],
is_sf_idx, is_band_type,
s->lambda / minthr, INFINITY, NULL, NULL, 0);
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
dist_spec_err += (L34[i] - I34[i])*(L34[i] - I34[i]);
dist_spec_err += (R34[i] - I34[i]*e01_34)*(R34[i] - I34[i]*e01_34);
}
dist_spec_err *= s->lambda / minthr;
dist2 += dist_spec_err;
}
is_error.pass = dist2 <= dist1;
is_error.phase = phase;
is_error.error = dist2 - dist1;
is_error.dist1 = dist1;
is_error.dist2 = dist2;
is_error.ener01 = ener01;
return is_error;
}
void ff_aac_search_for_is(AACEncContext *s, AVCodecContext *avctx, ChannelElement *cpe)
{
SingleChannelElement *sce0 = &cpe->ch[0];
SingleChannelElement *sce1 = &cpe->ch[1];
int start = 0, count = 0, w, w2, g, i, prev_sf1 = -1, prev_bt = -1, prev_is = 0;
const float freq_mult = avctx->sample_rate/(1024.0f/sce0->ics.num_windows)/2.0f;
uint8_t nextband1[128];
if (!cpe->common_window)
return;
/** Scout out next nonzero bands */
ff_init_nextband_map(sce1, nextband1);
for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
start = 0;
for (g = 0; g < sce0->ics.num_swb; g++) {
if (start*freq_mult > INT_STEREO_LOW_LIMIT*(s->lambda/170.0f) &&
cpe->ch[0].band_type[w*16+g] != NOISE_BT && !cpe->ch[0].zeroes[w*16+g] &&
cpe->ch[1].band_type[w*16+g] != NOISE_BT && !cpe->ch[1].zeroes[w*16+g] &&
ff_sfdelta_can_remove_band(sce1, nextband1, prev_sf1, w*16+g)) {
float ener0 = 0.0f, ener1 = 0.0f, ener01 = 0.0f, ener01p = 0.0f;
struct AACISError ph_err1, ph_err2, *best;
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
float coef0 = sce0->coeffs[start+(w+w2)*128+i];
float coef1 = sce1->coeffs[start+(w+w2)*128+i];
ener0 += coef0*coef0;
ener1 += coef1*coef1;
ener01 += (coef0 + coef1)*(coef0 + coef1);
ener01p += (coef0 - coef1)*(coef0 - coef1);
}
}
ph_err1 = ff_aac_is_encoding_err(s, cpe, start, w, g,
ener0, ener1, ener01p, 0, -1);
ph_err2 = ff_aac_is_encoding_err(s, cpe, start, w, g,
ener0, ener1, ener01, 0, +1);
best = (ph_err1.pass && ph_err1.error < ph_err2.error) ? &ph_err1 : &ph_err2;
if (best->pass) {
cpe->is_mask[w*16+g] = 1;
cpe->ms_mask[w*16+g] = 0;
cpe->ch[0].is_ener[w*16+g] = sqrt(ener0 / best->ener01);
cpe->ch[1].is_ener[w*16+g] = ener0/ener1;
cpe->ch[1].band_type[w*16+g] = (best->phase > 0) ? INTENSITY_BT : INTENSITY_BT2;
if (prev_is && prev_bt != cpe->ch[1].band_type[w*16+g]) {
/** Flip M/S mask and pick the other CB, since it encodes more efficiently */
cpe->ms_mask[w*16+g] = 1;
cpe->ch[1].band_type[w*16+g] = (best->phase > 0) ? INTENSITY_BT2 : INTENSITY_BT;
}
prev_bt = cpe->ch[1].band_type[w*16+g];
count++;
}
}
if (!sce1->zeroes[w*16+g] && sce1->band_type[w*16+g] < RESERVED_BT)
prev_sf1 = sce1->sf_idx[w*16+g];
prev_is = cpe->is_mask[w*16+g];
start += sce0->ics.swb_sizes[g];
}
}
cpe->is_mode = !!count;
}