1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
FFmpeg/fftools/ffmpeg_filter.c
Anton Khirnov 66e78e9680 fftools/ffmpeg_demux: switch from AVThreadMessageQueue to ThreadQueue
* the code is made shorter and simpler
* avoids constantly allocating and freeing AVPackets, thanks to
  ThreadQueue integration with ObjPool
* is consistent with decoding/filtering/muxing
* reduces the diff in the future switch to thread-aware scheduling

This makes ifile_get_packet() always block. Any potential issues caused
by this will be resolved by the switch to thread-aware scheduling in
future commits.
2023-12-12 08:24:18 +01:00

3170 lines
98 KiB
C

/*
* ffmpeg filter configuration
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdint.h>
#include "ffmpeg.h"
#include "ffmpeg_utils.h"
#include "thread_queue.h"
#include "libavfilter/avfilter.h"
#include "libavfilter/buffersink.h"
#include "libavfilter/buffersrc.h"
#include "libavutil/avassert.h"
#include "libavutil/avstring.h"
#include "libavutil/bprint.h"
#include "libavutil/channel_layout.h"
#include "libavutil/display.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/pixfmt.h"
#include "libavutil/imgutils.h"
#include "libavutil/samplefmt.h"
#include "libavutil/timestamp.h"
// FIXME private header, used for mid_pred()
#include "libavcodec/mathops.h"
typedef struct FilterGraphPriv {
FilterGraph fg;
// name used for logging
char log_name[32];
int is_simple;
// true when the filtergraph contains only meta filters
// that do not modify the frame data
int is_meta;
int disable_conversions;
int nb_inputs_bound;
int nb_outputs_bound;
const char *graph_desc;
// frame for temporarily holding output from the filtergraph
AVFrame *frame;
// frame for sending output to the encoder
AVFrame *frame_enc;
pthread_t thread;
/**
* Queue for sending frames from the main thread to the filtergraph. Has
* nb_inputs+1 streams - the first nb_inputs stream correspond to
* filtergraph inputs. Frames on those streams may have their opaque set to
* - FRAME_OPAQUE_EOF: frame contains no data, but pts+timebase of the
* EOF event for the correspondint stream. Will be immediately followed by
* this stream being send-closed.
* - FRAME_OPAQUE_SUB_HEARTBEAT: frame contains no data, but pts+timebase of
* a subtitle heartbeat event. Will only be sent for sub2video streams.
*
* The last stream is "control" - the main thread sends empty AVFrames with
* opaque set to
* - FRAME_OPAQUE_REAP_FILTERS: a request to retrieve all frame available
* from filtergraph outputs. These frames are sent to corresponding
* streams in queue_out. Finally an empty frame is sent to the control
* stream in queue_out.
* - FRAME_OPAQUE_CHOOSE_INPUT: same as above, but in case no frames are
* available the terminating empty frame's opaque will contain the index+1
* of the filtergraph input to which more input frames should be supplied.
*/
ThreadQueue *queue_in;
/**
* Queue for sending frames from the filtergraph back to the main thread.
* Has nb_outputs+1 streams - the first nb_outputs stream correspond to
* filtergraph outputs.
*
* The last stream is "control" - see documentation for queue_in for more
* details.
*/
ThreadQueue *queue_out;
// submitting frames to filter thread returned EOF
// this only happens on thread exit, so is not per-input
int eof_in;
} FilterGraphPriv;
static FilterGraphPriv *fgp_from_fg(FilterGraph *fg)
{
return (FilterGraphPriv*)fg;
}
static const FilterGraphPriv *cfgp_from_cfg(const FilterGraph *fg)
{
return (const FilterGraphPriv*)fg;
}
// data that is local to the filter thread and not visible outside of it
typedef struct FilterGraphThread {
AVFrame *frame;
// Temporary buffer for output frames, since on filtergraph reset
// we cannot send them to encoders immediately.
// The output index is stored in frame opaque.
AVFifo *frame_queue_out;
int got_frame;
// EOF status of each input/output, as received by the thread
uint8_t *eof_in;
uint8_t *eof_out;
} FilterGraphThread;
typedef struct InputFilterPriv {
InputFilter ifilter;
int index;
AVFilterContext *filter;
InputStream *ist;
// used to hold submitted input
AVFrame *frame;
/* for filters that are not yet bound to an input stream,
* this stores the input linklabel, if any */
uint8_t *linklabel;
// filter data type
enum AVMediaType type;
// source data type: AVMEDIA_TYPE_SUBTITLE for sub2video,
// same as type otherwise
enum AVMediaType type_src;
int eof;
// parameters configured for this input
int format;
int width, height;
AVRational sample_aspect_ratio;
int sample_rate;
AVChannelLayout ch_layout;
AVRational time_base;
AVFifo *frame_queue;
AVBufferRef *hw_frames_ctx;
int displaymatrix_present;
int32_t displaymatrix[9];
// fallback parameters to use when no input is ever sent
struct {
int format;
int width;
int height;
AVRational sample_aspect_ratio;
int sample_rate;
AVChannelLayout ch_layout;
} fallback;
struct {
AVFrame *frame;
int64_t last_pts;
int64_t end_pts;
///< marks if sub2video_update should force an initialization
unsigned int initialize;
} sub2video;
} InputFilterPriv;
static InputFilterPriv *ifp_from_ifilter(InputFilter *ifilter)
{
return (InputFilterPriv*)ifilter;
}
typedef struct FPSConvContext {
AVFrame *last_frame;
/* number of frames emitted by the video-encoding sync code */
int64_t frame_number;
/* history of nb_frames_prev, i.e. the number of times the
* previous frame was duplicated by vsync code in recent
* do_video_out() calls */
int64_t frames_prev_hist[3];
uint64_t dup_warning;
int last_dropped;
int dropped_keyframe;
AVRational framerate;
AVRational framerate_max;
const AVRational *framerate_supported;
int framerate_clip;
} FPSConvContext;
typedef struct OutputFilterPriv {
OutputFilter ofilter;
int index;
AVFilterContext *filter;
/* desired output stream properties */
int format;
int width, height;
int sample_rate;
AVChannelLayout ch_layout;
// time base in which the output is sent to our downstream
// does not need to match the filtersink's timebase
AVRational tb_out;
// at least one frame with the above timebase was sent
// to our downstream, so it cannot change anymore
int tb_out_locked;
AVRational sample_aspect_ratio;
// those are only set if no format is specified and the encoder gives us multiple options
// They point directly to the relevant lists of the encoder.
const int *formats;
const AVChannelLayout *ch_layouts;
const int *sample_rates;
AVRational enc_timebase;
// offset for output timestamps, in AV_TIME_BASE_Q
int64_t ts_offset;
int64_t next_pts;
FPSConvContext fps;
// set to 1 after at least one frame passed through this output
int got_frame;
} OutputFilterPriv;
static OutputFilterPriv *ofp_from_ofilter(OutputFilter *ofilter)
{
return (OutputFilterPriv*)ofilter;
}
typedef struct FilterCommand {
char *target;
char *command;
char *arg;
double time;
int all_filters;
} FilterCommand;
static void filter_command_free(void *opaque, uint8_t *data)
{
FilterCommand *fc = (FilterCommand*)data;
av_freep(&fc->target);
av_freep(&fc->command);
av_freep(&fc->arg);
av_free(data);
}
static int sub2video_get_blank_frame(InputFilterPriv *ifp)
{
AVFrame *frame = ifp->sub2video.frame;
int ret;
av_frame_unref(frame);
frame->width = ifp->width;
frame->height = ifp->height;
frame->format = ifp->format;
ret = av_frame_get_buffer(frame, 0);
if (ret < 0)
return ret;
memset(frame->data[0], 0, frame->height * frame->linesize[0]);
return 0;
}
static void sub2video_copy_rect(uint8_t *dst, int dst_linesize, int w, int h,
AVSubtitleRect *r)
{
uint32_t *pal, *dst2;
uint8_t *src, *src2;
int x, y;
if (r->type != SUBTITLE_BITMAP) {
av_log(NULL, AV_LOG_WARNING, "sub2video: non-bitmap subtitle\n");
return;
}
if (r->x < 0 || r->x + r->w > w || r->y < 0 || r->y + r->h > h) {
av_log(NULL, AV_LOG_WARNING, "sub2video: rectangle (%d %d %d %d) overflowing %d %d\n",
r->x, r->y, r->w, r->h, w, h
);
return;
}
dst += r->y * dst_linesize + r->x * 4;
src = r->data[0];
pal = (uint32_t *)r->data[1];
for (y = 0; y < r->h; y++) {
dst2 = (uint32_t *)dst;
src2 = src;
for (x = 0; x < r->w; x++)
*(dst2++) = pal[*(src2++)];
dst += dst_linesize;
src += r->linesize[0];
}
}
static void sub2video_push_ref(InputFilterPriv *ifp, int64_t pts)
{
AVFrame *frame = ifp->sub2video.frame;
int ret;
av_assert1(frame->data[0]);
ifp->sub2video.last_pts = frame->pts = pts;
ret = av_buffersrc_add_frame_flags(ifp->filter, frame,
AV_BUFFERSRC_FLAG_KEEP_REF |
AV_BUFFERSRC_FLAG_PUSH);
if (ret != AVERROR_EOF && ret < 0)
av_log(NULL, AV_LOG_WARNING, "Error while add the frame to buffer source(%s).\n",
av_err2str(ret));
}
static void sub2video_update(InputFilterPriv *ifp, int64_t heartbeat_pts,
const AVSubtitle *sub)
{
AVFrame *frame = ifp->sub2video.frame;
int8_t *dst;
int dst_linesize;
int num_rects, i;
int64_t pts, end_pts;
if (sub) {
pts = av_rescale_q(sub->pts + sub->start_display_time * 1000LL,
AV_TIME_BASE_Q, ifp->time_base);
end_pts = av_rescale_q(sub->pts + sub->end_display_time * 1000LL,
AV_TIME_BASE_Q, ifp->time_base);
num_rects = sub->num_rects;
} else {
/* If we are initializing the system, utilize current heartbeat
PTS as the start time, and show until the following subpicture
is received. Otherwise, utilize the previous subpicture's end time
as the fall-back value. */
pts = ifp->sub2video.initialize ?
heartbeat_pts : ifp->sub2video.end_pts;
end_pts = INT64_MAX;
num_rects = 0;
}
if (sub2video_get_blank_frame(ifp) < 0) {
av_log(NULL, AV_LOG_ERROR,
"Impossible to get a blank canvas.\n");
return;
}
dst = frame->data [0];
dst_linesize = frame->linesize[0];
for (i = 0; i < num_rects; i++)
sub2video_copy_rect(dst, dst_linesize, frame->width, frame->height, sub->rects[i]);
sub2video_push_ref(ifp, pts);
ifp->sub2video.end_pts = end_pts;
ifp->sub2video.initialize = 0;
}
/* *dst may return be set to NULL (no pixel format found), a static string or a
* string backed by the bprint. Nothing has been written to the AVBPrint in case
* NULL is returned. The AVBPrint provided should be clean. */
static int choose_pix_fmts(OutputFilter *ofilter, AVBPrint *bprint,
const char **dst)
{
OutputFilterPriv *ofp = ofp_from_ofilter(ofilter);
OutputStream *ost = ofilter->ost;
*dst = NULL;
if (ost->keep_pix_fmt || ofp->format != AV_PIX_FMT_NONE) {
*dst = ofp->format == AV_PIX_FMT_NONE ? NULL :
av_get_pix_fmt_name(ofp->format);
} else if (ofp->formats) {
const enum AVPixelFormat *p = ofp->formats;
for (; *p != AV_PIX_FMT_NONE; p++) {
const char *name = av_get_pix_fmt_name(*p);
av_bprintf(bprint, "%s%c", name, p[1] == AV_PIX_FMT_NONE ? '\0' : '|');
}
if (!av_bprint_is_complete(bprint))
return AVERROR(ENOMEM);
*dst = bprint->str;
}
return 0;
}
/* Define a function for appending a list of allowed formats
* to an AVBPrint. If nonempty, the list will have a header. */
#define DEF_CHOOSE_FORMAT(name, type, var, supported_list, none, printf_format, get_name) \
static void choose_ ## name (OutputFilterPriv *ofp, AVBPrint *bprint) \
{ \
if (ofp->var == none && !ofp->supported_list) \
return; \
av_bprintf(bprint, #name "="); \
if (ofp->var != none) { \
av_bprintf(bprint, printf_format, get_name(ofp->var)); \
} else { \
const type *p; \
\
for (p = ofp->supported_list; *p != none; p++) { \
av_bprintf(bprint, printf_format "|", get_name(*p)); \
} \
if (bprint->len > 0) \
bprint->str[--bprint->len] = '\0'; \
} \
av_bprint_chars(bprint, ':', 1); \
}
//DEF_CHOOSE_FORMAT(pix_fmts, enum AVPixelFormat, format, formats, AV_PIX_FMT_NONE,
// GET_PIX_FMT_NAME)
DEF_CHOOSE_FORMAT(sample_fmts, enum AVSampleFormat, format, formats,
AV_SAMPLE_FMT_NONE, "%s", av_get_sample_fmt_name)
DEF_CHOOSE_FORMAT(sample_rates, int, sample_rate, sample_rates, 0,
"%d", )
static void choose_channel_layouts(OutputFilterPriv *ofp, AVBPrint *bprint)
{
if (av_channel_layout_check(&ofp->ch_layout)) {
av_bprintf(bprint, "channel_layouts=");
av_channel_layout_describe_bprint(&ofp->ch_layout, bprint);
} else if (ofp->ch_layouts) {
const AVChannelLayout *p;
av_bprintf(bprint, "channel_layouts=");
for (p = ofp->ch_layouts; p->nb_channels; p++) {
av_channel_layout_describe_bprint(p, bprint);
av_bprintf(bprint, "|");
}
if (bprint->len > 0)
bprint->str[--bprint->len] = '\0';
} else
return;
av_bprint_chars(bprint, ':', 1);
}
static int read_binary(const char *path, uint8_t **data, int *len)
{
AVIOContext *io = NULL;
int64_t fsize;
int ret;
*data = NULL;
*len = 0;
ret = avio_open2(&io, path, AVIO_FLAG_READ, &int_cb, NULL);
if (ret < 0) {
av_log(NULL, AV_LOG_ERROR, "Cannot open file '%s': %s\n",
path, av_err2str(ret));
return ret;
}
fsize = avio_size(io);
if (fsize < 0 || fsize > INT_MAX) {
av_log(NULL, AV_LOG_ERROR, "Cannot obtain size of file %s\n", path);
ret = AVERROR(EIO);
goto fail;
}
*data = av_malloc(fsize);
if (!*data) {
ret = AVERROR(ENOMEM);
goto fail;
}
ret = avio_read(io, *data, fsize);
if (ret != fsize) {
av_log(NULL, AV_LOG_ERROR, "Error reading file %s\n", path);
ret = ret < 0 ? ret : AVERROR(EIO);
goto fail;
}
*len = fsize;
ret = 0;
fail:
avio_close(io);
if (ret < 0) {
av_freep(data);
*len = 0;
}
return ret;
}
static int filter_opt_apply(AVFilterContext *f, const char *key, const char *val)
{
const AVOption *o = NULL;
int ret;
ret = av_opt_set(f, key, val, AV_OPT_SEARCH_CHILDREN);
if (ret >= 0)
return 0;
if (ret == AVERROR_OPTION_NOT_FOUND && key[0] == '/')
o = av_opt_find(f, key + 1, NULL, 0, AV_OPT_SEARCH_CHILDREN);
if (!o)
goto err_apply;
// key is a valid option name prefixed with '/'
// interpret value as a path from which to load the actual option value
key++;
if (o->type == AV_OPT_TYPE_BINARY) {
uint8_t *data;
int len;
ret = read_binary(val, &data, &len);
if (ret < 0)
goto err_load;
ret = av_opt_set_bin(f, key, data, len, AV_OPT_SEARCH_CHILDREN);
av_freep(&data);
} else {
char *data = file_read(val);
if (!data) {
ret = AVERROR(EIO);
goto err_load;
}
ret = av_opt_set(f, key, data, AV_OPT_SEARCH_CHILDREN);
av_freep(&data);
}
if (ret < 0)
goto err_apply;
return 0;
err_apply:
av_log(NULL, AV_LOG_ERROR,
"Error applying option '%s' to filter '%s': %s\n",
key, f->filter->name, av_err2str(ret));
return ret;
err_load:
av_log(NULL, AV_LOG_ERROR,
"Error loading value for option '%s' from file '%s'\n",
key, val);
return ret;
}
static int graph_opts_apply(AVFilterGraphSegment *seg)
{
for (size_t i = 0; i < seg->nb_chains; i++) {
AVFilterChain *ch = seg->chains[i];
for (size_t j = 0; j < ch->nb_filters; j++) {
AVFilterParams *p = ch->filters[j];
const AVDictionaryEntry *e = NULL;
av_assert0(p->filter);
while ((e = av_dict_iterate(p->opts, e))) {
int ret = filter_opt_apply(p->filter, e->key, e->value);
if (ret < 0)
return ret;
}
av_dict_free(&p->opts);
}
}
return 0;
}
static int graph_parse(AVFilterGraph *graph, const char *desc,
AVFilterInOut **inputs, AVFilterInOut **outputs,
AVBufferRef *hw_device)
{
AVFilterGraphSegment *seg;
int ret;
*inputs = NULL;
*outputs = NULL;
ret = avfilter_graph_segment_parse(graph, desc, 0, &seg);
if (ret < 0)
return ret;
ret = avfilter_graph_segment_create_filters(seg, 0);
if (ret < 0)
goto fail;
if (hw_device) {
for (int i = 0; i < graph->nb_filters; i++) {
AVFilterContext *f = graph->filters[i];
if (!(f->filter->flags & AVFILTER_FLAG_HWDEVICE))
continue;
f->hw_device_ctx = av_buffer_ref(hw_device);
if (!f->hw_device_ctx) {
ret = AVERROR(ENOMEM);
goto fail;
}
}
}
ret = graph_opts_apply(seg);
if (ret < 0)
goto fail;
ret = avfilter_graph_segment_apply(seg, 0, inputs, outputs);
fail:
avfilter_graph_segment_free(&seg);
return ret;
}
// Filters can be configured only if the formats of all inputs are known.
static int ifilter_has_all_input_formats(FilterGraph *fg)
{
int i;
for (i = 0; i < fg->nb_inputs; i++) {
InputFilterPriv *ifp = ifp_from_ifilter(fg->inputs[i]);
if (ifp->format < 0)
return 0;
}
return 1;
}
static void *filter_thread(void *arg);
// start the filtering thread once all inputs and outputs are bound
static int fg_thread_try_start(FilterGraphPriv *fgp)
{
FilterGraph *fg = &fgp->fg;
ObjPool *op;
int ret = 0;
if (fgp->nb_inputs_bound < fg->nb_inputs ||
fgp->nb_outputs_bound < fg->nb_outputs)
return 0;
op = objpool_alloc_frames();
if (!op)
return AVERROR(ENOMEM);
fgp->queue_in = tq_alloc(fg->nb_inputs + 1, 1, op, frame_move);
if (!fgp->queue_in) {
objpool_free(&op);
return AVERROR(ENOMEM);
}
// at least one output is mandatory
op = objpool_alloc_frames();
if (!op)
goto fail;
fgp->queue_out = tq_alloc(fg->nb_outputs + 1, 1, op, frame_move);
if (!fgp->queue_out) {
objpool_free(&op);
goto fail;
}
ret = pthread_create(&fgp->thread, NULL, filter_thread, fgp);
if (ret) {
ret = AVERROR(ret);
av_log(NULL, AV_LOG_ERROR, "pthread_create() for filtergraph %d failed: %s\n",
fg->index, av_err2str(ret));
goto fail;
}
return 0;
fail:
if (ret >= 0)
ret = AVERROR(ENOMEM);
tq_free(&fgp->queue_in);
tq_free(&fgp->queue_out);
return ret;
}
static char *describe_filter_link(FilterGraph *fg, AVFilterInOut *inout, int in)
{
AVFilterContext *ctx = inout->filter_ctx;
AVFilterPad *pads = in ? ctx->input_pads : ctx->output_pads;
int nb_pads = in ? ctx->nb_inputs : ctx->nb_outputs;
if (nb_pads > 1)
return av_strdup(ctx->filter->name);
return av_asprintf("%s:%s", ctx->filter->name,
avfilter_pad_get_name(pads, inout->pad_idx));
}
static OutputFilter *ofilter_alloc(FilterGraph *fg)
{
OutputFilterPriv *ofp;
OutputFilter *ofilter;
ofp = allocate_array_elem(&fg->outputs, sizeof(*ofp), &fg->nb_outputs);
if (!ofp)
return NULL;
ofilter = &ofp->ofilter;
ofilter->graph = fg;
ofp->format = -1;
ofp->index = fg->nb_outputs - 1;
ofilter->last_pts = AV_NOPTS_VALUE;
return ofilter;
}
static int ifilter_bind_ist(InputFilter *ifilter, InputStream *ist)
{
InputFilterPriv *ifp = ifp_from_ifilter(ifilter);
FilterGraphPriv *fgp = fgp_from_fg(ifilter->graph);
int ret;
av_assert0(!ifp->ist);
ifp->ist = ist;
ifp->type_src = ist->st->codecpar->codec_type;
ret = ist_filter_add(ist, ifilter, filtergraph_is_simple(ifilter->graph));
if (ret < 0)
return ret;
if (ifp->type_src == AVMEDIA_TYPE_SUBTITLE) {
ifp->sub2video.frame = av_frame_alloc();
if (!ifp->sub2video.frame)
return AVERROR(ENOMEM);
}
fgp->nb_inputs_bound++;
av_assert0(fgp->nb_inputs_bound <= ifilter->graph->nb_inputs);
return fg_thread_try_start(fgp);
}
static int set_channel_layout(OutputFilterPriv *f, OutputStream *ost)
{
const AVCodec *c = ost->enc_ctx->codec;
int i, err;
if (ost->enc_ctx->ch_layout.order != AV_CHANNEL_ORDER_UNSPEC) {
/* Pass the layout through for all orders but UNSPEC */
err = av_channel_layout_copy(&f->ch_layout, &ost->enc_ctx->ch_layout);
if (err < 0)
return err;
return 0;
}
/* Requested layout is of order UNSPEC */
if (!c->ch_layouts) {
/* Use the default native layout for the requested amount of channels when the
encoder doesn't have a list of supported layouts */
av_channel_layout_default(&f->ch_layout, ost->enc_ctx->ch_layout.nb_channels);
return 0;
}
/* Encoder has a list of supported layouts. Pick the first layout in it with the
same amount of channels as the requested layout */
for (i = 0; c->ch_layouts[i].nb_channels; i++) {
if (c->ch_layouts[i].nb_channels == ost->enc_ctx->ch_layout.nb_channels)
break;
}
if (c->ch_layouts[i].nb_channels) {
/* Use it if one is found */
err = av_channel_layout_copy(&f->ch_layout, &c->ch_layouts[i]);
if (err < 0)
return err;
return 0;
}
/* If no layout for the amount of channels requested was found, use the default
native layout for it. */
av_channel_layout_default(&f->ch_layout, ost->enc_ctx->ch_layout.nb_channels);
return 0;
}
int ofilter_bind_ost(OutputFilter *ofilter, OutputStream *ost)
{
const OutputFile *of = output_files[ost->file_index];
OutputFilterPriv *ofp = ofp_from_ofilter(ofilter);
FilterGraph *fg = ofilter->graph;
FilterGraphPriv *fgp = fgp_from_fg(fg);
const AVCodec *c = ost->enc_ctx->codec;
av_assert0(!ofilter->ost);
ofilter->ost = ost;
av_freep(&ofilter->linklabel);
ofp->ts_offset = of->start_time == AV_NOPTS_VALUE ? 0 : of->start_time;
ofp->enc_timebase = ost->enc_timebase;
switch (ost->enc_ctx->codec_type) {
case AVMEDIA_TYPE_VIDEO:
ofp->width = ost->enc_ctx->width;
ofp->height = ost->enc_ctx->height;
if (ost->enc_ctx->pix_fmt != AV_PIX_FMT_NONE) {
ofp->format = ost->enc_ctx->pix_fmt;
} else {
ofp->formats = c->pix_fmts;
// MJPEG encoder exports a full list of supported pixel formats,
// but the full-range ones are experimental-only.
// Restrict the auto-conversion list unless -strict experimental
// has been specified.
if (!strcmp(c->name, "mjpeg")) {
// FIXME: YUV420P etc. are actually supported with full color range,
// yet the latter information isn't available here.
static const enum AVPixelFormat mjpeg_formats[] =
{ AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_NONE };
const AVDictionaryEntry *strict = av_dict_get(ost->encoder_opts, "strict", NULL, 0);
int strict_val = ost->enc_ctx->strict_std_compliance;
if (strict) {
const AVOption *o = av_opt_find(ost->enc_ctx, strict->key, NULL, 0, 0);
av_assert0(o);
av_opt_eval_int(ost->enc_ctx, o, strict->value, &strict_val);
}
if (strict_val > FF_COMPLIANCE_UNOFFICIAL)
ofp->formats = mjpeg_formats;
}
}
fgp->disable_conversions |= ost->keep_pix_fmt;
ofp->fps.last_frame = av_frame_alloc();
if (!ofp->fps.last_frame)
return AVERROR(ENOMEM);
ofp->fps.framerate = ost->frame_rate;
ofp->fps.framerate_max = ost->max_frame_rate;
ofp->fps.framerate_supported = ost->force_fps ?
NULL : c->supported_framerates;
// reduce frame rate for mpeg4 to be within the spec limits
if (c->id == AV_CODEC_ID_MPEG4)
ofp->fps.framerate_clip = 65535;
ofp->fps.dup_warning = 1000;
break;
case AVMEDIA_TYPE_AUDIO:
if (ost->enc_ctx->sample_fmt != AV_SAMPLE_FMT_NONE) {
ofp->format = ost->enc_ctx->sample_fmt;
} else {
ofp->formats = c->sample_fmts;
}
if (ost->enc_ctx->sample_rate) {
ofp->sample_rate = ost->enc_ctx->sample_rate;
} else {
ofp->sample_rates = c->supported_samplerates;
}
if (ost->enc_ctx->ch_layout.nb_channels) {
int ret = set_channel_layout(ofp, ost);
if (ret < 0)
return ret;
} else if (c->ch_layouts) {
ofp->ch_layouts = c->ch_layouts;
}
break;
}
fgp->nb_outputs_bound++;
av_assert0(fgp->nb_outputs_bound <= fg->nb_outputs);
return fg_thread_try_start(fgp);
}
static InputFilter *ifilter_alloc(FilterGraph *fg)
{
InputFilterPriv *ifp;
InputFilter *ifilter;
ifp = allocate_array_elem(&fg->inputs, sizeof(*ifp), &fg->nb_inputs);
if (!ifp)
return NULL;
ifilter = &ifp->ifilter;
ifilter->graph = fg;
ifp->frame = av_frame_alloc();
if (!ifp->frame)
return NULL;
ifp->index = fg->nb_inputs - 1;
ifp->format = -1;
ifp->fallback.format = -1;
ifp->frame_queue = av_fifo_alloc2(8, sizeof(AVFrame*), AV_FIFO_FLAG_AUTO_GROW);
if (!ifp->frame_queue)
return NULL;
return ifilter;
}
static int fg_thread_stop(FilterGraphPriv *fgp)
{
void *ret;
if (!fgp->queue_in)
return 0;
for (int i = 0; i <= fgp->fg.nb_inputs; i++) {
InputFilterPriv *ifp = i < fgp->fg.nb_inputs ?
ifp_from_ifilter(fgp->fg.inputs[i]) : NULL;
if (ifp)
ifp->eof = 1;
tq_send_finish(fgp->queue_in, i);
}
for (int i = 0; i <= fgp->fg.nb_outputs; i++)
tq_receive_finish(fgp->queue_out, i);
pthread_join(fgp->thread, &ret);
tq_free(&fgp->queue_in);
tq_free(&fgp->queue_out);
return (int)(intptr_t)ret;
}
void fg_free(FilterGraph **pfg)
{
FilterGraph *fg = *pfg;
FilterGraphPriv *fgp;
if (!fg)
return;
fgp = fgp_from_fg(fg);
fg_thread_stop(fgp);
avfilter_graph_free(&fg->graph);
for (int j = 0; j < fg->nb_inputs; j++) {
InputFilter *ifilter = fg->inputs[j];
InputFilterPriv *ifp = ifp_from_ifilter(ifilter);
if (ifp->frame_queue) {
AVFrame *frame;
while (av_fifo_read(ifp->frame_queue, &frame, 1) >= 0)
av_frame_free(&frame);
av_fifo_freep2(&ifp->frame_queue);
}
av_frame_free(&ifp->sub2video.frame);
av_channel_layout_uninit(&ifp->fallback.ch_layout);
av_frame_free(&ifp->frame);
av_buffer_unref(&ifp->hw_frames_ctx);
av_freep(&ifp->linklabel);
av_freep(&ifilter->name);
av_freep(&fg->inputs[j]);
}
av_freep(&fg->inputs);
for (int j = 0; j < fg->nb_outputs; j++) {
OutputFilter *ofilter = fg->outputs[j];
OutputFilterPriv *ofp = ofp_from_ofilter(ofilter);
av_frame_free(&ofp->fps.last_frame);
av_freep(&ofilter->linklabel);
av_freep(&ofilter->name);
av_channel_layout_uninit(&ofp->ch_layout);
av_freep(&fg->outputs[j]);
}
av_freep(&fg->outputs);
av_freep(&fgp->graph_desc);
av_frame_free(&fgp->frame);
av_frame_free(&fgp->frame_enc);
av_freep(pfg);
}
static const char *fg_item_name(void *obj)
{
const FilterGraphPriv *fgp = obj;
return fgp->log_name;
}
static const AVClass fg_class = {
.class_name = "FilterGraph",
.version = LIBAVUTIL_VERSION_INT,
.item_name = fg_item_name,
.category = AV_CLASS_CATEGORY_FILTER,
};
int fg_create(FilterGraph **pfg, char *graph_desc)
{
FilterGraphPriv *fgp;
FilterGraph *fg;
AVFilterInOut *inputs, *outputs;
AVFilterGraph *graph;
int ret = 0;
fgp = allocate_array_elem(&filtergraphs, sizeof(*fgp), &nb_filtergraphs);
if (!fgp)
return AVERROR(ENOMEM);
fg = &fgp->fg;
if (pfg)
*pfg = fg;
fg->class = &fg_class;
fg->index = nb_filtergraphs - 1;
fgp->graph_desc = graph_desc;
fgp->disable_conversions = !auto_conversion_filters;
snprintf(fgp->log_name, sizeof(fgp->log_name), "fc#%d", fg->index);
fgp->frame = av_frame_alloc();
fgp->frame_enc = av_frame_alloc();
if (!fgp->frame || !fgp->frame_enc)
return AVERROR(ENOMEM);
/* this graph is only used for determining the kinds of inputs
* and outputs we have, and is discarded on exit from this function */
graph = avfilter_graph_alloc();
if (!graph)
return AVERROR(ENOMEM);;
graph->nb_threads = 1;
ret = graph_parse(graph, fgp->graph_desc, &inputs, &outputs, NULL);
if (ret < 0)
goto fail;
for (AVFilterInOut *cur = inputs; cur; cur = cur->next) {
InputFilter *const ifilter = ifilter_alloc(fg);
InputFilterPriv *ifp;
if (!ifilter) {
ret = AVERROR(ENOMEM);
goto fail;
}
ifp = ifp_from_ifilter(ifilter);
ifp->linklabel = cur->name;
cur->name = NULL;
ifp->type = avfilter_pad_get_type(cur->filter_ctx->input_pads,
cur->pad_idx);
ifilter->name = describe_filter_link(fg, cur, 1);
if (!ifilter->name) {
ret = AVERROR(ENOMEM);
goto fail;
}
}
for (AVFilterInOut *cur = outputs; cur; cur = cur->next) {
OutputFilter *const ofilter = ofilter_alloc(fg);
if (!ofilter) {
ret = AVERROR(ENOMEM);
goto fail;
}
ofilter->linklabel = cur->name;
cur->name = NULL;
ofilter->type = avfilter_pad_get_type(cur->filter_ctx->output_pads,
cur->pad_idx);
ofilter->name = describe_filter_link(fg, cur, 0);
if (!ofilter->name) {
ret = AVERROR(ENOMEM);
goto fail;
}
}
if (!fg->nb_outputs) {
av_log(fg, AV_LOG_FATAL, "A filtergraph has zero outputs, this is not supported\n");
ret = AVERROR(ENOSYS);
goto fail;
}
fail:
avfilter_inout_free(&inputs);
avfilter_inout_free(&outputs);
avfilter_graph_free(&graph);
if (ret < 0)
return ret;
return 0;
}
int init_simple_filtergraph(InputStream *ist, OutputStream *ost,
char *graph_desc)
{
FilterGraph *fg;
FilterGraphPriv *fgp;
int ret;
ret = fg_create(&fg, graph_desc);
if (ret < 0)
return ret;
fgp = fgp_from_fg(fg);
fgp->is_simple = 1;
snprintf(fgp->log_name, sizeof(fgp->log_name), "%cf#%d:%d",
av_get_media_type_string(ost->type)[0],
ost->file_index, ost->index);
if (fg->nb_inputs != 1 || fg->nb_outputs != 1) {
av_log(fg, AV_LOG_ERROR, "Simple filtergraph '%s' was expected "
"to have exactly 1 input and 1 output. "
"However, it had %d input(s) and %d output(s). Please adjust, "
"or use a complex filtergraph (-filter_complex) instead.\n",
graph_desc, fg->nb_inputs, fg->nb_outputs);
return AVERROR(EINVAL);
}
ost->filter = fg->outputs[0];
ret = ifilter_bind_ist(fg->inputs[0], ist);
if (ret < 0)
return ret;
ret = ofilter_bind_ost(fg->outputs[0], ost);
if (ret < 0)
return ret;
return 0;
}
static int init_input_filter(FilterGraph *fg, InputFilter *ifilter)
{
FilterGraphPriv *fgp = fgp_from_fg(fg);
InputFilterPriv *ifp = ifp_from_ifilter(ifilter);
InputStream *ist = NULL;
enum AVMediaType type = ifp->type;
int i, ret;
// TODO: support other filter types
if (type != AVMEDIA_TYPE_VIDEO && type != AVMEDIA_TYPE_AUDIO) {
av_log(fg, AV_LOG_FATAL, "Only video and audio filters supported "
"currently.\n");
return AVERROR(ENOSYS);
}
if (ifp->linklabel) {
AVFormatContext *s;
AVStream *st = NULL;
char *p;
int file_idx = strtol(ifp->linklabel, &p, 0);
if (file_idx < 0 || file_idx >= nb_input_files) {
av_log(fg, AV_LOG_FATAL, "Invalid file index %d in filtergraph description %s.\n",
file_idx, fgp->graph_desc);
return AVERROR(EINVAL);
}
s = input_files[file_idx]->ctx;
for (i = 0; i < s->nb_streams; i++) {
enum AVMediaType stream_type = s->streams[i]->codecpar->codec_type;
if (stream_type != type &&
!(stream_type == AVMEDIA_TYPE_SUBTITLE &&
type == AVMEDIA_TYPE_VIDEO /* sub2video hack */))
continue;
if (check_stream_specifier(s, s->streams[i], *p == ':' ? p + 1 : p) == 1) {
st = s->streams[i];
break;
}
}
if (!st) {
av_log(fg, AV_LOG_FATAL, "Stream specifier '%s' in filtergraph description %s "
"matches no streams.\n", p, fgp->graph_desc);
return AVERROR(EINVAL);
}
ist = input_files[file_idx]->streams[st->index];
} else {
ist = ist_find_unused(type);
if (!ist) {
av_log(fg, AV_LOG_FATAL, "Cannot find a matching stream for "
"unlabeled input pad %s\n", ifilter->name);
return AVERROR(EINVAL);
}
}
av_assert0(ist);
ret = ifilter_bind_ist(ifilter, ist);
if (ret < 0) {
av_log(fg, AV_LOG_ERROR,
"Error binding an input stream to complex filtergraph input %s.\n",
ifilter->name);
return ret;
}
return 0;
}
int init_complex_filtergraph(FilterGraph *fg)
{
// bind filtergraph inputs to input streams
for (int i = 0; i < fg->nb_inputs; i++) {
int ret = init_input_filter(fg, fg->inputs[i]);
if (ret < 0)
return ret;
}
return 0;
}
static int insert_trim(int64_t start_time, int64_t duration,
AVFilterContext **last_filter, int *pad_idx,
const char *filter_name)
{
AVFilterGraph *graph = (*last_filter)->graph;
AVFilterContext *ctx;
const AVFilter *trim;
enum AVMediaType type = avfilter_pad_get_type((*last_filter)->output_pads, *pad_idx);
const char *name = (type == AVMEDIA_TYPE_VIDEO) ? "trim" : "atrim";
int ret = 0;
if (duration == INT64_MAX && start_time == AV_NOPTS_VALUE)
return 0;
trim = avfilter_get_by_name(name);
if (!trim) {
av_log(NULL, AV_LOG_ERROR, "%s filter not present, cannot limit "
"recording time.\n", name);
return AVERROR_FILTER_NOT_FOUND;
}
ctx = avfilter_graph_alloc_filter(graph, trim, filter_name);
if (!ctx)
return AVERROR(ENOMEM);
if (duration != INT64_MAX) {
ret = av_opt_set_int(ctx, "durationi", duration,
AV_OPT_SEARCH_CHILDREN);
}
if (ret >= 0 && start_time != AV_NOPTS_VALUE) {
ret = av_opt_set_int(ctx, "starti", start_time,
AV_OPT_SEARCH_CHILDREN);
}
if (ret < 0) {
av_log(ctx, AV_LOG_ERROR, "Error configuring the %s filter", name);
return ret;
}
ret = avfilter_init_str(ctx, NULL);
if (ret < 0)
return ret;
ret = avfilter_link(*last_filter, *pad_idx, ctx, 0);
if (ret < 0)
return ret;
*last_filter = ctx;
*pad_idx = 0;
return 0;
}
static int insert_filter(AVFilterContext **last_filter, int *pad_idx,
const char *filter_name, const char *args)
{
AVFilterGraph *graph = (*last_filter)->graph;
AVFilterContext *ctx;
int ret;
ret = avfilter_graph_create_filter(&ctx,
avfilter_get_by_name(filter_name),
filter_name, args, NULL, graph);
if (ret < 0)
return ret;
ret = avfilter_link(*last_filter, *pad_idx, ctx, 0);
if (ret < 0)
return ret;
*last_filter = ctx;
*pad_idx = 0;
return 0;
}
static int configure_output_video_filter(FilterGraph *fg, OutputFilter *ofilter, AVFilterInOut *out)
{
OutputFilterPriv *ofp = ofp_from_ofilter(ofilter);
OutputStream *ost = ofilter->ost;
OutputFile *of = output_files[ost->file_index];
AVFilterContext *last_filter = out->filter_ctx;
AVBPrint bprint;
int pad_idx = out->pad_idx;
int ret;
const char *pix_fmts;
char name[255];
snprintf(name, sizeof(name), "out_%d_%d", ost->file_index, ost->index);
ret = avfilter_graph_create_filter(&ofp->filter,
avfilter_get_by_name("buffersink"),
name, NULL, NULL, fg->graph);
if (ret < 0)
return ret;
if ((ofp->width || ofp->height) && ofilter->ost->autoscale) {
char args[255];
AVFilterContext *filter;
const AVDictionaryEntry *e = NULL;
snprintf(args, sizeof(args), "%d:%d",
ofp->width, ofp->height);
while ((e = av_dict_iterate(ost->sws_dict, e))) {
av_strlcatf(args, sizeof(args), ":%s=%s", e->key, e->value);
}
snprintf(name, sizeof(name), "scaler_out_%d_%d",
ost->file_index, ost->index);
if ((ret = avfilter_graph_create_filter(&filter, avfilter_get_by_name("scale"),
name, args, NULL, fg->graph)) < 0)
return ret;
if ((ret = avfilter_link(last_filter, pad_idx, filter, 0)) < 0)
return ret;
last_filter = filter;
pad_idx = 0;
}
av_bprint_init(&bprint, 0, AV_BPRINT_SIZE_UNLIMITED);
ret = choose_pix_fmts(ofilter, &bprint, &pix_fmts);
if (ret < 0)
return ret;
if (pix_fmts) {
AVFilterContext *filter;
ret = avfilter_graph_create_filter(&filter,
avfilter_get_by_name("format"),
"format", pix_fmts, NULL, fg->graph);
av_bprint_finalize(&bprint, NULL);
if (ret < 0)
return ret;
if ((ret = avfilter_link(last_filter, pad_idx, filter, 0)) < 0)
return ret;
last_filter = filter;
pad_idx = 0;
}
snprintf(name, sizeof(name), "trim_out_%d_%d",
ost->file_index, ost->index);
ret = insert_trim(of->start_time, of->recording_time,
&last_filter, &pad_idx, name);
if (ret < 0)
return ret;
if ((ret = avfilter_link(last_filter, pad_idx, ofp->filter, 0)) < 0)
return ret;
return 0;
}
static int configure_output_audio_filter(FilterGraph *fg, OutputFilter *ofilter, AVFilterInOut *out)
{
OutputFilterPriv *ofp = ofp_from_ofilter(ofilter);
OutputStream *ost = ofilter->ost;
OutputFile *of = output_files[ost->file_index];
AVFilterContext *last_filter = out->filter_ctx;
int pad_idx = out->pad_idx;
AVBPrint args;
char name[255];
int ret;
snprintf(name, sizeof(name), "out_%d_%d", ost->file_index, ost->index);
ret = avfilter_graph_create_filter(&ofp->filter,
avfilter_get_by_name("abuffersink"),
name, NULL, NULL, fg->graph);
if (ret < 0)
return ret;
if ((ret = av_opt_set_int(ofp->filter, "all_channel_counts", 1, AV_OPT_SEARCH_CHILDREN)) < 0)
return ret;
#define AUTO_INSERT_FILTER(opt_name, filter_name, arg) do { \
AVFilterContext *filt_ctx; \
\
av_log(fg, AV_LOG_INFO, opt_name " is forwarded to lavfi " \
"similarly to -af " filter_name "=%s.\n", arg); \
\
ret = avfilter_graph_create_filter(&filt_ctx, \
avfilter_get_by_name(filter_name), \
filter_name, arg, NULL, fg->graph); \
if (ret < 0) \
goto fail; \
\
ret = avfilter_link(last_filter, pad_idx, filt_ctx, 0); \
if (ret < 0) \
goto fail; \
\
last_filter = filt_ctx; \
pad_idx = 0; \
} while (0)
av_bprint_init(&args, 0, AV_BPRINT_SIZE_UNLIMITED);
#if FFMPEG_OPT_MAP_CHANNEL
if (ost->audio_channels_mapped) {
AVChannelLayout mapped_layout = { 0 };
int i;
av_channel_layout_default(&mapped_layout, ost->audio_channels_mapped);
av_channel_layout_describe_bprint(&mapped_layout, &args);
for (i = 0; i < ost->audio_channels_mapped; i++)
if (ost->audio_channels_map[i] != -1)
av_bprintf(&args, "|c%d=c%d", i, ost->audio_channels_map[i]);
AUTO_INSERT_FILTER("-map_channel", "pan", args.str);
av_bprint_clear(&args);
}
#endif
choose_sample_fmts(ofp, &args);
choose_sample_rates(ofp, &args);
choose_channel_layouts(ofp, &args);
if (!av_bprint_is_complete(&args)) {
ret = AVERROR(ENOMEM);
goto fail;
}
if (args.len) {
AVFilterContext *format;
snprintf(name, sizeof(name), "format_out_%d_%d",
ost->file_index, ost->index);
ret = avfilter_graph_create_filter(&format,
avfilter_get_by_name("aformat"),
name, args.str, NULL, fg->graph);
if (ret < 0)
goto fail;
ret = avfilter_link(last_filter, pad_idx, format, 0);
if (ret < 0)
goto fail;
last_filter = format;
pad_idx = 0;
}
if (ost->apad && of->shortest) {
int i;
for (i = 0; i < of->nb_streams; i++)
if (of->streams[i]->st->codecpar->codec_type == AVMEDIA_TYPE_VIDEO)
break;
if (i < of->nb_streams) {
AUTO_INSERT_FILTER("-apad", "apad", ost->apad);
}
}
snprintf(name, sizeof(name), "trim for output stream %d:%d",
ost->file_index, ost->index);
ret = insert_trim(of->start_time, of->recording_time,
&last_filter, &pad_idx, name);
if (ret < 0)
goto fail;
if ((ret = avfilter_link(last_filter, pad_idx, ofp->filter, 0)) < 0)
goto fail;
fail:
av_bprint_finalize(&args, NULL);
return ret;
}
static int configure_output_filter(FilterGraph *fg, OutputFilter *ofilter,
AVFilterInOut *out)
{
if (!ofilter->ost) {
av_log(fg, AV_LOG_FATAL, "Filter %s has an unconnected output\n", ofilter->name);
return AVERROR(EINVAL);
}
switch (avfilter_pad_get_type(out->filter_ctx->output_pads, out->pad_idx)) {
case AVMEDIA_TYPE_VIDEO: return configure_output_video_filter(fg, ofilter, out);
case AVMEDIA_TYPE_AUDIO: return configure_output_audio_filter(fg, ofilter, out);
default: av_assert0(0); return 0;
}
}
int check_filter_outputs(void)
{
int i;
for (i = 0; i < nb_filtergraphs; i++) {
int n;
for (n = 0; n < filtergraphs[i]->nb_outputs; n++) {
OutputFilter *output = filtergraphs[i]->outputs[n];
if (!output->ost) {
av_log(filtergraphs[i], AV_LOG_FATAL,
"Filter %s has an unconnected output\n", output->name);
return AVERROR(EINVAL);
}
}
}
return 0;
}
static void sub2video_prepare(InputFilterPriv *ifp)
{
ifp->sub2video.last_pts = INT64_MIN;
ifp->sub2video.end_pts = INT64_MIN;
/* sub2video structure has been (re-)initialized.
Mark it as such so that the system will be
initialized with the first received heartbeat. */
ifp->sub2video.initialize = 1;
}
static int configure_input_video_filter(FilterGraph *fg, InputFilter *ifilter,
AVFilterInOut *in)
{
InputFilterPriv *ifp = ifp_from_ifilter(ifilter);
AVFilterContext *last_filter;
const AVFilter *buffer_filt = avfilter_get_by_name("buffer");
const AVPixFmtDescriptor *desc;
InputStream *ist = ifp->ist;
InputFile *f = input_files[ist->file_index];
AVRational fr = ist->framerate;
AVRational sar;
AVBPrint args;
char name[255];
int ret, pad_idx = 0;
int64_t tsoffset = 0;
AVBufferSrcParameters *par = av_buffersrc_parameters_alloc();
if (!par)
return AVERROR(ENOMEM);
memset(par, 0, sizeof(*par));
par->format = AV_PIX_FMT_NONE;
if (ist->dec_ctx->codec_type == AVMEDIA_TYPE_AUDIO) {
av_log(fg, AV_LOG_ERROR, "Cannot connect video filter to audio input\n");
ret = AVERROR(EINVAL);
goto fail;
}
if (!fr.num)
fr = ist->framerate_guessed;
if (ifp->type_src == AVMEDIA_TYPE_SUBTITLE)
sub2video_prepare(ifp);
ifp->time_base = ist->framerate.num ? av_inv_q(ist->framerate) :
ist->st->time_base;
sar = ifp->sample_aspect_ratio;
if(!sar.den)
sar = (AVRational){0,1};
av_bprint_init(&args, 0, AV_BPRINT_SIZE_AUTOMATIC);
av_bprintf(&args,
"video_size=%dx%d:pix_fmt=%d:time_base=%d/%d:"
"pixel_aspect=%d/%d",
ifp->width, ifp->height, ifp->format,
ifp->time_base.num, ifp->time_base.den, sar.num, sar.den);
if (fr.num && fr.den)
av_bprintf(&args, ":frame_rate=%d/%d", fr.num, fr.den);
snprintf(name, sizeof(name), "graph %d input from stream %d:%d", fg->index,
ist->file_index, ist->index);
if ((ret = avfilter_graph_create_filter(&ifp->filter, buffer_filt, name,
args.str, NULL, fg->graph)) < 0)
goto fail;
par->hw_frames_ctx = ifp->hw_frames_ctx;
ret = av_buffersrc_parameters_set(ifp->filter, par);
if (ret < 0)
goto fail;
av_freep(&par);
last_filter = ifp->filter;
desc = av_pix_fmt_desc_get(ifp->format);
av_assert0(desc);
// TODO: insert hwaccel enabled filters like transpose_vaapi into the graph
if (ist->autorotate && !(desc->flags & AV_PIX_FMT_FLAG_HWACCEL)) {
const AVPacketSideData *sd = NULL;
int32_t *displaymatrix = ifp->displaymatrix;
double theta;
if (!ifp->displaymatrix_present)
sd = av_packet_side_data_get(ist->st->codecpar->coded_side_data,
ist->st->codecpar->nb_coded_side_data,
AV_PKT_DATA_DISPLAYMATRIX);
if (sd)
displaymatrix = (int32_t *)sd->data;
theta = get_rotation(displaymatrix);
if (fabs(theta - 90) < 1.0) {
ret = insert_filter(&last_filter, &pad_idx, "transpose",
displaymatrix[3] > 0 ? "cclock_flip" : "clock");
} else if (fabs(theta - 180) < 1.0) {
if (displaymatrix[0] < 0) {
ret = insert_filter(&last_filter, &pad_idx, "hflip", NULL);
if (ret < 0)
return ret;
}
if (displaymatrix[4] < 0) {
ret = insert_filter(&last_filter, &pad_idx, "vflip", NULL);
}
} else if (fabs(theta - 270) < 1.0) {
ret = insert_filter(&last_filter, &pad_idx, "transpose",
displaymatrix[3] < 0 ? "clock_flip" : "cclock");
} else if (fabs(theta) > 1.0) {
char rotate_buf[64];
snprintf(rotate_buf, sizeof(rotate_buf), "%f*PI/180", theta);
ret = insert_filter(&last_filter, &pad_idx, "rotate", rotate_buf);
} else if (fabs(theta) < 1.0) {
if (displaymatrix && displaymatrix[4] < 0) {
ret = insert_filter(&last_filter, &pad_idx, "vflip", NULL);
}
}
if (ret < 0)
return ret;
}
snprintf(name, sizeof(name), "trim_in_%d_%d",
ist->file_index, ist->index);
if (copy_ts) {
tsoffset = f->start_time == AV_NOPTS_VALUE ? 0 : f->start_time;
if (!start_at_zero && f->ctx->start_time != AV_NOPTS_VALUE)
tsoffset += f->ctx->start_time;
}
ret = insert_trim(((f->start_time == AV_NOPTS_VALUE) || !f->accurate_seek) ?
AV_NOPTS_VALUE : tsoffset, f->recording_time,
&last_filter, &pad_idx, name);
if (ret < 0)
return ret;
if ((ret = avfilter_link(last_filter, 0, in->filter_ctx, in->pad_idx)) < 0)
return ret;
return 0;
fail:
av_freep(&par);
return ret;
}
static int configure_input_audio_filter(FilterGraph *fg, InputFilter *ifilter,
AVFilterInOut *in)
{
InputFilterPriv *ifp = ifp_from_ifilter(ifilter);
AVFilterContext *last_filter;
const AVFilter *abuffer_filt = avfilter_get_by_name("abuffer");
InputStream *ist = ifp->ist;
InputFile *f = input_files[ist->file_index];
AVBPrint args;
char name[255];
int ret, pad_idx = 0;
int64_t tsoffset = 0;
if (ist->dec_ctx->codec_type != AVMEDIA_TYPE_AUDIO) {
av_log(fg, AV_LOG_ERROR, "Cannot connect audio filter to non audio input\n");
return AVERROR(EINVAL);
}
ifp->time_base = (AVRational){ 1, ifp->sample_rate };
av_bprint_init(&args, 0, AV_BPRINT_SIZE_AUTOMATIC);
av_bprintf(&args, "time_base=%d/%d:sample_rate=%d:sample_fmt=%s",
ifp->time_base.num, ifp->time_base.den,
ifp->sample_rate,
av_get_sample_fmt_name(ifp->format));
if (av_channel_layout_check(&ifp->ch_layout) &&
ifp->ch_layout.order != AV_CHANNEL_ORDER_UNSPEC) {
av_bprintf(&args, ":channel_layout=");
av_channel_layout_describe_bprint(&ifp->ch_layout, &args);
} else
av_bprintf(&args, ":channels=%d", ifp->ch_layout.nb_channels);
snprintf(name, sizeof(name), "graph_%d_in_%d_%d", fg->index,
ist->file_index, ist->index);
if ((ret = avfilter_graph_create_filter(&ifp->filter, abuffer_filt,
name, args.str, NULL,
fg->graph)) < 0)
return ret;
last_filter = ifp->filter;
snprintf(name, sizeof(name), "trim for input stream %d:%d",
ist->file_index, ist->index);
if (copy_ts) {
tsoffset = f->start_time == AV_NOPTS_VALUE ? 0 : f->start_time;
if (!start_at_zero && f->ctx->start_time != AV_NOPTS_VALUE)
tsoffset += f->ctx->start_time;
}
ret = insert_trim(((f->start_time == AV_NOPTS_VALUE) || !f->accurate_seek) ?
AV_NOPTS_VALUE : tsoffset, f->recording_time,
&last_filter, &pad_idx, name);
if (ret < 0)
return ret;
if ((ret = avfilter_link(last_filter, 0, in->filter_ctx, in->pad_idx)) < 0)
return ret;
return 0;
}
static int configure_input_filter(FilterGraph *fg, InputFilter *ifilter,
AVFilterInOut *in)
{
switch (ifp_from_ifilter(ifilter)->type) {
case AVMEDIA_TYPE_VIDEO: return configure_input_video_filter(fg, ifilter, in);
case AVMEDIA_TYPE_AUDIO: return configure_input_audio_filter(fg, ifilter, in);
default: av_assert0(0); return 0;
}
}
static void cleanup_filtergraph(FilterGraph *fg)
{
int i;
for (i = 0; i < fg->nb_outputs; i++)
ofp_from_ofilter(fg->outputs[i])->filter = NULL;
for (i = 0; i < fg->nb_inputs; i++)
ifp_from_ifilter(fg->inputs[i])->filter = NULL;
avfilter_graph_free(&fg->graph);
}
static int filter_is_buffersrc(const AVFilterContext *f)
{
return f->nb_inputs == 0 &&
(!strcmp(f->filter->name, "buffer") ||
!strcmp(f->filter->name, "abuffer"));
}
static int graph_is_meta(AVFilterGraph *graph)
{
for (unsigned i = 0; i < graph->nb_filters; i++) {
const AVFilterContext *f = graph->filters[i];
/* in addition to filters flagged as meta, also
* disregard sinks and buffersources (but not other sources,
* since they introduce data we are not aware of)
*/
if (!((f->filter->flags & AVFILTER_FLAG_METADATA_ONLY) ||
f->nb_outputs == 0 ||
filter_is_buffersrc(f)))
return 0;
}
return 1;
}
static int sub2video_frame(InputFilter *ifilter, AVFrame *frame);
static int configure_filtergraph(FilterGraph *fg, const FilterGraphThread *fgt)
{
FilterGraphPriv *fgp = fgp_from_fg(fg);
AVBufferRef *hw_device;
AVFilterInOut *inputs, *outputs, *cur;
int ret, i, simple = filtergraph_is_simple(fg);
const char *graph_desc = fgp->graph_desc;
cleanup_filtergraph(fg);
if (!(fg->graph = avfilter_graph_alloc()))
return AVERROR(ENOMEM);
if (simple) {
OutputStream *ost = fg->outputs[0]->ost;
if (filter_nbthreads) {
ret = av_opt_set(fg->graph, "threads", filter_nbthreads, 0);
if (ret < 0)
goto fail;
} else {
const AVDictionaryEntry *e = NULL;
e = av_dict_get(ost->encoder_opts, "threads", NULL, 0);
if (e)
av_opt_set(fg->graph, "threads", e->value, 0);
}
if (av_dict_count(ost->sws_dict)) {
ret = av_dict_get_string(ost->sws_dict,
&fg->graph->scale_sws_opts,
'=', ':');
if (ret < 0)
goto fail;
}
if (av_dict_count(ost->swr_opts)) {
char *args;
ret = av_dict_get_string(ost->swr_opts, &args, '=', ':');
if (ret < 0)
goto fail;
av_opt_set(fg->graph, "aresample_swr_opts", args, 0);
av_free(args);
}
} else {
fg->graph->nb_threads = filter_complex_nbthreads;
}
hw_device = hw_device_for_filter();
if ((ret = graph_parse(fg->graph, graph_desc, &inputs, &outputs, hw_device)) < 0)
goto fail;
for (cur = inputs, i = 0; cur; cur = cur->next, i++)
if ((ret = configure_input_filter(fg, fg->inputs[i], cur)) < 0) {
avfilter_inout_free(&inputs);
avfilter_inout_free(&outputs);
goto fail;
}
avfilter_inout_free(&inputs);
for (cur = outputs, i = 0; cur; cur = cur->next, i++) {
ret = configure_output_filter(fg, fg->outputs[i], cur);
if (ret < 0) {
avfilter_inout_free(&outputs);
goto fail;
}
}
avfilter_inout_free(&outputs);
if (fgp->disable_conversions)
avfilter_graph_set_auto_convert(fg->graph, AVFILTER_AUTO_CONVERT_NONE);
if ((ret = avfilter_graph_config(fg->graph, NULL)) < 0)
goto fail;
fgp->is_meta = graph_is_meta(fg->graph);
/* limit the lists of allowed formats to the ones selected, to
* make sure they stay the same if the filtergraph is reconfigured later */
for (i = 0; i < fg->nb_outputs; i++) {
OutputFilter *ofilter = fg->outputs[i];
OutputFilterPriv *ofp = ofp_from_ofilter(ofilter);
AVFilterContext *sink = ofp->filter;
ofp->format = av_buffersink_get_format(sink);
ofp->width = av_buffersink_get_w(sink);
ofp->height = av_buffersink_get_h(sink);
// If the timing parameters are not locked yet, get the tentative values
// here but don't lock them. They will only be used if no output frames
// are ever produced.
if (!ofp->tb_out_locked) {
AVRational fr = av_buffersink_get_frame_rate(sink);
if (ofp->fps.framerate.num <= 0 && ofp->fps.framerate.den <= 0 &&
fr.num > 0 && fr.den > 0)
ofp->fps.framerate = fr;
ofp->tb_out = av_buffersink_get_time_base(sink);
}
ofp->sample_aspect_ratio = av_buffersink_get_sample_aspect_ratio(sink);
ofp->sample_rate = av_buffersink_get_sample_rate(sink);
av_channel_layout_uninit(&ofp->ch_layout);
ret = av_buffersink_get_ch_layout(sink, &ofp->ch_layout);
if (ret < 0)
goto fail;
}
for (i = 0; i < fg->nb_inputs; i++) {
InputFilterPriv *ifp = ifp_from_ifilter(fg->inputs[i]);
AVFrame *tmp;
while (av_fifo_read(ifp->frame_queue, &tmp, 1) >= 0) {
if (ifp->type_src == AVMEDIA_TYPE_SUBTITLE) {
sub2video_frame(&ifp->ifilter, tmp);
} else {
ret = av_buffersrc_add_frame(ifp->filter, tmp);
}
av_frame_free(&tmp);
if (ret < 0)
goto fail;
}
}
/* send the EOFs for the finished inputs */
for (i = 0; i < fg->nb_inputs; i++) {
InputFilterPriv *ifp = ifp_from_ifilter(fg->inputs[i]);
if (fgt->eof_in[i]) {
ret = av_buffersrc_add_frame(ifp->filter, NULL);
if (ret < 0)
goto fail;
}
}
return 0;
fail:
cleanup_filtergraph(fg);
return ret;
}
int ifilter_parameters_from_dec(InputFilter *ifilter, const AVCodecContext *dec)
{
InputFilterPriv *ifp = ifp_from_ifilter(ifilter);
if (dec->codec_type == AVMEDIA_TYPE_VIDEO) {
ifp->fallback.format = dec->pix_fmt;
ifp->fallback.width = dec->width;
ifp->fallback.height = dec->height;
ifp->fallback.sample_aspect_ratio = dec->sample_aspect_ratio;
} else if (dec->codec_type == AVMEDIA_TYPE_AUDIO) {
int ret;
ifp->fallback.format = dec->sample_fmt;
ifp->fallback.sample_rate = dec->sample_rate;
ret = av_channel_layout_copy(&ifp->fallback.ch_layout, &dec->ch_layout);
if (ret < 0)
return ret;
} else {
// for subtitles (i.e. sub2video) we set the actual parameters,
// rather than just fallback
ifp->width = ifp->ist->sub2video.w;
ifp->height = ifp->ist->sub2video.h;
/* rectangles are AV_PIX_FMT_PAL8, but we have no guarantee that the
palettes for all rectangles are identical or compatible */
ifp->format = AV_PIX_FMT_RGB32;
av_log(NULL, AV_LOG_VERBOSE, "sub2video: using %dx%d canvas\n", ifp->width, ifp->height);
}
return 0;
}
static int ifilter_parameters_from_frame(InputFilter *ifilter, const AVFrame *frame)
{
InputFilterPriv *ifp = ifp_from_ifilter(ifilter);
AVFrameSideData *sd;
int ret;
ret = av_buffer_replace(&ifp->hw_frames_ctx, frame->hw_frames_ctx);
if (ret < 0)
return ret;
ifp->format = frame->format;
ifp->width = frame->width;
ifp->height = frame->height;
ifp->sample_aspect_ratio = frame->sample_aspect_ratio;
ifp->sample_rate = frame->sample_rate;
ret = av_channel_layout_copy(&ifp->ch_layout, &frame->ch_layout);
if (ret < 0)
return ret;
sd = av_frame_get_side_data(frame, AV_FRAME_DATA_DISPLAYMATRIX);
if (sd)
memcpy(ifp->displaymatrix, sd->data, sizeof(ifp->displaymatrix));
ifp->displaymatrix_present = !!sd;
return 0;
}
int filtergraph_is_simple(const FilterGraph *fg)
{
const FilterGraphPriv *fgp = cfgp_from_cfg(fg);
return fgp->is_simple;
}
static void send_command(FilterGraph *fg, double time, const char *target,
const char *command, const char *arg, int all_filters)
{
int ret;
if (!fg->graph)
return;
if (time < 0) {
char response[4096];
ret = avfilter_graph_send_command(fg->graph, target, command, arg,
response, sizeof(response),
all_filters ? 0 : AVFILTER_CMD_FLAG_ONE);
fprintf(stderr, "Command reply for stream %d: ret:%d res:\n%s",
fg->index, ret, response);
} else if (!all_filters) {
fprintf(stderr, "Queuing commands only on filters supporting the specific command is unsupported\n");
} else {
ret = avfilter_graph_queue_command(fg->graph, target, command, arg, 0, time);
if (ret < 0)
fprintf(stderr, "Queuing command failed with error %s\n", av_err2str(ret));
}
}
static int choose_input(const FilterGraph *fg, const FilterGraphThread *fgt)
{
int nb_requests, nb_requests_max = 0;
int best_input = -1;
for (int i = 0; i < fg->nb_inputs; i++) {
InputFilter *ifilter = fg->inputs[i];
InputFilterPriv *ifp = ifp_from_ifilter(ifilter);
if (fgt->eof_in[i])
continue;
nb_requests = av_buffersrc_get_nb_failed_requests(ifp->filter);
if (nb_requests > nb_requests_max) {
nb_requests_max = nb_requests;
best_input = i;
}
}
av_assert0(best_input >= 0);
return best_input;
}
static int choose_out_timebase(OutputFilterPriv *ofp, AVFrame *frame)
{
OutputFilter *ofilter = &ofp->ofilter;
FPSConvContext *fps = &ofp->fps;
AVRational tb = (AVRational){ 0, 0 };
AVRational fr;
const FrameData *fd;
fd = frame_data_c(frame);
// apply -enc_time_base
if (ofp->enc_timebase.num == ENC_TIME_BASE_DEMUX &&
(fd->dec.tb.num <= 0 || fd->dec.tb.den <= 0)) {
av_log(ofilter->ost, AV_LOG_ERROR,
"Demuxing timebase not available - cannot use it for encoding\n");
return AVERROR(EINVAL);
}
switch (ofp->enc_timebase.num) {
case 0: break;
case ENC_TIME_BASE_DEMUX: tb = fd->dec.tb; break;
case ENC_TIME_BASE_FILTER: tb = frame->time_base; break;
default: tb = ofp->enc_timebase; break;
}
if (ofilter->type == AVMEDIA_TYPE_AUDIO) {
tb = tb.num ? tb : (AVRational){ 1, frame->sample_rate };
goto finish;
}
fr = fps->framerate;
if (!fr.num) {
AVRational fr_sink = av_buffersink_get_frame_rate(ofp->filter);
if (fr_sink.num > 0 && fr_sink.den > 0)
fr = fr_sink;
}
if (ofilter->ost->is_cfr) {
if (!fr.num && !fps->framerate_max.num) {
fr = (AVRational){25, 1};
av_log(ofilter->ost, AV_LOG_WARNING,
"No information "
"about the input framerate is available. Falling "
"back to a default value of 25fps. Use the -r option "
"if you want a different framerate.\n");
}
if (fps->framerate_max.num &&
(av_q2d(fr) > av_q2d(fps->framerate_max) ||
!fr.den))
fr = fps->framerate_max;
}
if (fr.num > 0) {
if (fps->framerate_supported) {
int idx = av_find_nearest_q_idx(fr, fps->framerate_supported);
fr = fps->framerate_supported[idx];
}
if (fps->framerate_clip) {
av_reduce(&fr.num, &fr.den,
fr.num, fr.den, fps->framerate_clip);
}
}
if (!(tb.num > 0 && tb.den > 0))
tb = av_inv_q(fr);
if (!(tb.num > 0 && tb.den > 0))
tb = frame->time_base;
finish:
ofp->tb_out = tb;
fps->framerate = fr;
ofp->tb_out_locked = 1;
return 0;
}
static double adjust_frame_pts_to_encoder_tb(AVFrame *frame, AVRational tb_dst,
int64_t start_time)
{
double float_pts = AV_NOPTS_VALUE; // this is identical to frame.pts but with higher precision
AVRational tb = tb_dst;
AVRational filter_tb = frame->time_base;
const int extra_bits = av_clip(29 - av_log2(tb.den), 0, 16);
if (frame->pts == AV_NOPTS_VALUE)
goto early_exit;
tb.den <<= extra_bits;
float_pts = av_rescale_q(frame->pts, filter_tb, tb) -
av_rescale_q(start_time, AV_TIME_BASE_Q, tb);
float_pts /= 1 << extra_bits;
// when float_pts is not exactly an integer,
// avoid exact midpoints to reduce the chance of rounding differences, this
// can be removed in case the fps code is changed to work with integers
if (float_pts != llrint(float_pts))
float_pts += FFSIGN(float_pts) * 1.0 / (1<<17);
frame->pts = av_rescale_q(frame->pts, filter_tb, tb_dst) -
av_rescale_q(start_time, AV_TIME_BASE_Q, tb_dst);
frame->time_base = tb_dst;
early_exit:
if (debug_ts) {
av_log(NULL, AV_LOG_INFO, "filter -> pts:%s pts_time:%s exact:%f time_base:%d/%d\n",
frame ? av_ts2str(frame->pts) : "NULL",
av_ts2timestr(frame->pts, &tb_dst),
float_pts, tb_dst.num, tb_dst.den);
}
return float_pts;
}
/* Convert frame timestamps to the encoder timebase and decide how many times
* should this (and possibly previous) frame be repeated in order to conform to
* desired target framerate (if any).
*/
static void video_sync_process(OutputFilterPriv *ofp, AVFrame *frame,
int64_t *nb_frames, int64_t *nb_frames_prev)
{
OutputFilter *ofilter = &ofp->ofilter;
OutputStream *ost = ofilter->ost;
FPSConvContext *fps = &ofp->fps;
double delta0, delta, sync_ipts, duration;
if (!frame) {
*nb_frames_prev = *nb_frames = mid_pred(fps->frames_prev_hist[0],
fps->frames_prev_hist[1],
fps->frames_prev_hist[2]);
if (!*nb_frames && fps->last_dropped) {
ofilter->nb_frames_drop++;
fps->last_dropped++;
}
goto finish;
}
duration = frame->duration * av_q2d(frame->time_base) / av_q2d(ofp->tb_out);
sync_ipts = adjust_frame_pts_to_encoder_tb(frame, ofp->tb_out, ofp->ts_offset);
/* delta0 is the "drift" between the input frame and
* where it would fall in the output. */
delta0 = sync_ipts - ofp->next_pts;
delta = delta0 + duration;
// tracks the number of times the PREVIOUS frame should be duplicated,
// mostly for variable framerate (VFR)
*nb_frames_prev = 0;
/* by default, we output a single frame */
*nb_frames = 1;
if (delta0 < 0 &&
delta > 0 &&
ost->vsync_method != VSYNC_PASSTHROUGH &&
ost->vsync_method != VSYNC_DROP) {
if (delta0 < -0.6) {
av_log(ost, AV_LOG_VERBOSE, "Past duration %f too large\n", -delta0);
} else
av_log(ost, AV_LOG_DEBUG, "Clipping frame in rate conversion by %f\n", -delta0);
sync_ipts = ofp->next_pts;
duration += delta0;
delta0 = 0;
}
switch (ost->vsync_method) {
case VSYNC_VSCFR:
if (fps->frame_number == 0 && delta0 >= 0.5) {
av_log(ost, AV_LOG_DEBUG, "Not duplicating %d initial frames\n", (int)lrintf(delta0));
delta = duration;
delta0 = 0;
ofp->next_pts = llrint(sync_ipts);
}
case VSYNC_CFR:
// FIXME set to 0.5 after we fix some dts/pts bugs like in avidec.c
if (frame_drop_threshold && delta < frame_drop_threshold && fps->frame_number) {
*nb_frames = 0;
} else if (delta < -1.1)
*nb_frames = 0;
else if (delta > 1.1) {
*nb_frames = llrintf(delta);
if (delta0 > 1.1)
*nb_frames_prev = llrintf(delta0 - 0.6);
}
frame->duration = 1;
break;
case VSYNC_VFR:
if (delta <= -0.6)
*nb_frames = 0;
else if (delta > 0.6)
ofp->next_pts = llrint(sync_ipts);
frame->duration = llrint(duration);
break;
case VSYNC_DROP:
case VSYNC_PASSTHROUGH:
ofp->next_pts = llrint(sync_ipts);
frame->duration = llrint(duration);
break;
default:
av_assert0(0);
}
finish:
memmove(fps->frames_prev_hist + 1,
fps->frames_prev_hist,
sizeof(fps->frames_prev_hist[0]) * (FF_ARRAY_ELEMS(fps->frames_prev_hist) - 1));
fps->frames_prev_hist[0] = *nb_frames_prev;
if (*nb_frames_prev == 0 && fps->last_dropped) {
ofilter->nb_frames_drop++;
av_log(ost, AV_LOG_VERBOSE,
"*** dropping frame %"PRId64" at ts %"PRId64"\n",
fps->frame_number, fps->last_frame->pts);
}
if (*nb_frames > (*nb_frames_prev && fps->last_dropped) + (*nb_frames > *nb_frames_prev)) {
if (*nb_frames > dts_error_threshold * 30) {
av_log(ost, AV_LOG_ERROR, "%"PRId64" frame duplication too large, skipping\n", *nb_frames - 1);
ofilter->nb_frames_drop++;
*nb_frames = 0;
return;
}
ofilter->nb_frames_dup += *nb_frames - (*nb_frames_prev && fps->last_dropped) - (*nb_frames > *nb_frames_prev);
av_log(ost, AV_LOG_VERBOSE, "*** %"PRId64" dup!\n", *nb_frames - 1);
if (ofilter->nb_frames_dup > fps->dup_warning) {
av_log(ost, AV_LOG_WARNING, "More than %"PRIu64" frames duplicated\n", fps->dup_warning);
fps->dup_warning *= 10;
}
}
fps->last_dropped = *nb_frames == *nb_frames_prev && frame;
fps->dropped_keyframe |= fps->last_dropped && (frame->flags & AV_FRAME_FLAG_KEY);
}
static int fg_output_frame(OutputFilterPriv *ofp, FilterGraphThread *fgt,
AVFrame *frame, int buffer)
{
FilterGraphPriv *fgp = fgp_from_fg(ofp->ofilter.graph);
AVFrame *frame_prev = ofp->fps.last_frame;
enum AVMediaType type = ofp->ofilter.type;
int64_t nb_frames = !!frame, nb_frames_prev = 0;
if (type == AVMEDIA_TYPE_VIDEO && (frame || fgt->got_frame))
video_sync_process(ofp, frame, &nb_frames, &nb_frames_prev);
for (int64_t i = 0; i < nb_frames; i++) {
AVFrame *frame_out;
int ret;
if (type == AVMEDIA_TYPE_VIDEO) {
AVFrame *frame_in = (i < nb_frames_prev && frame_prev->buf[0]) ?
frame_prev : frame;
if (!frame_in)
break;
frame_out = fgp->frame_enc;
ret = av_frame_ref(frame_out, frame_in);
if (ret < 0)
return ret;
frame_out->pts = ofp->next_pts;
if (ofp->fps.dropped_keyframe) {
frame_out->flags |= AV_FRAME_FLAG_KEY;
ofp->fps.dropped_keyframe = 0;
}
} else {
frame->pts = (frame->pts == AV_NOPTS_VALUE) ? ofp->next_pts :
av_rescale_q(frame->pts, frame->time_base, ofp->tb_out) -
av_rescale_q(ofp->ts_offset, AV_TIME_BASE_Q, ofp->tb_out);
frame->time_base = ofp->tb_out;
frame->duration = av_rescale_q(frame->nb_samples,
(AVRational){ 1, frame->sample_rate },
ofp->tb_out);
ofp->next_pts = frame->pts + frame->duration;
frame_out = frame;
}
if (buffer) {
AVFrame *f = av_frame_alloc();
if (!f) {
av_frame_unref(frame_out);
return AVERROR(ENOMEM);
}
av_frame_move_ref(f, frame_out);
f->opaque = (void*)(intptr_t)ofp->index;
ret = av_fifo_write(fgt->frame_queue_out, &f, 1);
if (ret < 0) {
av_frame_free(&f);
return AVERROR(ENOMEM);
}
} else {
// return the frame to the main thread
ret = tq_send(fgp->queue_out, ofp->index, frame_out);
if (ret < 0) {
av_frame_unref(frame_out);
fgt->eof_out[ofp->index] = 1;
return ret == AVERROR_EOF ? 0 : ret;
}
}
if (type == AVMEDIA_TYPE_VIDEO) {
ofp->fps.frame_number++;
ofp->next_pts++;
if (i == nb_frames_prev && frame)
frame->flags &= ~AV_FRAME_FLAG_KEY;
}
fgt->got_frame = 1;
}
if (frame && frame_prev) {
av_frame_unref(frame_prev);
av_frame_move_ref(frame_prev, frame);
}
if (!frame) {
tq_send_finish(fgp->queue_out, ofp->index);
fgt->eof_out[ofp->index] = 1;
}
return 0;
}
static int fg_output_step(OutputFilterPriv *ofp, FilterGraphThread *fgt,
AVFrame *frame, int buffer)
{
FilterGraphPriv *fgp = fgp_from_fg(ofp->ofilter.graph);
OutputStream *ost = ofp->ofilter.ost;
AVFilterContext *filter = ofp->filter;
FrameData *fd;
int ret;
ret = av_buffersink_get_frame_flags(filter, frame,
AV_BUFFERSINK_FLAG_NO_REQUEST);
if (ret == AVERROR_EOF && !buffer && !fgt->eof_out[ofp->index]) {
ret = fg_output_frame(ofp, fgt, NULL, buffer);
return (ret < 0) ? ret : 1;
} else if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF) {
return 1;
} else if (ret < 0) {
av_log(fgp, AV_LOG_WARNING,
"Error in retrieving a frame from the filtergraph: %s\n",
av_err2str(ret));
return ret;
}
if (fgt->eof_out[ofp->index]) {
av_frame_unref(frame);
return 0;
}
frame->time_base = av_buffersink_get_time_base(filter);
if (debug_ts)
av_log(fgp, AV_LOG_INFO, "filter_raw -> pts:%s pts_time:%s time_base:%d/%d\n",
av_ts2str(frame->pts), av_ts2timestr(frame->pts, &frame->time_base),
frame->time_base.num, frame->time_base.den);
// Choose the output timebase the first time we get a frame.
if (!ofp->tb_out_locked) {
ret = choose_out_timebase(ofp, frame);
if (ret < 0) {
av_log(ost, AV_LOG_ERROR, "Could not choose an output time base\n");
av_frame_unref(frame);
return ret;
}
}
fd = frame_data(frame);
if (!fd) {
av_frame_unref(frame);
return AVERROR(ENOMEM);
}
// only use bits_per_raw_sample passed through from the decoder
// if the filtergraph did not touch the frame data
if (!fgp->is_meta)
fd->bits_per_raw_sample = 0;
if (ost->type == AVMEDIA_TYPE_VIDEO) {
if (!frame->duration) {
AVRational fr = av_buffersink_get_frame_rate(filter);
if (fr.num > 0 && fr.den > 0)
frame->duration = av_rescale_q(1, av_inv_q(fr), frame->time_base);
}
fd->frame_rate_filter = ofp->fps.framerate;
}
ret = fg_output_frame(ofp, fgt, frame, buffer);
av_frame_unref(frame);
if (ret < 0)
return ret;
return 0;
}
/* retrieve all frames available at filtergraph outputs and either send them to
* the main thread (buffer=0) or buffer them for later (buffer=1) */
static int read_frames(FilterGraph *fg, FilterGraphThread *fgt,
AVFrame *frame, int buffer)
{
FilterGraphPriv *fgp = fgp_from_fg(fg);
int ret = 0;
if (!fg->graph)
return 0;
// process buffered frames
if (!buffer) {
AVFrame *f;
while (av_fifo_read(fgt->frame_queue_out, &f, 1) >= 0) {
int out_idx = (intptr_t)f->opaque;
f->opaque = NULL;
ret = tq_send(fgp->queue_out, out_idx, f);
av_frame_free(&f);
if (ret < 0 && ret != AVERROR_EOF)
return ret;
}
}
/* Reap all buffers present in the buffer sinks */
for (int i = 0; i < fg->nb_outputs; i++) {
OutputFilterPriv *ofp = ofp_from_ofilter(fg->outputs[i]);
int ret = 0;
while (!ret) {
ret = fg_output_step(ofp, fgt, frame, buffer);
if (ret < 0)
return ret;
}
}
return 0;
}
static void sub2video_heartbeat(InputFilter *ifilter, int64_t pts, AVRational tb)
{
InputFilterPriv *ifp = ifp_from_ifilter(ifilter);
int64_t pts2;
/* subtitles seem to be usually muxed ahead of other streams;
if not, subtracting a larger time here is necessary */
pts2 = av_rescale_q(pts, tb, ifp->time_base) - 1;
/* do not send the heartbeat frame if the subtitle is already ahead */
if (pts2 <= ifp->sub2video.last_pts)
return;
if (pts2 >= ifp->sub2video.end_pts || ifp->sub2video.initialize)
/* if we have hit the end of the current displayed subpicture,
or if we need to initialize the system, update the
overlayed subpicture and its start/end times */
sub2video_update(ifp, pts2 + 1, NULL);
else
sub2video_push_ref(ifp, pts2);
}
static int sub2video_frame(InputFilter *ifilter, AVFrame *frame)
{
InputFilterPriv *ifp = ifp_from_ifilter(ifilter);
int ret;
if (!ifilter->graph->graph) {
AVFrame *tmp;
if (!frame)
return 0;
tmp = av_frame_alloc();
if (!tmp)
return AVERROR(ENOMEM);
av_frame_move_ref(tmp, frame);
ret = av_fifo_write(ifp->frame_queue, &tmp, 1);
if (ret < 0) {
av_frame_free(&tmp);
return ret;
}
return 0;
}
// heartbeat frame
if (frame && !frame->buf[0]) {
sub2video_heartbeat(ifilter, frame->pts, frame->time_base);
return 0;
}
if (!frame) {
if (ifp->sub2video.end_pts < INT64_MAX)
sub2video_update(ifp, INT64_MAX, NULL);
return av_buffersrc_add_frame(ifp->filter, NULL);
}
ifp->width = frame->width ? frame->width : ifp->width;
ifp->height = frame->height ? frame->height : ifp->height;
sub2video_update(ifp, INT64_MIN, (const AVSubtitle*)frame->buf[0]->data);
return 0;
}
static int send_eof(FilterGraphThread *fgt, InputFilter *ifilter,
int64_t pts, AVRational tb)
{
InputFilterPriv *ifp = ifp_from_ifilter(ifilter);
int ret;
fgt->eof_in[ifp->index] = 1;
if (ifp->filter) {
pts = av_rescale_q_rnd(pts, tb, ifp->time_base,
AV_ROUND_NEAR_INF | AV_ROUND_PASS_MINMAX);
ret = av_buffersrc_close(ifp->filter, pts, AV_BUFFERSRC_FLAG_PUSH);
if (ret < 0)
return ret;
} else {
if (ifp->format < 0) {
// the filtergraph was never configured, use the fallback parameters
ifp->format = ifp->fallback.format;
ifp->sample_rate = ifp->fallback.sample_rate;
ifp->width = ifp->fallback.width;
ifp->height = ifp->fallback.height;
ifp->sample_aspect_ratio = ifp->fallback.sample_aspect_ratio;
ret = av_channel_layout_copy(&ifp->ch_layout,
&ifp->fallback.ch_layout);
if (ret < 0)
return ret;
if (ifilter_has_all_input_formats(ifilter->graph)) {
ret = configure_filtergraph(ifilter->graph, fgt);
if (ret < 0) {
av_log(NULL, AV_LOG_ERROR, "Error initializing filters!\n");
return ret;
}
}
}
if (ifp->format < 0) {
av_log(NULL, AV_LOG_ERROR,
"Cannot determine format of input stream %d:%d after EOF\n",
ifp->ist->file_index, ifp->ist->index);
return AVERROR_INVALIDDATA;
}
}
return 0;
}
static int send_frame(FilterGraph *fg, FilterGraphThread *fgt,
InputFilter *ifilter, AVFrame *frame)
{
InputFilterPriv *ifp = ifp_from_ifilter(ifilter);
AVFrameSideData *sd;
int need_reinit, ret;
/* determine if the parameters for this input changed */
need_reinit = ifp->format != frame->format;
switch (ifp->type) {
case AVMEDIA_TYPE_AUDIO:
need_reinit |= ifp->sample_rate != frame->sample_rate ||
av_channel_layout_compare(&ifp->ch_layout, &frame->ch_layout);
break;
case AVMEDIA_TYPE_VIDEO:
need_reinit |= ifp->width != frame->width ||
ifp->height != frame->height;
break;
}
if (!ifp->ist->reinit_filters && fg->graph)
need_reinit = 0;
if (!!ifp->hw_frames_ctx != !!frame->hw_frames_ctx ||
(ifp->hw_frames_ctx && ifp->hw_frames_ctx->data != frame->hw_frames_ctx->data))
need_reinit = 1;
if (sd = av_frame_get_side_data(frame, AV_FRAME_DATA_DISPLAYMATRIX)) {
if (!ifp->displaymatrix_present ||
memcmp(sd->data, ifp->displaymatrix, sizeof(ifp->displaymatrix)))
need_reinit = 1;
} else if (ifp->displaymatrix_present)
need_reinit = 1;
if (need_reinit) {
ret = ifilter_parameters_from_frame(ifilter, frame);
if (ret < 0)
return ret;
}
/* (re)init the graph if possible, otherwise buffer the frame and return */
if (need_reinit || !fg->graph) {
AVFrame *tmp = av_frame_alloc();
if (!tmp)
return AVERROR(ENOMEM);
if (!ifilter_has_all_input_formats(fg)) {
av_frame_move_ref(tmp, frame);
ret = av_fifo_write(ifp->frame_queue, &tmp, 1);
if (ret < 0)
av_frame_free(&tmp);
return ret;
}
ret = fg->graph ? read_frames(fg, fgt, tmp, 1) : 0;
av_frame_free(&tmp);
if (ret < 0)
return ret;
ret = configure_filtergraph(fg, fgt);
if (ret < 0) {
av_log(fg, AV_LOG_ERROR, "Error reinitializing filters!\n");
return ret;
}
}
frame->pts = av_rescale_q(frame->pts, frame->time_base, ifp->time_base);
frame->duration = av_rescale_q(frame->duration, frame->time_base, ifp->time_base);
frame->time_base = ifp->time_base;
#if LIBAVUTIL_VERSION_MAJOR < 59
AV_NOWARN_DEPRECATED(
frame->pkt_duration = frame->duration;
)
#endif
ret = av_buffersrc_add_frame_flags(ifp->filter, frame,
AV_BUFFERSRC_FLAG_PUSH);
if (ret < 0) {
av_frame_unref(frame);
if (ret != AVERROR_EOF)
av_log(fg, AV_LOG_ERROR, "Error while filtering: %s\n", av_err2str(ret));
return ret;
}
return 0;
}
static int msg_process(FilterGraphPriv *fgp, FilterGraphThread *fgt,
AVFrame *frame)
{
const enum FrameOpaque msg = (intptr_t)frame->opaque;
FilterGraph *fg = &fgp->fg;
int graph_eof = 0;
int ret;
frame->opaque = NULL;
av_assert0(msg > 0);
av_assert0(msg == FRAME_OPAQUE_SEND_COMMAND || !frame->buf[0]);
if (!fg->graph) {
// graph not configured yet, ignore all messages other than choosing
// the input to read from
if (msg != FRAME_OPAQUE_CHOOSE_INPUT) {
av_frame_unref(frame);
goto done;
}
for (int i = 0; i < fg->nb_inputs; i++) {
InputFilter *ifilter = fg->inputs[i];
InputFilterPriv *ifp = ifp_from_ifilter(ifilter);
if (ifp->format < 0 && !fgt->eof_in[i]) {
frame->opaque = (void*)(intptr_t)(i + 1);
goto done;
}
}
// This state - graph is not configured, but all inputs are either
// initialized or EOF - should be unreachable because sending EOF to a
// filter without even a fallback format should fail
av_assert0(0);
return AVERROR_BUG;
}
if (msg == FRAME_OPAQUE_SEND_COMMAND) {
FilterCommand *fc = (FilterCommand*)frame->buf[0]->data;
send_command(fg, fc->time, fc->target, fc->command, fc->arg, fc->all_filters);
av_frame_unref(frame);
goto done;
}
if (msg == FRAME_OPAQUE_CHOOSE_INPUT) {
ret = avfilter_graph_request_oldest(fg->graph);
graph_eof = ret == AVERROR_EOF;
if (ret == AVERROR(EAGAIN)) {
frame->opaque = (void*)(intptr_t)(choose_input(fg, fgt) + 1);
goto done;
} else if (ret < 0 && !graph_eof)
return ret;
}
ret = read_frames(fg, fgt, frame, 0);
if (ret < 0) {
av_log(fg, AV_LOG_ERROR, "Error sending filtered frames for encoding\n");
return ret;
}
if (graph_eof)
return AVERROR_EOF;
// signal to the main thread that we are done processing the message
done:
ret = tq_send(fgp->queue_out, fg->nb_outputs, frame);
if (ret < 0) {
if (ret != AVERROR_EOF)
av_log(fg, AV_LOG_ERROR, "Error communicating with the main thread\n");
return ret;
}
return 0;
}
static void fg_thread_set_name(const FilterGraph *fg)
{
char name[16];
if (filtergraph_is_simple(fg)) {
OutputStream *ost = fg->outputs[0]->ost;
snprintf(name, sizeof(name), "%cf#%d:%d",
av_get_media_type_string(ost->type)[0],
ost->file_index, ost->index);
} else {
snprintf(name, sizeof(name), "fc%d", fg->index);
}
ff_thread_setname(name);
}
static void fg_thread_uninit(FilterGraphThread *fgt)
{
if (fgt->frame_queue_out) {
AVFrame *frame;
while (av_fifo_read(fgt->frame_queue_out, &frame, 1) >= 0)
av_frame_free(&frame);
av_fifo_freep2(&fgt->frame_queue_out);
}
av_frame_free(&fgt->frame);
av_freep(&fgt->eof_in);
av_freep(&fgt->eof_out);
memset(fgt, 0, sizeof(*fgt));
}
static int fg_thread_init(FilterGraphThread *fgt, const FilterGraph *fg)
{
memset(fgt, 0, sizeof(*fgt));
fgt->frame = av_frame_alloc();
if (!fgt->frame)
goto fail;
fgt->eof_in = av_calloc(fg->nb_inputs, sizeof(*fgt->eof_in));
if (!fgt->eof_in)
goto fail;
fgt->eof_out = av_calloc(fg->nb_outputs, sizeof(*fgt->eof_out));
if (!fgt->eof_out)
goto fail;
fgt->frame_queue_out = av_fifo_alloc2(1, sizeof(AVFrame*), AV_FIFO_FLAG_AUTO_GROW);
if (!fgt->frame_queue_out)
goto fail;
return 0;
fail:
fg_thread_uninit(fgt);
return AVERROR(ENOMEM);
}
static void *filter_thread(void *arg)
{
FilterGraphPriv *fgp = arg;
FilterGraph *fg = &fgp->fg;
FilterGraphThread fgt;
int ret = 0, input_status = 0;
ret = fg_thread_init(&fgt, fg);
if (ret < 0)
goto finish;
fg_thread_set_name(fg);
// if we have all input parameters the graph can now be configured
if (ifilter_has_all_input_formats(fg)) {
ret = configure_filtergraph(fg, &fgt);
if (ret < 0) {
av_log(fg, AV_LOG_ERROR, "Error configuring filter graph: %s\n",
av_err2str(ret));
goto finish;
}
}
while (1) {
InputFilter *ifilter;
InputFilterPriv *ifp;
enum FrameOpaque o;
int input_idx, eof_frame;
input_status = tq_receive(fgp->queue_in, &input_idx, fgt.frame);
if (input_idx < 0 ||
(input_idx == fg->nb_inputs && input_status < 0)) {
av_log(fg, AV_LOG_VERBOSE, "Filtering thread received EOF\n");
break;
}
o = (intptr_t)fgt.frame->opaque;
// message on the control stream
if (input_idx == fg->nb_inputs) {
ret = msg_process(fgp, &fgt, fgt.frame);
if (ret < 0)
goto finish;
continue;
}
// we received an input frame or EOF
ifilter = fg->inputs[input_idx];
ifp = ifp_from_ifilter(ifilter);
eof_frame = input_status >= 0 && o == FRAME_OPAQUE_EOF;
if (ifp->type_src == AVMEDIA_TYPE_SUBTITLE) {
int hb_frame = input_status >= 0 && o == FRAME_OPAQUE_SUB_HEARTBEAT;
ret = sub2video_frame(ifilter, (fgt.frame->buf[0] || hb_frame) ? fgt.frame : NULL);
} else if (input_status >= 0 && fgt.frame->buf[0]) {
ret = send_frame(fg, &fgt, ifilter, fgt.frame);
} else {
int64_t pts = input_status >= 0 ? fgt.frame->pts : AV_NOPTS_VALUE;
AVRational tb = input_status >= 0 ? fgt.frame->time_base : (AVRational){ 1, 1 };
ret = send_eof(&fgt, ifilter, pts, tb);
}
av_frame_unref(fgt.frame);
if (ret < 0)
break;
if (eof_frame) {
// an EOF frame is immediately followed by sender closing
// the corresponding stream, so retrieve that event
input_status = tq_receive(fgp->queue_in, &input_idx, fgt.frame);
av_assert0(input_status == AVERROR_EOF && input_idx == ifp->index);
}
// signal to the main thread that we are done
ret = tq_send(fgp->queue_out, fg->nb_outputs, fgt.frame);
if (ret < 0) {
if (ret == AVERROR_EOF)
break;
av_log(fg, AV_LOG_ERROR, "Error communicating with the main thread\n");
goto finish;
}
}
finish:
// EOF is normal termination
if (ret == AVERROR_EOF)
ret = 0;
for (int i = 0; i <= fg->nb_inputs; i++)
tq_receive_finish(fgp->queue_in, i);
for (int i = 0; i <= fg->nb_outputs; i++)
tq_send_finish(fgp->queue_out, i);
fg_thread_uninit(&fgt);
av_log(fg, AV_LOG_VERBOSE, "Terminating filtering thread\n");
return (void*)(intptr_t)ret;
}
static int thread_send_frame(FilterGraphPriv *fgp, InputFilter *ifilter,
AVFrame *frame, enum FrameOpaque type)
{
InputFilterPriv *ifp = ifp_from_ifilter(ifilter);
int output_idx, ret;
if (ifp->eof) {
av_frame_unref(frame);
return AVERROR_EOF;
}
frame->opaque = (void*)(intptr_t)type;
ret = tq_send(fgp->queue_in, ifp->index, frame);
if (ret < 0) {
ifp->eof = 1;
av_frame_unref(frame);
return ret;
}
if (type == FRAME_OPAQUE_EOF)
tq_send_finish(fgp->queue_in, ifp->index);
// wait for the frame to be processed
ret = tq_receive(fgp->queue_out, &output_idx, frame);
av_assert0(output_idx == fgp->fg.nb_outputs || ret == AVERROR_EOF);
return ret;
}
int ifilter_send_frame(InputFilter *ifilter, AVFrame *frame, int keep_reference)
{
FilterGraphPriv *fgp = fgp_from_fg(ifilter->graph);
int ret;
if (keep_reference) {
ret = av_frame_ref(fgp->frame, frame);
if (ret < 0)
return ret;
} else
av_frame_move_ref(fgp->frame, frame);
return thread_send_frame(fgp, ifilter, fgp->frame, 0);
}
int ifilter_send_eof(InputFilter *ifilter, int64_t pts, AVRational tb)
{
FilterGraphPriv *fgp = fgp_from_fg(ifilter->graph);
int ret;
fgp->frame->pts = pts;
fgp->frame->time_base = tb;
ret = thread_send_frame(fgp, ifilter, fgp->frame, FRAME_OPAQUE_EOF);
return ret == AVERROR_EOF ? 0 : ret;
}
void ifilter_sub2video_heartbeat(InputFilter *ifilter, int64_t pts, AVRational tb)
{
FilterGraphPriv *fgp = fgp_from_fg(ifilter->graph);
fgp->frame->pts = pts;
fgp->frame->time_base = tb;
thread_send_frame(fgp, ifilter, fgp->frame, FRAME_OPAQUE_SUB_HEARTBEAT);
}
int fg_transcode_step(FilterGraph *graph, InputStream **best_ist)
{
FilterGraphPriv *fgp = fgp_from_fg(graph);
int ret, got_frames = 0;
if (fgp->eof_in)
return AVERROR_EOF;
// signal to the filtering thread to return all frames it can
av_assert0(!fgp->frame->buf[0]);
fgp->frame->opaque = (void*)(intptr_t)(best_ist ?
FRAME_OPAQUE_CHOOSE_INPUT :
FRAME_OPAQUE_REAP_FILTERS);
ret = tq_send(fgp->queue_in, graph->nb_inputs, fgp->frame);
if (ret < 0) {
fgp->eof_in = 1;
goto finish;
}
while (1) {
OutputFilter *ofilter;
OutputFilterPriv *ofp;
OutputStream *ost;
int output_idx;
ret = tq_receive(fgp->queue_out, &output_idx, fgp->frame);
// EOF on the whole queue or the control stream
if (output_idx < 0 ||
(ret < 0 && output_idx == graph->nb_outputs))
goto finish;
// EOF for a specific stream
if (ret < 0) {
ofilter = graph->outputs[output_idx];
ofp = ofp_from_ofilter(ofilter);
// we are finished and no frames were ever seen at this output,
// at least initialize the encoder with a dummy frame
if (!ofp->got_frame) {
AVFrame *frame = fgp->frame;
FrameData *fd;
frame->time_base = ofp->tb_out;
frame->format = ofp->format;
frame->width = ofp->width;
frame->height = ofp->height;
frame->sample_aspect_ratio = ofp->sample_aspect_ratio;
frame->sample_rate = ofp->sample_rate;
if (ofp->ch_layout.nb_channels) {
ret = av_channel_layout_copy(&frame->ch_layout, &ofp->ch_layout);
if (ret < 0)
return ret;
}
fd = frame_data(frame);
if (!fd)
return AVERROR(ENOMEM);
fd->frame_rate_filter = ofp->fps.framerate;
av_assert0(!frame->buf[0]);
av_log(ofilter->ost, AV_LOG_WARNING,
"No filtered frames for output stream, trying to "
"initialize anyway.\n");
enc_open(ofilter->ost, frame);
av_frame_unref(frame);
}
close_output_stream(graph->outputs[output_idx]->ost);
continue;
}
// request was fully processed by the filtering thread,
// return the input stream to read from, if needed
if (output_idx == graph->nb_outputs) {
int input_idx = (intptr_t)fgp->frame->opaque - 1;
av_assert0(input_idx <= graph->nb_inputs);
if (best_ist) {
*best_ist = (input_idx >= 0 && input_idx < graph->nb_inputs) ?
ifp_from_ifilter(graph->inputs[input_idx])->ist : NULL;
if (input_idx < 0 && !got_frames) {
for (int i = 0; i < graph->nb_outputs; i++)
graph->outputs[i]->ost->unavailable = 1;
}
}
break;
}
// got a frame from the filtering thread, send it for encoding
ofilter = graph->outputs[output_idx];
ost = ofilter->ost;
ofp = ofp_from_ofilter(ofilter);
if (ost->finished) {
av_frame_unref(fgp->frame);
tq_receive_finish(fgp->queue_out, output_idx);
continue;
}
if (fgp->frame->pts != AV_NOPTS_VALUE) {
ofilter->last_pts = av_rescale_q(fgp->frame->pts,
fgp->frame->time_base,
AV_TIME_BASE_Q);
}
ret = enc_frame(ost, fgp->frame);
av_frame_unref(fgp->frame);
if (ret < 0)
goto finish;
ofp->got_frame = 1;
got_frames = 1;
}
finish:
if (ret < 0) {
fgp->eof_in = 1;
for (int i = 0; i < graph->nb_outputs; i++)
close_output_stream(graph->outputs[i]->ost);
}
return ret;
}
int reap_filters(FilterGraph *fg, int flush)
{
return fg_transcode_step(fg, NULL);
}
void fg_send_command(FilterGraph *fg, double time, const char *target,
const char *command, const char *arg, int all_filters)
{
FilterGraphPriv *fgp = fgp_from_fg(fg);
AVBufferRef *buf;
FilterCommand *fc;
int output_idx, ret;
if (!fgp->queue_in)
return;
fc = av_mallocz(sizeof(*fc));
if (!fc)
return;
buf = av_buffer_create((uint8_t*)fc, sizeof(*fc), filter_command_free, NULL, 0);
if (!buf) {
av_freep(&fc);
return;
}
fc->target = av_strdup(target);
fc->command = av_strdup(command);
fc->arg = av_strdup(arg);
if (!fc->target || !fc->command || !fc->arg) {
av_buffer_unref(&buf);
return;
}
fc->time = time;
fc->all_filters = all_filters;
fgp->frame->buf[0] = buf;
fgp->frame->opaque = (void*)(intptr_t)FRAME_OPAQUE_SEND_COMMAND;
ret = tq_send(fgp->queue_in, fg->nb_inputs, fgp->frame);
if (ret < 0) {
av_frame_unref(fgp->frame);
return;
}
// wait for the frame to be processed
ret = tq_receive(fgp->queue_out, &output_idx, fgp->frame);
av_assert0(output_idx == fgp->fg.nb_outputs || ret == AVERROR_EOF);
}