1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00
FFmpeg/libavfilter/vf_rotate.c
Michael Niedermayer 9c9f095e30
avfilter/vf_rotate: Check ff_draw_init2() return value
Fixes: NULL pointer dereference
Fixes: 3_343

Found-by: De3mond
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2024-06-12 00:39:14 +02:00

608 lines
21 KiB
C

/*
* Copyright (c) 2013 Stefano Sabatini
* Copyright (c) 2008 Vitor Sessak
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* rotation filter, partially based on the tests/rotozoom.c program
*/
#include "libavutil/avstring.h"
#include "libavutil/eval.h"
#include "libavutil/opt.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/parseutils.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "drawutils.h"
#include "internal.h"
#include "video.h"
#include <float.h>
static const char * const var_names[] = {
"in_w" , "iw", ///< width of the input video
"in_h" , "ih", ///< height of the input video
"out_w", "ow", ///< width of the input video
"out_h", "oh", ///< height of the input video
"hsub", "vsub",
"n", ///< number of frame
"t", ///< timestamp expressed in seconds
NULL
};
enum var_name {
VAR_IN_W , VAR_IW,
VAR_IN_H , VAR_IH,
VAR_OUT_W, VAR_OW,
VAR_OUT_H, VAR_OH,
VAR_HSUB, VAR_VSUB,
VAR_N,
VAR_T,
VAR_VARS_NB
};
typedef struct RotContext {
const AVClass *class;
double angle;
char *angle_expr_str; ///< expression for the angle
AVExpr *angle_expr; ///< parsed expression for the angle
char *outw_expr_str, *outh_expr_str;
int outh, outw;
uint8_t fillcolor[4]; ///< color expressed either in YUVA or RGBA colorspace for the padding area
char *fillcolor_str;
int fillcolor_enable;
int hsub, vsub;
int nb_planes;
int use_bilinear;
float sinx, cosx;
double var_values[VAR_VARS_NB];
FFDrawContext draw;
FFDrawColor color;
uint8_t *(*interpolate_bilinear)(uint8_t *dst_color,
const uint8_t *src, int src_linesize, int src_linestep,
int x, int y, int max_x, int max_y);
} RotContext;
typedef struct ThreadData {
AVFrame *in, *out;
int inw, inh;
int outw, outh;
int plane;
int xi, yi;
int xprime, yprime;
int c, s;
} ThreadData;
#define OFFSET(x) offsetof(RotContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
#define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption rotate_options[] = {
{ "angle", "set angle (in radians)", OFFSET(angle_expr_str), AV_OPT_TYPE_STRING, {.str="0"}, 0, 0, .flags=TFLAGS },
{ "a", "set angle (in radians)", OFFSET(angle_expr_str), AV_OPT_TYPE_STRING, {.str="0"}, 0, 0, .flags=TFLAGS },
{ "out_w", "set output width expression", OFFSET(outw_expr_str), AV_OPT_TYPE_STRING, {.str="iw"}, 0, 0, .flags=FLAGS },
{ "ow", "set output width expression", OFFSET(outw_expr_str), AV_OPT_TYPE_STRING, {.str="iw"}, 0, 0, .flags=FLAGS },
{ "out_h", "set output height expression", OFFSET(outh_expr_str), AV_OPT_TYPE_STRING, {.str="ih"}, 0, 0, .flags=FLAGS },
{ "oh", "set output height expression", OFFSET(outh_expr_str), AV_OPT_TYPE_STRING, {.str="ih"}, 0, 0, .flags=FLAGS },
{ "fillcolor", "set background fill color", OFFSET(fillcolor_str), AV_OPT_TYPE_STRING, {.str="black"}, 0, 0, .flags=FLAGS },
{ "c", "set background fill color", OFFSET(fillcolor_str), AV_OPT_TYPE_STRING, {.str="black"}, 0, 0, .flags=FLAGS },
{ "bilinear", "use bilinear interpolation", OFFSET(use_bilinear), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, .flags=FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(rotate);
static av_cold int init(AVFilterContext *ctx)
{
RotContext *rot = ctx->priv;
if (!strcmp(rot->fillcolor_str, "none"))
rot->fillcolor_enable = 0;
else if (av_parse_color(rot->fillcolor, rot->fillcolor_str, -1, ctx) >= 0)
rot->fillcolor_enable = 1;
else
return AVERROR(EINVAL);
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
RotContext *rot = ctx->priv;
av_expr_free(rot->angle_expr);
rot->angle_expr = NULL;
}
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
AV_PIX_FMT_ARGB, AV_PIX_FMT_RGBA,
AV_PIX_FMT_ABGR, AV_PIX_FMT_BGRA,
AV_PIX_FMT_0RGB, AV_PIX_FMT_RGB0,
AV_PIX_FMT_0BGR, AV_PIX_FMT_BGR0,
AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
AV_PIX_FMT_GRAY8,
AV_PIX_FMT_YUV410P,
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA420P,
AV_PIX_FMT_YUV420P10LE, AV_PIX_FMT_YUVA420P10LE,
AV_PIX_FMT_YUV444P10LE, AV_PIX_FMT_YUVA444P10LE,
AV_PIX_FMT_YUV420P12LE,
AV_PIX_FMT_YUV444P12LE,
AV_PIX_FMT_YUV444P16LE, AV_PIX_FMT_YUVA444P16LE,
AV_PIX_FMT_YUV420P16LE, AV_PIX_FMT_YUVA420P16LE,
AV_PIX_FMT_YUV444P9LE, AV_PIX_FMT_YUVA444P9LE,
AV_PIX_FMT_YUV420P9LE, AV_PIX_FMT_YUVA420P9LE,
AV_PIX_FMT_NONE
};
static double get_rotated_w(void *opaque, double angle)
{
RotContext *rot = opaque;
double inw = rot->var_values[VAR_IN_W];
double inh = rot->var_values[VAR_IN_H];
float sinx = sin(angle);
float cosx = cos(angle);
return FFMAX(0, inh * sinx) + FFMAX(0, -inw * cosx) +
FFMAX(0, inw * cosx) + FFMAX(0, -inh * sinx);
}
static double get_rotated_h(void *opaque, double angle)
{
RotContext *rot = opaque;
double inw = rot->var_values[VAR_IN_W];
double inh = rot->var_values[VAR_IN_H];
float sinx = sin(angle);
float cosx = cos(angle);
return FFMAX(0, -inh * cosx) + FFMAX(0, -inw * sinx) +
FFMAX(0, inh * cosx) + FFMAX(0, inw * sinx);
}
static double (* const func1[])(void *, double) = {
get_rotated_w,
get_rotated_h,
NULL
};
static const char * const func1_names[] = {
"rotw",
"roth",
NULL
};
#define FIXP (1<<16)
#define FIXP2 (1<<20)
#define INT_PI 3294199 //(M_PI * FIXP2)
/**
* Compute the sin of a using integer values.
* Input is scaled by FIXP2 and output values are scaled by FIXP.
*/
static int64_t int_sin(int64_t a)
{
int64_t a2, res = 0;
int i;
if (a < 0) a = INT_PI-a; // 0..inf
a %= 2 * INT_PI; // 0..2PI
if (a >= INT_PI*3/2) a -= 2*INT_PI; // -PI/2 .. 3PI/2
if (a >= INT_PI/2 ) a = INT_PI - a; // -PI/2 .. PI/2
/* compute sin using Taylor series approximated to the fifth term */
a2 = (a*a)/(FIXP2);
for (i = 2; i < 11; i += 2) {
res += a;
a = -a*a2 / (FIXP2*i*(i+1));
}
return (res + 8)>>4;
}
/**
* Interpolate the color in src at position x and y using bilinear
* interpolation.
*/
static uint8_t *interpolate_bilinear8(uint8_t *dst_color,
const uint8_t *src, int src_linesize, int src_linestep,
int x, int y, int max_x, int max_y)
{
int int_x = av_clip(x>>16, 0, max_x);
int int_y = av_clip(y>>16, 0, max_y);
int frac_x = x&0xFFFF;
int frac_y = y&0xFFFF;
int i;
int int_x1 = FFMIN(int_x+1, max_x);
int int_y1 = FFMIN(int_y+1, max_y);
for (i = 0; i < src_linestep; i++) {
int s00 = src[src_linestep * int_x + i + src_linesize * int_y ];
int s01 = src[src_linestep * int_x1 + i + src_linesize * int_y ];
int s10 = src[src_linestep * int_x + i + src_linesize * int_y1];
int s11 = src[src_linestep * int_x1 + i + src_linesize * int_y1];
int s0 = (((1<<16) - frac_x)*s00 + frac_x*s01);
int s1 = (((1<<16) - frac_x)*s10 + frac_x*s11);
dst_color[i] = ((int64_t)((1<<16) - frac_y)*s0 + (int64_t)frac_y*s1) >> 32;
}
return dst_color;
}
/**
* Interpolate the color in src at position x and y using bilinear
* interpolation.
*/
static uint8_t *interpolate_bilinear16(uint8_t *dst_color,
const uint8_t *src, int src_linesize, int src_linestep,
int x, int y, int max_x, int max_y)
{
int int_x = av_clip(x>>16, 0, max_x);
int int_y = av_clip(y>>16, 0, max_y);
int64_t frac_x = x&0xFFFF;
int64_t frac_y = y&0xFFFF;
int i;
int int_x1 = FFMIN(int_x+1, max_x);
int int_y1 = FFMIN(int_y+1, max_y);
for (i = 0; i < src_linestep; i+=2) {
int s00 = AV_RL16(&src[src_linestep * int_x + i + src_linesize * int_y ]);
int s01 = AV_RL16(&src[src_linestep * int_x1 + i + src_linesize * int_y ]);
int s10 = AV_RL16(&src[src_linestep * int_x + i + src_linesize * int_y1]);
int s11 = AV_RL16(&src[src_linestep * int_x1 + i + src_linesize * int_y1]);
int64_t s0 = (((1<<16) - frac_x)*s00 + frac_x*s01);
int64_t s1 = (((1<<16) - frac_x)*s10 + frac_x*s11);
AV_WL16(&dst_color[i], (((1<<16) - frac_y)*s0 + frac_y*s1) >> 32);
}
return dst_color;
}
static int config_props(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
RotContext *rot = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
const AVPixFmtDescriptor *pixdesc = av_pix_fmt_desc_get(inlink->format);
int ret;
double res;
char *expr;
ret = ff_draw_init2(&rot->draw, inlink->format, inlink->colorspace, inlink->color_range, 0);
if (ret < 0)
return ret;
ff_draw_color(&rot->draw, &rot->color, rot->fillcolor);
rot->hsub = pixdesc->log2_chroma_w;
rot->vsub = pixdesc->log2_chroma_h;
if (pixdesc->comp[0].depth == 8)
rot->interpolate_bilinear = interpolate_bilinear8;
else
rot->interpolate_bilinear = interpolate_bilinear16;
rot->var_values[VAR_IN_W] = rot->var_values[VAR_IW] = inlink->w;
rot->var_values[VAR_IN_H] = rot->var_values[VAR_IH] = inlink->h;
rot->var_values[VAR_HSUB] = 1<<rot->hsub;
rot->var_values[VAR_VSUB] = 1<<rot->vsub;
rot->var_values[VAR_N] = NAN;
rot->var_values[VAR_T] = NAN;
rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = NAN;
rot->var_values[VAR_OUT_H] = rot->var_values[VAR_OH] = NAN;
av_expr_free(rot->angle_expr);
rot->angle_expr = NULL;
if ((ret = av_expr_parse(&rot->angle_expr, expr = rot->angle_expr_str, var_names,
func1_names, func1, NULL, NULL, 0, ctx)) < 0) {
av_log(ctx, AV_LOG_ERROR,
"Error occurred parsing angle expression '%s'\n", rot->angle_expr_str);
return ret;
}
#define SET_SIZE_EXPR(name, opt_name) do { \
ret = av_expr_parse_and_eval(&res, expr = rot->name##_expr_str, \
var_names, rot->var_values, \
func1_names, func1, NULL, NULL, rot, 0, ctx); \
if (ret < 0 || isnan(res) || isinf(res) || res <= 0) { \
av_log(ctx, AV_LOG_ERROR, \
"Error parsing or evaluating expression for option %s: " \
"invalid expression '%s' or non-positive or indefinite value %f\n", \
opt_name, expr, res); \
return ret; \
} \
} while (0)
/* evaluate width and height */
av_expr_parse_and_eval(&res, expr = rot->outw_expr_str, var_names, rot->var_values,
func1_names, func1, NULL, NULL, rot, 0, ctx);
rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = res;
rot->outw = res + 0.5;
SET_SIZE_EXPR(outh, "out_h");
rot->var_values[VAR_OUT_H] = rot->var_values[VAR_OH] = res;
rot->outh = res + 0.5;
/* evaluate the width again, as it may depend on the evaluated output height */
SET_SIZE_EXPR(outw, "out_w");
rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = res;
rot->outw = res + 0.5;
/* compute number of planes */
rot->nb_planes = av_pix_fmt_count_planes(inlink->format);
outlink->w = rot->outw;
outlink->h = rot->outh;
return 0;
}
static av_always_inline void copy_elem(uint8_t *pout, const uint8_t *pin, int elem_size)
{
int v;
switch (elem_size) {
case 1:
*pout = *pin;
break;
case 2:
*((uint16_t *)pout) = *((uint16_t *)pin);
break;
case 3:
v = AV_RB24(pin);
AV_WB24(pout, v);
break;
case 4:
*((uint32_t *)pout) = *((uint32_t *)pin);
break;
default:
memcpy(pout, pin, elem_size);
break;
}
}
static av_always_inline void simple_rotate_internal(uint8_t *dst, const uint8_t *src, int src_linesize, int angle, int elem_size, int len)
{
int i;
switch(angle) {
case 0:
memcpy(dst, src, elem_size * len);
break;
case 1:
for (i = 0; i<len; i++)
copy_elem(dst + i*elem_size, src + (len-i-1)*src_linesize, elem_size);
break;
case 2:
for (i = 0; i<len; i++)
copy_elem(dst + i*elem_size, src + (len-i-1)*elem_size, elem_size);
break;
case 3:
for (i = 0; i<len; i++)
copy_elem(dst + i*elem_size, src + i*src_linesize, elem_size);
break;
}
}
static av_always_inline void simple_rotate(uint8_t *dst, const uint8_t *src, int src_linesize, int angle, int elem_size, int len)
{
switch(elem_size) {
case 1 : simple_rotate_internal(dst, src, src_linesize, angle, 1, len); break;
case 2 : simple_rotate_internal(dst, src, src_linesize, angle, 2, len); break;
case 3 : simple_rotate_internal(dst, src, src_linesize, angle, 3, len); break;
case 4 : simple_rotate_internal(dst, src, src_linesize, angle, 4, len); break;
default: simple_rotate_internal(dst, src, src_linesize, angle, elem_size, len); break;
}
}
static int filter_slice(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
{
ThreadData *td = arg;
AVFrame *in = td->in;
AVFrame *out = td->out;
RotContext *rot = ctx->priv;
const int outw = td->outw, outh = td->outh;
const int inw = td->inw, inh = td->inh;
const int plane = td->plane;
const int xi = td->xi, yi = td->yi;
const int c = td->c, s = td->s;
const int start = (outh * job ) / nb_jobs;
const int end = (outh * (job+1)) / nb_jobs;
int xprime = td->xprime + start * s;
int yprime = td->yprime + start * c;
int i, j, x, y;
for (j = start; j < end; j++) {
x = xprime + xi + FIXP*(inw-1)/2;
y = yprime + yi + FIXP*(inh-1)/2;
if (fabs(rot->angle - 0) < FLT_EPSILON && outw == inw && outh == inh) {
simple_rotate(out->data[plane] + j * out->linesize[plane],
in->data[plane] + j * in->linesize[plane],
in->linesize[plane], 0, rot->draw.pixelstep[plane], outw);
} else if (fabs(rot->angle - M_PI/2) < FLT_EPSILON && outw == inh && outh == inw) {
simple_rotate(out->data[plane] + j * out->linesize[plane],
in->data[plane] + j * rot->draw.pixelstep[plane],
in->linesize[plane], 1, rot->draw.pixelstep[plane], outw);
} else if (fabs(rot->angle - M_PI) < FLT_EPSILON && outw == inw && outh == inh) {
simple_rotate(out->data[plane] + j * out->linesize[plane],
in->data[plane] + (outh-j-1) * in->linesize[plane],
in->linesize[plane], 2, rot->draw.pixelstep[plane], outw);
} else if (fabs(rot->angle - 3*M_PI/2) < FLT_EPSILON && outw == inh && outh == inw) {
simple_rotate(out->data[plane] + j * out->linesize[plane],
in->data[plane] + (outh-j-1) * rot->draw.pixelstep[plane],
in->linesize[plane], 3, rot->draw.pixelstep[plane], outw);
} else {
for (i = 0; i < outw; i++) {
int32_t v;
int x1, y1;
uint8_t *pin, *pout;
x1 = x>>16;
y1 = y>>16;
/* the out-of-range values avoid border artifacts */
if (x1 >= -1 && x1 <= inw && y1 >= -1 && y1 <= inh) {
uint8_t inp_inv[4]; /* interpolated input value */
pout = out->data[plane] + j * out->linesize[plane] + i * rot->draw.pixelstep[plane];
if (rot->use_bilinear) {
pin = rot->interpolate_bilinear(inp_inv,
in->data[plane], in->linesize[plane], rot->draw.pixelstep[plane],
x, y, inw-1, inh-1);
} else {
int x2 = av_clip(x1, 0, inw-1);
int y2 = av_clip(y1, 0, inh-1);
pin = in->data[plane] + y2 * in->linesize[plane] + x2 * rot->draw.pixelstep[plane];
}
switch (rot->draw.pixelstep[plane]) {
case 1:
*pout = *pin;
break;
case 2:
v = AV_RL16(pin);
AV_WL16(pout, v);
break;
case 3:
v = AV_RB24(pin);
AV_WB24(pout, v);
break;
case 4:
*((uint32_t *)pout) = *((uint32_t *)pin);
break;
default:
memcpy(pout, pin, rot->draw.pixelstep[plane]);
break;
}
}
x += c;
y -= s;
}
}
xprime += s;
yprime += c;
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out;
RotContext *rot = ctx->priv;
int angle_int, s, c, plane;
double res;
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
rot->var_values[VAR_N] = inlink->frame_count_out;
rot->var_values[VAR_T] = TS2T(in->pts, inlink->time_base);
rot->angle = res = av_expr_eval(rot->angle_expr, rot->var_values, rot);
av_log(ctx, AV_LOG_DEBUG, "n:%f time:%f angle:%f/PI\n",
rot->var_values[VAR_N], rot->var_values[VAR_T], rot->angle/M_PI);
angle_int = res * FIXP * 16;
s = int_sin(angle_int);
c = int_sin(angle_int + INT_PI/2);
/* fill background */
if (rot->fillcolor_enable)
ff_fill_rectangle(&rot->draw, &rot->color, out->data, out->linesize,
0, 0, outlink->w, outlink->h);
for (plane = 0; plane < rot->nb_planes; plane++) {
int hsub = plane == 1 || plane == 2 ? rot->hsub : 0;
int vsub = plane == 1 || plane == 2 ? rot->vsub : 0;
const int outw = AV_CEIL_RSHIFT(outlink->w, hsub);
const int outh = AV_CEIL_RSHIFT(outlink->h, vsub);
ThreadData td = { .in = in, .out = out,
.inw = AV_CEIL_RSHIFT(inlink->w, hsub),
.inh = AV_CEIL_RSHIFT(inlink->h, vsub),
.outh = outh, .outw = outw,
.xi = -(outw-1) * c / 2, .yi = (outw-1) * s / 2,
.xprime = -(outh-1) * s / 2,
.yprime = -(outh-1) * c / 2,
.plane = plane, .c = c, .s = s };
ff_filter_execute(ctx, filter_slice, &td, NULL,
FFMIN(outh, ff_filter_get_nb_threads(ctx)));
}
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
char *res, int res_len, int flags)
{
RotContext *rot = ctx->priv;
int ret;
if (!strcmp(cmd, "angle") || !strcmp(cmd, "a")) {
AVExpr *old = rot->angle_expr;
ret = av_expr_parse(&rot->angle_expr, args, var_names,
NULL, NULL, NULL, NULL, 0, ctx);
if (ret < 0) {
av_log(ctx, AV_LOG_ERROR,
"Error when parsing the expression '%s' for angle command\n", args);
rot->angle_expr = old;
return ret;
}
av_expr_free(old);
} else
ret = AVERROR(ENOSYS);
return ret;
}
static const AVFilterPad rotate_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
},
};
static const AVFilterPad rotate_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_props,
},
};
const AVFilter ff_vf_rotate = {
.name = "rotate",
.description = NULL_IF_CONFIG_SMALL("Rotate the input image."),
.priv_size = sizeof(RotContext),
.init = init,
.uninit = uninit,
.process_command = process_command,
FILTER_INPUTS(rotate_inputs),
FILTER_OUTPUTS(rotate_outputs),
FILTER_PIXFMTS_ARRAY(pix_fmts),
.priv_class = &rotate_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
};