1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/h264_direct.c
Michael Niedermayer 358b5b1a59 Get rid of mb2b8_xy and b8_stride, change arrays organized based on b8_stride to
ones based on mb_stride in h264.
about 20 cpu cycles faster overall per MB

Originally committed as revision 22065 to svn://svn.ffmpeg.org/ffmpeg/trunk
2010-02-25 23:44:42 +00:00

591 lines
24 KiB
C

/*
* H.26L/H.264/AVC/JVT/14496-10/... direct mb/block decoding
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file libavcodec/h264_direct.c
* H.264 / AVC / MPEG4 part10 direct mb/block decoding.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#include "internal.h"
#include "dsputil.h"
#include "avcodec.h"
#include "mpegvideo.h"
#include "h264.h"
#include "rectangle.h"
//#undef NDEBUG
#include <assert.h>
static int get_scale_factor(H264Context * const h, int poc, int poc1, int i){
int poc0 = h->ref_list[0][i].poc;
int td = av_clip(poc1 - poc0, -128, 127);
if(td == 0 || h->ref_list[0][i].long_ref){
return 256;
}else{
int tb = av_clip(poc - poc0, -128, 127);
int tx = (16384 + (FFABS(td) >> 1)) / td;
return av_clip((tb*tx + 32) >> 6, -1024, 1023);
}
}
void ff_h264_direct_dist_scale_factor(H264Context * const h){
MpegEncContext * const s = &h->s;
const int poc = h->s.current_picture_ptr->field_poc[ s->picture_structure == PICT_BOTTOM_FIELD ];
const int poc1 = h->ref_list[1][0].poc;
int i, field;
for(field=0; field<2; field++){
const int poc = h->s.current_picture_ptr->field_poc[field];
const int poc1 = h->ref_list[1][0].field_poc[field];
for(i=0; i < 2*h->ref_count[0]; i++)
h->dist_scale_factor_field[field][i^field] = get_scale_factor(h, poc, poc1, i+16);
}
for(i=0; i<h->ref_count[0]; i++){
h->dist_scale_factor[i] = get_scale_factor(h, poc, poc1, i);
}
}
static void fill_colmap(H264Context *h, int map[2][16+32], int list, int field, int colfield, int mbafi){
MpegEncContext * const s = &h->s;
Picture * const ref1 = &h->ref_list[1][0];
int j, old_ref, rfield;
int start= mbafi ? 16 : 0;
int end = mbafi ? 16+2*h->ref_count[0] : h->ref_count[0];
int interl= mbafi || s->picture_structure != PICT_FRAME;
/* bogus; fills in for missing frames */
memset(map[list], 0, sizeof(map[list]));
for(rfield=0; rfield<2; rfield++){
for(old_ref=0; old_ref<ref1->ref_count[colfield][list]; old_ref++){
int poc = ref1->ref_poc[colfield][list][old_ref];
if (!interl)
poc |= 3;
else if( interl && (poc&3) == 3) //FIXME store all MBAFF references so this isnt needed
poc= (poc&~3) + rfield + 1;
for(j=start; j<end; j++){
if(4*h->ref_list[0][j].frame_num + (h->ref_list[0][j].reference&3) == poc){
int cur_ref= mbafi ? (j-16)^field : j;
map[list][2*old_ref + (rfield^field) + 16] = cur_ref;
if(rfield == field || !interl)
map[list][old_ref] = cur_ref;
break;
}
}
}
}
}
void ff_h264_direct_ref_list_init(H264Context * const h){
MpegEncContext * const s = &h->s;
Picture * const ref1 = &h->ref_list[1][0];
Picture * const cur = s->current_picture_ptr;
int list, j, field;
int sidx= (s->picture_structure&1)^1;
int ref1sidx= (ref1->reference&1)^1;
for(list=0; list<2; list++){
cur->ref_count[sidx][list] = h->ref_count[list];
for(j=0; j<h->ref_count[list]; j++)
cur->ref_poc[sidx][list][j] = 4*h->ref_list[list][j].frame_num + (h->ref_list[list][j].reference&3);
}
if(s->picture_structure == PICT_FRAME){
memcpy(cur->ref_count[1], cur->ref_count[0], sizeof(cur->ref_count[0]));
memcpy(cur->ref_poc [1], cur->ref_poc [0], sizeof(cur->ref_poc [0]));
}
cur->mbaff= FRAME_MBAFF;
h->col_fieldoff= 0;
if(s->picture_structure == PICT_FRAME){
int cur_poc = s->current_picture_ptr->poc;
int *col_poc = h->ref_list[1]->field_poc;
h->col_parity= (FFABS(col_poc[0] - cur_poc) >= FFABS(col_poc[1] - cur_poc));
ref1sidx=sidx= h->col_parity;
}else if(!(s->picture_structure & h->ref_list[1][0].reference) && !h->ref_list[1][0].mbaff){ // FL -> FL & differ parity
h->col_fieldoff= s->mb_stride*(2*(h->ref_list[1][0].reference) - 3);
}
if(cur->pict_type != FF_B_TYPE || h->direct_spatial_mv_pred)
return;
for(list=0; list<2; list++){
fill_colmap(h, h->map_col_to_list0, list, sidx, ref1sidx, 0);
if(FRAME_MBAFF)
for(field=0; field<2; field++)
fill_colmap(h, h->map_col_to_list0_field[field], list, field, field, 1);
}
}
static void pred_spatial_direct_motion(H264Context * const h, int *mb_type){
MpegEncContext * const s = &h->s;
int b8_stride = 2;
int b4_stride = h->b_stride;
int mb_xy = h->mb_xy;
int mb_type_col[2];
const int16_t (*l1mv0)[2], (*l1mv1)[2];
const int8_t *l1ref0, *l1ref1;
const int is_b8x8 = IS_8X8(*mb_type);
unsigned int sub_mb_type= MB_TYPE_L0L1;
int i8, i4;
int ref[2];
int mv[2];
int list;
assert(h->ref_list[1][0].reference&3);
#define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
/* ref = min(neighbors) */
for(list=0; list<2; list++){
int left_ref = h->ref_cache[list][scan8[0] - 1];
int top_ref = h->ref_cache[list][scan8[0] - 8];
int refc = h->ref_cache[list][scan8[0] - 8 + 4];
const int16_t *C= h->mv_cache[list][ scan8[0] - 8 + 4];
if(refc == PART_NOT_AVAILABLE){
refc = h->ref_cache[list][scan8[0] - 8 - 1];
C = h-> mv_cache[list][scan8[0] - 8 - 1];
}
ref[list] = FFMIN3((unsigned)left_ref, (unsigned)top_ref, (unsigned)refc);
if(ref[list] >= 0){
//this is just pred_motion() but with the cases removed that cannot happen for direct blocks
const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
int match_count= (left_ref==ref[list]) + (top_ref==ref[list]) + (refc==ref[list]);
if(match_count > 1){ //most common
mv[list]= pack16to32(mid_pred(A[0], B[0], C[0]),
mid_pred(A[1], B[1], C[1]) );
}else {
assert(match_count==1);
if(left_ref==ref[list]){
mv[list]= AV_RN32A(A);
}else if(top_ref==ref[list]){
mv[list]= AV_RN32A(B);
}else{
mv[list]= AV_RN32A(C);
}
}
}else{
int mask= ~(MB_TYPE_L0 << (2*list));
mv[list] = 0;
ref[list] = -1;
if(!is_b8x8)
*mb_type &= mask;
sub_mb_type &= mask;
}
}
if(ref[0] < 0 && ref[1] < 0){
ref[0] = ref[1] = 0;
if(!is_b8x8)
*mb_type |= MB_TYPE_L0L1;
sub_mb_type |= MB_TYPE_L0L1;
}
if(!(is_b8x8|mv[0]|mv[1])){
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
*mb_type= (*mb_type & ~(MB_TYPE_8x8|MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_P1L0|MB_TYPE_P1L1))|MB_TYPE_16x16|MB_TYPE_DIRECT2;
return;
}
if(IS_INTERLACED(h->ref_list[1][0].mb_type[mb_xy])){ // AFL/AFR/FR/FL -> AFL/FL
if(!IS_INTERLACED(*mb_type)){ // AFR/FR -> AFL/FL
mb_xy= s->mb_x + ((s->mb_y&~1) + h->col_parity)*s->mb_stride;
b8_stride = 0;
}else{
mb_xy += h->col_fieldoff; // non zero for FL -> FL & differ parity
}
goto single_col;
}else{ // AFL/AFR/FR/FL -> AFR/FR
if(IS_INTERLACED(*mb_type)){ // AFL /FL -> AFR/FR
mb_xy= s->mb_x + (s->mb_y&~1)*s->mb_stride;
mb_type_col[0] = h->ref_list[1][0].mb_type[mb_xy];
mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy + s->mb_stride];
b8_stride = 2+4*s->mb_stride;
b4_stride *= 6;
sub_mb_type |= MB_TYPE_16x16|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
if( (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)
&& (mb_type_col[1] & MB_TYPE_16x16_OR_INTRA)
&& !is_b8x8){
*mb_type |= MB_TYPE_16x8 |MB_TYPE_DIRECT2; /* B_16x8 */
}else{
*mb_type |= MB_TYPE_8x8;
}
}else{ // AFR/FR -> AFR/FR
single_col:
mb_type_col[0] =
mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy];
sub_mb_type |= MB_TYPE_16x16|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
if(!is_b8x8 && (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)){
*mb_type |= MB_TYPE_16x16|MB_TYPE_DIRECT2; /* B_16x16 */
}else if(!is_b8x8 && (mb_type_col[0] & (MB_TYPE_16x8|MB_TYPE_8x16))){
*mb_type |= MB_TYPE_DIRECT2 | (mb_type_col[0] & (MB_TYPE_16x8|MB_TYPE_8x16));
}else{
if(!h->sps.direct_8x8_inference_flag){
/* FIXME save sub mb types from previous frames (or derive from MVs)
* so we know exactly what block size to use */
sub_mb_type += (MB_TYPE_8x8-MB_TYPE_16x16); /* B_SUB_4x4 */
}
*mb_type |= MB_TYPE_8x8;
}
}
}
l1mv0 = &h->ref_list[1][0].motion_val[0][h->mb2b_xy [mb_xy]];
l1mv1 = &h->ref_list[1][0].motion_val[1][h->mb2b_xy [mb_xy]];
l1ref0 = &h->ref_list[1][0].ref_index [0][4*mb_xy];
l1ref1 = &h->ref_list[1][0].ref_index [1][4*mb_xy];
if(!b8_stride){
if(s->mb_y&1){
l1ref0 += 2;
l1ref1 += 2;
l1mv0 += 2*b4_stride;
l1mv1 += 2*b4_stride;
}
}
if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col[0])){
int n=0;
for(i8=0; i8<4; i8++){
int x8 = i8&1;
int y8 = i8>>1;
int xy8 = x8+y8*b8_stride;
int xy4 = 3*x8+y8*b4_stride;
int a,b;
if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
continue;
h->sub_mb_type[i8] = sub_mb_type;
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
if(!IS_INTRA(mb_type_col[y8]) && !h->ref_list[1][0].long_ref
&& ( (l1ref0[xy8] == 0 && FFABS(l1mv0[xy4][0]) <= 1 && FFABS(l1mv0[xy4][1]) <= 1)
|| (l1ref0[xy8] < 0 && l1ref1[xy8] == 0 && FFABS(l1mv1[xy4][0]) <= 1 && FFABS(l1mv1[xy4][1]) <= 1))){
a=b=0;
if(ref[0] > 0)
a= mv[0];
if(ref[1] > 0)
b= mv[1];
n++;
}else{
a= mv[0];
b= mv[1];
}
fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, a, 4);
fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, b, 4);
}
if(!is_b8x8 && !(n&3))
*mb_type= (*mb_type & ~(MB_TYPE_8x8|MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_P1L0|MB_TYPE_P1L1))|MB_TYPE_16x16|MB_TYPE_DIRECT2;
}else if(IS_16X16(*mb_type)){
int a,b;
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
if(!IS_INTRA(mb_type_col[0]) && !h->ref_list[1][0].long_ref
&& ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1)
|| (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1
&& h->x264_build>33U))){
a=b=0;
if(ref[0] > 0)
a= mv[0];
if(ref[1] > 0)
b= mv[1];
}else{
a= mv[0];
b= mv[1];
}
fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
}else{
int n=0;
for(i8=0; i8<4; i8++){
const int x8 = i8&1;
const int y8 = i8>>1;
if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
continue;
h->sub_mb_type[i8] = sub_mb_type;
fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, mv[0], 4);
fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, mv[1], 4);
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
assert(b8_stride==2);
/* col_zero_flag */
if(!IS_INTRA(mb_type_col[0]) && !h->ref_list[1][0].long_ref && ( l1ref0[i8] == 0
|| (l1ref0[i8] < 0 && l1ref1[i8] == 0
&& h->x264_build>33U))){
const int16_t (*l1mv)[2]= l1ref0[i8] == 0 ? l1mv0 : l1mv1;
if(IS_SUB_8X8(sub_mb_type)){
const int16_t *mv_col = l1mv[x8*3 + y8*3*b4_stride];
if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
if(ref[0] == 0)
fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
if(ref[1] == 0)
fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
n+=4;
}
}else{
int m=0;
for(i4=0; i4<4; i4++){
const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*b4_stride];
if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
if(ref[0] == 0)
AV_ZERO32(h->mv_cache[0][scan8[i8*4+i4]]);
if(ref[1] == 0)
AV_ZERO32(h->mv_cache[1][scan8[i8*4+i4]]);
m++;
}
}
if(!(m&3))
h->sub_mb_type[i8]+= MB_TYPE_16x16 - MB_TYPE_8x8;
n+=m;
}
}
}
if(!is_b8x8 && !(n&15))
*mb_type= (*mb_type & ~(MB_TYPE_8x8|MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_P1L0|MB_TYPE_P1L1))|MB_TYPE_16x16|MB_TYPE_DIRECT2;
}
}
static void pred_temp_direct_motion(H264Context * const h, int *mb_type){
MpegEncContext * const s = &h->s;
int b8_stride = 2;
int b4_stride = h->b_stride;
int mb_xy = h->mb_xy;
int mb_type_col[2];
const int16_t (*l1mv0)[2], (*l1mv1)[2];
const int8_t *l1ref0, *l1ref1;
const int is_b8x8 = IS_8X8(*mb_type);
unsigned int sub_mb_type;
int i8, i4;
assert(h->ref_list[1][0].reference&3);
if(IS_INTERLACED(h->ref_list[1][0].mb_type[mb_xy])){ // AFL/AFR/FR/FL -> AFL/FL
if(!IS_INTERLACED(*mb_type)){ // AFR/FR -> AFL/FL
mb_xy= s->mb_x + ((s->mb_y&~1) + h->col_parity)*s->mb_stride;
b8_stride = 0;
}else{
mb_xy += h->col_fieldoff; // non zero for FL -> FL & differ parity
}
goto single_col;
}else{ // AFL/AFR/FR/FL -> AFR/FR
if(IS_INTERLACED(*mb_type)){ // AFL /FL -> AFR/FR
mb_xy= s->mb_x + (s->mb_y&~1)*s->mb_stride;
mb_type_col[0] = h->ref_list[1][0].mb_type[mb_xy];
mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy + s->mb_stride];
b8_stride = 2+4*s->mb_stride;
b4_stride *= 6;
sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
if( (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)
&& (mb_type_col[1] & MB_TYPE_16x16_OR_INTRA)
&& !is_b8x8){
*mb_type |= MB_TYPE_16x8 |MB_TYPE_L0L1|MB_TYPE_DIRECT2; /* B_16x8 */
}else{
*mb_type |= MB_TYPE_8x8|MB_TYPE_L0L1;
}
}else{ // AFR/FR -> AFR/FR
single_col:
mb_type_col[0] =
mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy];
sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
if(!is_b8x8 && (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)){
*mb_type |= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
}else if(!is_b8x8 && (mb_type_col[0] & (MB_TYPE_16x8|MB_TYPE_8x16))){
*mb_type |= MB_TYPE_L0L1|MB_TYPE_DIRECT2 | (mb_type_col[0] & (MB_TYPE_16x8|MB_TYPE_8x16));
}else{
if(!h->sps.direct_8x8_inference_flag){
/* FIXME save sub mb types from previous frames (or derive from MVs)
* so we know exactly what block size to use */
sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
}
*mb_type |= MB_TYPE_8x8|MB_TYPE_L0L1;
}
}
}
l1mv0 = &h->ref_list[1][0].motion_val[0][h->mb2b_xy [mb_xy]];
l1mv1 = &h->ref_list[1][0].motion_val[1][h->mb2b_xy [mb_xy]];
l1ref0 = &h->ref_list[1][0].ref_index [0][4*mb_xy];
l1ref1 = &h->ref_list[1][0].ref_index [1][4*mb_xy];
if(!b8_stride){
if(s->mb_y&1){
l1ref0 += 2;
l1ref1 += 2;
l1mv0 += 2*b4_stride;
l1mv1 += 2*b4_stride;
}
}
{
const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
const int *dist_scale_factor = h->dist_scale_factor;
int ref_offset;
if(FRAME_MBAFF && IS_INTERLACED(*mb_type)){
map_col_to_list0[0] = h->map_col_to_list0_field[s->mb_y&1][0];
map_col_to_list0[1] = h->map_col_to_list0_field[s->mb_y&1][1];
dist_scale_factor =h->dist_scale_factor_field[s->mb_y&1];
}
ref_offset = (h->ref_list[1][0].mbaff<<4) & (mb_type_col[0]>>3); //if(h->ref_list[1][0].mbaff && IS_INTERLACED(mb_type_col[0])) ref_offset=16 else 0
if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col[0])){
int y_shift = 2*!IS_INTERLACED(*mb_type);
assert(h->sps.direct_8x8_inference_flag);
for(i8=0; i8<4; i8++){
const int x8 = i8&1;
const int y8 = i8>>1;
int ref0, scale;
const int16_t (*l1mv)[2]= l1mv0;
if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
continue;
h->sub_mb_type[i8] = sub_mb_type;
fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
if(IS_INTRA(mb_type_col[y8])){
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
continue;
}
ref0 = l1ref0[x8 + y8*b8_stride];
if(ref0 >= 0)
ref0 = map_col_to_list0[0][ref0 + ref_offset];
else{
ref0 = map_col_to_list0[1][l1ref1[x8 + y8*b8_stride] + ref_offset];
l1mv= l1mv1;
}
scale = dist_scale_factor[ref0];
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
{
const int16_t *mv_col = l1mv[x8*3 + y8*b4_stride];
int my_col = (mv_col[1]<<y_shift)/2;
int mx = (scale * mv_col[0] + 128) >> 8;
int my = (scale * my_col + 128) >> 8;
fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
}
}
return;
}
/* one-to-one mv scaling */
if(IS_16X16(*mb_type)){
int ref, mv0, mv1;
fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
if(IS_INTRA(mb_type_col[0])){
ref=mv0=mv1=0;
}else{
const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0] + ref_offset]
: map_col_to_list0[1][l1ref1[0] + ref_offset];
const int scale = dist_scale_factor[ref0];
const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
int mv_l0[2];
mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
ref= ref0;
mv0= pack16to32(mv_l0[0],mv_l0[1]);
mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
}
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
}else{
for(i8=0; i8<4; i8++){
const int x8 = i8&1;
const int y8 = i8>>1;
int ref0, scale;
const int16_t (*l1mv)[2]= l1mv0;
if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
continue;
h->sub_mb_type[i8] = sub_mb_type;
fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
if(IS_INTRA(mb_type_col[0])){
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
continue;
}
assert(b8_stride == 2);
ref0 = l1ref0[i8];
if(ref0 >= 0)
ref0 = map_col_to_list0[0][ref0 + ref_offset];
else{
ref0 = map_col_to_list0[1][l1ref1[i8] + ref_offset];
l1mv= l1mv1;
}
scale = dist_scale_factor[ref0];
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
if(IS_SUB_8X8(sub_mb_type)){
const int16_t *mv_col = l1mv[x8*3 + y8*3*b4_stride];
int mx = (scale * mv_col[0] + 128) >> 8;
int my = (scale * mv_col[1] + 128) >> 8;
fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
}else
for(i4=0; i4<4; i4++){
const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*b4_stride];
int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
AV_WN32A(h->mv_cache[1][scan8[i8*4+i4]],
pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]));
}
}
}
}
}
void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type){
if(h->direct_spatial_mv_pred){
pred_spatial_direct_motion(h, mb_type);
}else{
pred_temp_direct_motion(h, mb_type);
}
}