1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00
FFmpeg/libavcodec/h264dec.c
Andreas Rheinhardt 2b46ae6407 avcodec/codec_internal: Remove FF_CODEC_CAP_ALLOCATE_PROGRESS
Before commit f025b8e110,
every frame-threaded decoder used ThreadFrames, even when
they did not have any inter-frame dependencies at all.
In order to distinguish those decoders that need the AVBuffer
for progress communication from those that do not (to avoid
the allocation for the latter), the former decoders were marked
with the FF_CODEC_CAP_ALLOCATE_PROGRESS internal codec cap.

Yet distinguishing these two can be done in a more natural way:
Don't use ThreadFrames when not needed and split ff_thread_get_buffer()
into a core function that calls the user's get_buffer2 callback
and a wrapper around it that also allocates the progress AVBuffer.
This has been done in 02220b88fc
and since that commit the ALLOCATE_PROGRESS cap was nearly redundant.

The only exception was WebP and VP8. WebP can contain VP8
and uses the VP8 decoder directly (i.e. they share the same
AVCodecContext). Both decoders are frame-threaded and VP8
has inter-frame dependencies (in general, not in valid WebP)
and therefore the ALLOCATE_PROGRESS cap. In order to avoid
allocating progress in case of a frame-threaded WebP decoder
the cap and the check for the cap has been kept in place.

Yet now the VP8 decoder has been switched to use ProgressFrames
and therefore there is just no reason any more for this check
and the cap. This commit therefore removes both.

Also change the value of FF_CODEC_CAP_USES_PROGRESSFRAMES
to leave no gaps.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2024-04-19 13:18:04 +02:00

1174 lines
39 KiB
C

/*
* H.26L/H.264/AVC/JVT/14496-10/... decoder
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* H.264 / AVC / MPEG-4 part10 codec.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#define UNCHECKED_BITSTREAM_READER 1
#include "config_components.h"
#include "libavutil/avassert.h"
#include "libavutil/emms.h"
#include "libavutil/imgutils.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/thread.h"
#include "libavutil/video_enc_params.h"
#include "codec_internal.h"
#include "internal.h"
#include "error_resilience.h"
#include "avcodec.h"
#include "h264.h"
#include "h264dec.h"
#include "h2645_parse.h"
#include "h264data.h"
#include "h264_ps.h"
#include "golomb.h"
#include "hwaccel_internal.h"
#include "hwconfig.h"
#include "mpegutils.h"
#include "profiles.h"
#include "rectangle.h"
#include "refstruct.h"
#include "thread.h"
#include "threadframe.h"
const uint16_t ff_h264_mb_sizes[4] = { 256, 384, 512, 768 };
int avpriv_h264_has_num_reorder_frames(AVCodecContext *avctx)
{
H264Context *h = avctx->priv_data;
return h && h->ps.sps ? h->ps.sps->num_reorder_frames : 0;
}
static void h264_er_decode_mb(void *opaque, int ref, int mv_dir, int mv_type,
int (*mv)[2][4][2],
int mb_x, int mb_y, int mb_intra, int mb_skipped)
{
const H264Context *h = opaque;
H264SliceContext *sl = &h->slice_ctx[0];
sl->mb_x = mb_x;
sl->mb_y = mb_y;
sl->mb_xy = mb_x + mb_y * h->mb_stride;
memset(sl->non_zero_count_cache, 0, sizeof(sl->non_zero_count_cache));
av_assert1(ref >= 0);
/* FIXME: It is possible albeit uncommon that slice references
* differ between slices. We take the easy approach and ignore
* it for now. If this turns out to have any relevance in
* practice then correct remapping should be added. */
if (ref >= sl->ref_count[0])
ref = 0;
if (!sl->ref_list[0][ref].data[0]) {
av_log(h->avctx, AV_LOG_DEBUG, "Reference not available for error concealing\n");
ref = 0;
}
if ((sl->ref_list[0][ref].reference&3) != 3) {
av_log(h->avctx, AV_LOG_DEBUG, "Reference invalid\n");
return;
}
fill_rectangle(&h->cur_pic.ref_index[0][4 * sl->mb_xy],
2, 2, 2, ref, 1);
fill_rectangle(&sl->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
fill_rectangle(sl->mv_cache[0][scan8[0]], 4, 4, 8,
pack16to32((*mv)[0][0][0], (*mv)[0][0][1]), 4);
sl->mb_mbaff =
sl->mb_field_decoding_flag = 0;
ff_h264_hl_decode_mb(h, &h->slice_ctx[0]);
}
void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl,
int y, int height)
{
AVCodecContext *avctx = h->avctx;
const AVFrame *src = h->cur_pic.f;
const AVPixFmtDescriptor *desc;
int offset[AV_NUM_DATA_POINTERS];
int vshift;
const int field_pic = h->picture_structure != PICT_FRAME;
if (!avctx->draw_horiz_band)
return;
if (field_pic && h->first_field && !(avctx->slice_flags & SLICE_FLAG_ALLOW_FIELD))
return;
if (field_pic) {
height <<= 1;
y <<= 1;
}
height = FFMIN(height, avctx->height - y);
desc = av_pix_fmt_desc_get(avctx->pix_fmt);
vshift = desc->log2_chroma_h;
offset[0] = y * src->linesize[0];
offset[1] =
offset[2] = (y >> vshift) * src->linesize[1];
for (int i = 3; i < AV_NUM_DATA_POINTERS; i++)
offset[i] = 0;
emms_c();
avctx->draw_horiz_band(avctx, src, offset,
y, h->picture_structure, height);
}
void ff_h264_free_tables(H264Context *h)
{
int i;
av_freep(&h->intra4x4_pred_mode);
av_freep(&h->chroma_pred_mode_table);
av_freep(&h->cbp_table);
av_freep(&h->mvd_table[0]);
av_freep(&h->mvd_table[1]);
av_freep(&h->direct_table);
av_freep(&h->non_zero_count);
av_freep(&h->slice_table_base);
h->slice_table = NULL;
av_freep(&h->list_counts);
av_freep(&h->mb2b_xy);
av_freep(&h->mb2br_xy);
ff_refstruct_pool_uninit(&h->qscale_table_pool);
ff_refstruct_pool_uninit(&h->mb_type_pool);
ff_refstruct_pool_uninit(&h->motion_val_pool);
ff_refstruct_pool_uninit(&h->ref_index_pool);
#if CONFIG_ERROR_RESILIENCE
av_freep(&h->er.mb_index2xy);
av_freep(&h->er.error_status_table);
av_freep(&h->er.er_temp_buffer);
av_freep(&h->dc_val_base);
#endif
for (i = 0; i < h->nb_slice_ctx; i++) {
H264SliceContext *sl = &h->slice_ctx[i];
av_freep(&sl->bipred_scratchpad);
av_freep(&sl->edge_emu_buffer);
av_freep(&sl->top_borders[0]);
av_freep(&sl->top_borders[1]);
sl->bipred_scratchpad_allocated = 0;
sl->edge_emu_buffer_allocated = 0;
sl->top_borders_allocated[0] = 0;
sl->top_borders_allocated[1] = 0;
}
}
int ff_h264_alloc_tables(H264Context *h)
{
ERContext *const er = &h->er;
const int big_mb_num = h->mb_stride * (h->mb_height + 1);
const int row_mb_num = 2*h->mb_stride*FFMAX(h->nb_slice_ctx, 1);
const int st_size = big_mb_num + h->mb_stride;
int x, y;
if (!FF_ALLOCZ_TYPED_ARRAY(h->intra4x4_pred_mode, row_mb_num * 8) ||
!FF_ALLOCZ_TYPED_ARRAY(h->non_zero_count, big_mb_num) ||
!FF_ALLOCZ_TYPED_ARRAY(h->slice_table_base, st_size) ||
!FF_ALLOCZ_TYPED_ARRAY(h->cbp_table, big_mb_num) ||
!FF_ALLOCZ_TYPED_ARRAY(h->chroma_pred_mode_table, big_mb_num) ||
!FF_ALLOCZ_TYPED_ARRAY(h->mvd_table[0], row_mb_num * 8) ||
!FF_ALLOCZ_TYPED_ARRAY(h->mvd_table[1], row_mb_num * 8) ||
!FF_ALLOCZ_TYPED_ARRAY(h->direct_table, big_mb_num * 4) ||
!FF_ALLOCZ_TYPED_ARRAY(h->list_counts, big_mb_num) ||
!FF_ALLOCZ_TYPED_ARRAY(h->mb2b_xy, big_mb_num) ||
!FF_ALLOCZ_TYPED_ARRAY(h->mb2br_xy, big_mb_num))
return AVERROR(ENOMEM);
h->slice_ctx[0].intra4x4_pred_mode = h->intra4x4_pred_mode;
h->slice_ctx[0].mvd_table[0] = h->mvd_table[0];
h->slice_ctx[0].mvd_table[1] = h->mvd_table[1];
memset(h->slice_table_base, -1,
st_size * sizeof(*h->slice_table_base));
h->slice_table = h->slice_table_base + h->mb_stride * 2 + 1;
for (y = 0; y < h->mb_height; y++)
for (x = 0; x < h->mb_width; x++) {
const int mb_xy = x + y * h->mb_stride;
const int b_xy = 4 * x + 4 * y * h->b_stride;
h->mb2b_xy[mb_xy] = b_xy;
h->mb2br_xy[mb_xy] = 8 * (FMO ? mb_xy : (mb_xy % (2 * h->mb_stride)));
}
if (CONFIG_ERROR_RESILIENCE) {
const int er_size = h->mb_height * h->mb_stride * (4*sizeof(int) + 1);
int mb_array_size = h->mb_height * h->mb_stride;
int y_size = (2 * h->mb_width + 1) * (2 * h->mb_height + 1);
int yc_size = y_size + 2 * big_mb_num;
/* init ER */
er->avctx = h->avctx;
er->decode_mb = h264_er_decode_mb;
er->opaque = h;
er->quarter_sample = 1;
er->mb_num = h->mb_num;
er->mb_width = h->mb_width;
er->mb_height = h->mb_height;
er->mb_stride = h->mb_stride;
er->b8_stride = h->mb_width * 2 + 1;
// error resilience code looks cleaner with this
if (!FF_ALLOCZ_TYPED_ARRAY(er->mb_index2xy, h->mb_num + 1) ||
!FF_ALLOCZ_TYPED_ARRAY(er->error_status_table, mb_array_size) ||
!FF_ALLOCZ_TYPED_ARRAY(er->er_temp_buffer, er_size) ||
!FF_ALLOCZ_TYPED_ARRAY(h->dc_val_base, yc_size))
return AVERROR(ENOMEM); // ff_h264_free_tables will clean up for us
for (y = 0; y < h->mb_height; y++)
for (x = 0; x < h->mb_width; x++)
er->mb_index2xy[x + y * h->mb_width] = x + y * h->mb_stride;
er->mb_index2xy[h->mb_height * h->mb_width] = (h->mb_height - 1) *
h->mb_stride + h->mb_width;
er->dc_val[0] = h->dc_val_base + h->mb_width * 2 + 2;
er->dc_val[1] = h->dc_val_base + y_size + h->mb_stride + 1;
er->dc_val[2] = er->dc_val[1] + big_mb_num;
for (int i = 0; i < yc_size; i++)
h->dc_val_base[i] = 1024;
}
return 0;
}
/**
* Init slice context
*/
void ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl)
{
sl->ref_cache[0][scan8[5] + 1] =
sl->ref_cache[0][scan8[7] + 1] =
sl->ref_cache[0][scan8[13] + 1] =
sl->ref_cache[1][scan8[5] + 1] =
sl->ref_cache[1][scan8[7] + 1] =
sl->ref_cache[1][scan8[13] + 1] = PART_NOT_AVAILABLE;
sl->er = &h->er;
}
static int h264_init_pic(H264Picture *pic)
{
pic->f = av_frame_alloc();
if (!pic->f)
return AVERROR(ENOMEM);
pic->f_grain = av_frame_alloc();
if (!pic->f_grain)
return AVERROR(ENOMEM);
return 0;
}
static int h264_init_context(AVCodecContext *avctx, H264Context *h)
{
int i, ret;
h->avctx = avctx;
h->cur_chroma_format_idc = -1;
h->width_from_caller = avctx->width;
h->height_from_caller = avctx->height;
h->workaround_bugs = avctx->workaround_bugs;
h->flags = avctx->flags;
h->poc.prev_poc_msb = 1 << 16;
h->recovery_frame = -1;
h->frame_recovered = 0;
h->poc.prev_frame_num = -1;
h->sei.common.frame_packing.arrangement_cancel_flag = -1;
h->sei.common.unregistered.x264_build = -1;
h->next_outputed_poc = INT_MIN;
for (i = 0; i < FF_ARRAY_ELEMS(h->last_pocs); i++)
h->last_pocs[i] = INT_MIN;
ff_h264_sei_uninit(&h->sei);
if (avctx->active_thread_type & FF_THREAD_FRAME) {
h->decode_error_flags_pool = ff_refstruct_pool_alloc(sizeof(atomic_int), 0);
if (!h->decode_error_flags_pool)
return AVERROR(ENOMEM);
}
h->nb_slice_ctx = (avctx->active_thread_type & FF_THREAD_SLICE) ? avctx->thread_count : 1;
h->slice_ctx = av_calloc(h->nb_slice_ctx, sizeof(*h->slice_ctx));
if (!h->slice_ctx) {
h->nb_slice_ctx = 0;
return AVERROR(ENOMEM);
}
for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
if ((ret = h264_init_pic(&h->DPB[i])) < 0)
return ret;
}
if ((ret = h264_init_pic(&h->cur_pic)) < 0)
return ret;
if ((ret = h264_init_pic(&h->last_pic_for_ec)) < 0)
return ret;
for (i = 0; i < h->nb_slice_ctx; i++)
h->slice_ctx[i].h264 = h;
return 0;
}
static void h264_free_pic(H264Context *h, H264Picture *pic)
{
ff_h264_unref_picture(pic);
av_frame_free(&pic->f);
av_frame_free(&pic->f_grain);
}
static av_cold int h264_decode_end(AVCodecContext *avctx)
{
H264Context *h = avctx->priv_data;
int i;
ff_h264_remove_all_refs(h);
ff_h264_free_tables(h);
for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
h264_free_pic(h, &h->DPB[i]);
}
memset(h->delayed_pic, 0, sizeof(h->delayed_pic));
h->cur_pic_ptr = NULL;
ff_refstruct_pool_uninit(&h->decode_error_flags_pool);
av_freep(&h->slice_ctx);
h->nb_slice_ctx = 0;
ff_h264_sei_uninit(&h->sei);
ff_h264_ps_uninit(&h->ps);
ff_h2645_packet_uninit(&h->pkt);
h264_free_pic(h, &h->cur_pic);
h264_free_pic(h, &h->last_pic_for_ec);
return 0;
}
static AVOnce h264_vlc_init = AV_ONCE_INIT;
static av_cold int h264_decode_init(AVCodecContext *avctx)
{
H264Context *h = avctx->priv_data;
int ret;
ret = h264_init_context(avctx, h);
if (ret < 0)
return ret;
ret = ff_thread_once(&h264_vlc_init, ff_h264_decode_init_vlc);
if (ret != 0) {
av_log(avctx, AV_LOG_ERROR, "pthread_once has failed.");
return AVERROR_UNKNOWN;
}
#if FF_API_TICKS_PER_FRAME
FF_DISABLE_DEPRECATION_WARNINGS
avctx->ticks_per_frame = 2;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
if (!avctx->internal->is_copy) {
if (avctx->extradata_size > 0 && avctx->extradata) {
ret = ff_h264_decode_extradata(avctx->extradata, avctx->extradata_size,
&h->ps, &h->is_avc, &h->nal_length_size,
avctx->err_recognition, avctx);
if (ret < 0) {
int explode = avctx->err_recognition & AV_EF_EXPLODE;
av_log(avctx, explode ? AV_LOG_ERROR: AV_LOG_WARNING,
"Error decoding the extradata\n");
if (explode) {
return ret;
}
ret = 0;
}
}
}
if (h->ps.sps && h->ps.sps->bitstream_restriction_flag &&
h->avctx->has_b_frames < h->ps.sps->num_reorder_frames) {
h->avctx->has_b_frames = h->ps.sps->num_reorder_frames;
}
ff_h264_flush_change(h);
if (h->enable_er < 0 && (avctx->active_thread_type & FF_THREAD_SLICE))
h->enable_er = 0;
if (h->enable_er && (avctx->active_thread_type & FF_THREAD_SLICE)) {
av_log(avctx, AV_LOG_WARNING,
"Error resilience with slice threads is enabled. It is unsafe and unsupported and may crash. "
"Use it at your own risk\n");
}
return 0;
}
/**
* instantaneous decoder refresh.
*/
static void idr(H264Context *h)
{
int i;
ff_h264_remove_all_refs(h);
h->poc.prev_frame_num =
h->poc.prev_frame_num_offset = 0;
h->poc.prev_poc_msb = 1<<16;
h->poc.prev_poc_lsb = -1;
for (i = 0; i < FF_ARRAY_ELEMS(h->last_pocs); i++)
h->last_pocs[i] = INT_MIN;
}
/* forget old pics after a seek */
void ff_h264_flush_change(H264Context *h)
{
int i, j;
h->next_outputed_poc = INT_MIN;
h->prev_interlaced_frame = 1;
idr(h);
h->poc.prev_frame_num = -1;
if (h->cur_pic_ptr) {
h->cur_pic_ptr->reference = 0;
for (j=i=0; h->delayed_pic[i]; i++)
if (h->delayed_pic[i] != h->cur_pic_ptr)
h->delayed_pic[j++] = h->delayed_pic[i];
h->delayed_pic[j] = NULL;
}
ff_h264_unref_picture(&h->last_pic_for_ec);
h->first_field = 0;
h->recovery_frame = -1;
h->frame_recovered = 0;
h->current_slice = 0;
h->mmco_reset = 1;
}
static void h264_decode_flush(AVCodecContext *avctx)
{
H264Context *h = avctx->priv_data;
int i;
memset(h->delayed_pic, 0, sizeof(h->delayed_pic));
ff_h264_flush_change(h);
ff_h264_sei_uninit(&h->sei);
for (i = 0; i < H264_MAX_PICTURE_COUNT; i++)
ff_h264_unref_picture(&h->DPB[i]);
h->cur_pic_ptr = NULL;
ff_h264_unref_picture(&h->cur_pic);
h->mb_y = 0;
h->non_gray = 0;
ff_h264_free_tables(h);
h->context_initialized = 0;
if (FF_HW_HAS_CB(avctx, flush))
FF_HW_SIMPLE_CALL(avctx, flush);
}
static int get_last_needed_nal(H264Context *h)
{
int nals_needed = 0;
int slice_type = 0;
int picture_intra_only = 1;
int first_slice = 0;
int i, ret;
for (i = 0; i < h->pkt.nb_nals; i++) {
H2645NAL *nal = &h->pkt.nals[i];
GetBitContext gb;
/* packets can sometimes contain multiple PPS/SPS,
* e.g. two PAFF field pictures in one packet, or a demuxer
* which splits NALs strangely if so, when frame threading we
* can't start the next thread until we've read all of them */
switch (nal->type) {
case H264_NAL_SPS:
case H264_NAL_PPS:
nals_needed = i;
break;
case H264_NAL_DPA:
case H264_NAL_IDR_SLICE:
case H264_NAL_SLICE:
ret = init_get_bits8(&gb, nal->data + 1, nal->size - 1);
if (ret < 0) {
av_log(h->avctx, AV_LOG_ERROR, "Invalid zero-sized VCL NAL unit\n");
if (h->avctx->err_recognition & AV_EF_EXPLODE)
return ret;
break;
}
if (!get_ue_golomb_long(&gb) || // first_mb_in_slice
!first_slice ||
first_slice != nal->type)
nals_needed = i;
slice_type = get_ue_golomb_31(&gb);
if (slice_type > 9)
slice_type = 0;
if (slice_type > 4)
slice_type -= 5;
slice_type = ff_h264_golomb_to_pict_type[slice_type];
picture_intra_only &= (slice_type & 3) == AV_PICTURE_TYPE_I;
if (!first_slice)
first_slice = nal->type;
}
}
h->picture_intra_only = picture_intra_only;
return nals_needed;
}
static void debug_green_metadata(const H264SEIGreenMetaData *gm, void *logctx)
{
av_log(logctx, AV_LOG_DEBUG, "Green Metadata Info SEI message\n");
av_log(logctx, AV_LOG_DEBUG, " green_metadata_type: %d\n", gm->green_metadata_type);
if (gm->green_metadata_type == 0) {
av_log(logctx, AV_LOG_DEBUG, " green_metadata_period_type: %d\n", gm->period_type);
if (gm->period_type == 2)
av_log(logctx, AV_LOG_DEBUG, " green_metadata_num_seconds: %d\n", gm->num_seconds);
else if (gm->period_type == 3)
av_log(logctx, AV_LOG_DEBUG, " green_metadata_num_pictures: %d\n", gm->num_pictures);
av_log(logctx, AV_LOG_DEBUG, " SEI GREEN Complexity Metrics: %f %f %f %f\n",
(float)gm->percent_non_zero_macroblocks/255,
(float)gm->percent_intra_coded_macroblocks/255,
(float)gm->percent_six_tap_filtering/255,
(float)gm->percent_alpha_point_deblocking_instance/255);
} else if (gm->green_metadata_type == 1) {
av_log(logctx, AV_LOG_DEBUG, " xsd_metric_type: %d\n", gm->xsd_metric_type);
if (gm->xsd_metric_type == 0)
av_log(logctx, AV_LOG_DEBUG, " xsd_metric_value: %f\n",
(float)gm->xsd_metric_value/100);
}
}
static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size)
{
AVCodecContext *const avctx = h->avctx;
int nals_needed = 0; ///< number of NALs that need decoding before the next frame thread starts
int idr_cleared=0;
int i, ret = 0;
h->has_slice = 0;
h->nal_unit_type= 0;
if (!(avctx->flags2 & AV_CODEC_FLAG2_CHUNKS)) {
h->current_slice = 0;
if (!h->first_field) {
h->cur_pic_ptr = NULL;
ff_h264_sei_uninit(&h->sei);
}
}
if (h->nal_length_size == 4) {
if (buf_size > 8 && AV_RB32(buf) == 1 && AV_RB32(buf+5) > (unsigned)buf_size) {
h->is_avc = 0;
}else if(buf_size > 3 && AV_RB32(buf) > 1 && AV_RB32(buf) <= (unsigned)buf_size)
h->is_avc = 1;
}
ret = ff_h2645_packet_split(&h->pkt, buf, buf_size, avctx, h->is_avc, h->nal_length_size,
avctx->codec_id, 0, 0);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR,
"Error splitting the input into NAL units.\n");
return ret;
}
if (avctx->active_thread_type & FF_THREAD_FRAME)
nals_needed = get_last_needed_nal(h);
if (nals_needed < 0)
return nals_needed;
for (i = 0; i < h->pkt.nb_nals; i++) {
H2645NAL *nal = &h->pkt.nals[i];
int max_slice_ctx, err;
if (avctx->skip_frame >= AVDISCARD_NONREF &&
nal->ref_idc == 0 && nal->type != H264_NAL_SEI)
continue;
// FIXME these should stop being context-global variables
h->nal_ref_idc = nal->ref_idc;
h->nal_unit_type = nal->type;
err = 0;
switch (nal->type) {
case H264_NAL_IDR_SLICE:
if ((nal->data[1] & 0xFC) == 0x98) {
av_log(h->avctx, AV_LOG_ERROR, "Invalid inter IDR frame\n");
h->next_outputed_poc = INT_MIN;
ret = -1;
goto end;
}
if(!idr_cleared) {
idr(h); // FIXME ensure we don't lose some frames if there is reordering
}
idr_cleared = 1;
h->has_recovery_point = 1;
case H264_NAL_SLICE:
h->has_slice = 1;
if ((err = ff_h264_queue_decode_slice(h, nal))) {
H264SliceContext *sl = h->slice_ctx + h->nb_slice_ctx_queued;
sl->ref_count[0] = sl->ref_count[1] = 0;
break;
}
if (h->current_slice == 1) {
if (avctx->active_thread_type & FF_THREAD_FRAME &&
i >= nals_needed && !h->setup_finished && h->cur_pic_ptr) {
ff_thread_finish_setup(avctx);
h->setup_finished = 1;
}
if (h->avctx->hwaccel &&
(ret = FF_HW_CALL(h->avctx, start_frame, buf, buf_size)) < 0)
goto end;
}
max_slice_ctx = avctx->hwaccel ? 1 : h->nb_slice_ctx;
if (h->nb_slice_ctx_queued == max_slice_ctx) {
if (h->avctx->hwaccel) {
ret = FF_HW_CALL(avctx, decode_slice, nal->raw_data, nal->raw_size);
h->nb_slice_ctx_queued = 0;
} else
ret = ff_h264_execute_decode_slices(h);
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
goto end;
}
break;
case H264_NAL_DPA:
case H264_NAL_DPB:
case H264_NAL_DPC:
avpriv_request_sample(avctx, "data partitioning");
break;
case H264_NAL_SEI:
if (h->setup_finished) {
avpriv_request_sample(avctx, "Late SEI");
break;
}
ret = ff_h264_sei_decode(&h->sei, &nal->gb, &h->ps, avctx);
h->has_recovery_point = h->has_recovery_point || h->sei.recovery_point.recovery_frame_cnt != -1;
if (avctx->debug & FF_DEBUG_GREEN_MD)
debug_green_metadata(&h->sei.green_metadata, h->avctx);
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
goto end;
break;
case H264_NAL_SPS: {
GetBitContext tmp_gb = nal->gb;
if (FF_HW_HAS_CB(avctx, decode_params)) {
ret = FF_HW_CALL(avctx, decode_params,
nal->type, nal->raw_data, nal->raw_size);
if (ret < 0)
goto end;
}
if (ff_h264_decode_seq_parameter_set(&tmp_gb, avctx, &h->ps, 0) >= 0)
break;
av_log(h->avctx, AV_LOG_DEBUG,
"SPS decoding failure, trying again with the complete NAL\n");
init_get_bits8(&tmp_gb, nal->raw_data + 1, nal->raw_size - 1);
if (ff_h264_decode_seq_parameter_set(&tmp_gb, avctx, &h->ps, 0) >= 0)
break;
ff_h264_decode_seq_parameter_set(&nal->gb, avctx, &h->ps, 1);
break;
}
case H264_NAL_PPS:
if (FF_HW_HAS_CB(avctx, decode_params)) {
ret = FF_HW_CALL(avctx, decode_params,
nal->type, nal->raw_data, nal->raw_size);
if (ret < 0)
goto end;
}
ret = ff_h264_decode_picture_parameter_set(&nal->gb, avctx, &h->ps,
nal->size_bits);
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
goto end;
break;
case H264_NAL_AUD:
case H264_NAL_END_SEQUENCE:
case H264_NAL_END_STREAM:
case H264_NAL_FILLER_DATA:
case H264_NAL_SPS_EXT:
case H264_NAL_AUXILIARY_SLICE:
break;
default:
av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n",
nal->type, nal->size_bits);
}
if (err < 0) {
av_log(h->avctx, AV_LOG_ERROR, "decode_slice_header error\n");
}
}
ret = ff_h264_execute_decode_slices(h);
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
goto end;
// set decode_error_flags to allow users to detect concealed decoding errors
if ((ret < 0 || h->er.error_occurred) && h->cur_pic_ptr) {
if (h->cur_pic_ptr->decode_error_flags) {
/* Frame-threading in use */
atomic_int *decode_error = h->cur_pic_ptr->decode_error_flags;
/* Using atomics here is not supposed to provide syncronisation;
* they are merely used to allow to set decode_error from both
* decoding threads in case of coded slices. */
atomic_fetch_or_explicit(decode_error, FF_DECODE_ERROR_DECODE_SLICES,
memory_order_relaxed);
} else
h->cur_pic_ptr->f->decode_error_flags |= FF_DECODE_ERROR_DECODE_SLICES;
}
ret = 0;
end:
#if CONFIG_ERROR_RESILIENCE
/*
* FIXME: Error handling code does not seem to support interlaced
* when slices span multiple rows
* The ff_er_add_slice calls don't work right for bottom
* fields; they cause massive erroneous error concealing
* Error marking covers both fields (top and bottom).
* This causes a mismatched s->error_count
* and a bad error table. Further, the error count goes to
* INT_MAX when called for bottom field, because mb_y is
* past end by one (callers fault) and resync_mb_y != 0
* causes problems for the first MB line, too.
*/
if (!FIELD_PICTURE(h) && h->current_slice && h->enable_er) {
H264SliceContext *sl = h->slice_ctx;
int use_last_pic = h->last_pic_for_ec.f->buf[0] && !sl->ref_count[0];
int decode_error_flags = 0;
ff_h264_set_erpic(&h->er.cur_pic, h->cur_pic_ptr);
if (use_last_pic) {
ff_h264_set_erpic(&h->er.last_pic, &h->last_pic_for_ec);
sl->ref_list[0][0].parent = &h->last_pic_for_ec;
memcpy(sl->ref_list[0][0].data, h->last_pic_for_ec.f->data, sizeof(sl->ref_list[0][0].data));
memcpy(sl->ref_list[0][0].linesize, h->last_pic_for_ec.f->linesize, sizeof(sl->ref_list[0][0].linesize));
sl->ref_list[0][0].reference = h->last_pic_for_ec.reference;
} else if (sl->ref_count[0]) {
ff_h264_set_erpic(&h->er.last_pic, sl->ref_list[0][0].parent);
} else
ff_h264_set_erpic(&h->er.last_pic, NULL);
if (sl->ref_count[1])
ff_h264_set_erpic(&h->er.next_pic, sl->ref_list[1][0].parent);
ff_er_frame_end(&h->er, &decode_error_flags);
if (decode_error_flags) {
if (h->cur_pic_ptr->decode_error_flags) {
atomic_int *decode_error = h->cur_pic_ptr->decode_error_flags;
atomic_fetch_or_explicit(decode_error, decode_error_flags,
memory_order_relaxed);
} else
h->cur_pic_ptr->f->decode_error_flags |= decode_error_flags;
}
if (use_last_pic)
memset(&sl->ref_list[0][0], 0, sizeof(sl->ref_list[0][0]));
}
#endif /* CONFIG_ERROR_RESILIENCE */
/* clean up */
if (h->cur_pic_ptr && !h->droppable && h->has_slice) {
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
h->picture_structure == PICT_BOTTOM_FIELD);
}
return (ret < 0) ? ret : buf_size;
}
/**
* Return the number of bytes consumed for building the current frame.
*/
static int get_consumed_bytes(int pos, int buf_size)
{
if (pos == 0)
pos = 1; // avoid infinite loops (I doubt that is needed but...)
if (pos + 10 > buf_size)
pos = buf_size; // oops ;)
return pos;
}
static int h264_export_enc_params(AVFrame *f, const H264Picture *p)
{
AVVideoEncParams *par;
unsigned int nb_mb = p->mb_height * p->mb_width;
unsigned int x, y;
par = av_video_enc_params_create_side_data(f, AV_VIDEO_ENC_PARAMS_H264, nb_mb);
if (!par)
return AVERROR(ENOMEM);
par->qp = p->pps->init_qp;
par->delta_qp[1][0] = p->pps->chroma_qp_index_offset[0];
par->delta_qp[1][1] = p->pps->chroma_qp_index_offset[0];
par->delta_qp[2][0] = p->pps->chroma_qp_index_offset[1];
par->delta_qp[2][1] = p->pps->chroma_qp_index_offset[1];
for (y = 0; y < p->mb_height; y++)
for (x = 0; x < p->mb_width; x++) {
const unsigned int block_idx = y * p->mb_width + x;
const unsigned int mb_xy = y * p->mb_stride + x;
AVVideoBlockParams *b = av_video_enc_params_block(par, block_idx);
b->src_x = x * 16;
b->src_y = y * 16;
b->w = 16;
b->h = 16;
b->delta_qp = p->qscale_table[mb_xy] - par->qp;
}
return 0;
}
static int output_frame(H264Context *h, AVFrame *dst, H264Picture *srcp)
{
int ret;
ret = av_frame_ref(dst, srcp->needs_fg ? srcp->f_grain : srcp->f);
if (ret < 0)
return ret;
if (srcp->needs_fg && (ret = av_frame_copy_props(dst, srcp->f)) < 0)
return ret;
if (srcp->decode_error_flags) {
atomic_int *decode_error = srcp->decode_error_flags;
/* The following is not supposed to provide synchronisation at all:
* given that srcp has already finished decoding, decode_error
* has already been set to its final value. */
dst->decode_error_flags |= atomic_load_explicit(decode_error, memory_order_relaxed);
}
av_dict_set(&dst->metadata, "stereo_mode", ff_h264_sei_stereo_mode(&h->sei.common.frame_packing), 0);
if (srcp->sei_recovery_frame_cnt == 0)
dst->flags |= AV_FRAME_FLAG_KEY;
if (h->avctx->export_side_data & AV_CODEC_EXPORT_DATA_VIDEO_ENC_PARAMS) {
ret = h264_export_enc_params(dst, srcp);
if (ret < 0)
goto fail;
}
if (!(h->avctx->export_side_data & AV_CODEC_EXPORT_DATA_FILM_GRAIN))
av_frame_remove_side_data(dst, AV_FRAME_DATA_FILM_GRAIN_PARAMS);
return 0;
fail:
av_frame_unref(dst);
return ret;
}
static int is_avcc_extradata(const uint8_t *buf, int buf_size)
{
int cnt= buf[5]&0x1f;
const uint8_t *p= buf+6;
if (!cnt)
return 0;
while(cnt--){
int nalsize= AV_RB16(p) + 2;
if(nalsize > buf_size - (p-buf) || (p[2] & 0x9F) != 7)
return 0;
p += nalsize;
}
cnt = *(p++);
if(!cnt)
return 0;
while(cnt--){
int nalsize= AV_RB16(p) + 2;
if(nalsize > buf_size - (p-buf) || (p[2] & 0x9F) != 8)
return 0;
p += nalsize;
}
return 1;
}
static int finalize_frame(H264Context *h, AVFrame *dst, H264Picture *out, int *got_frame)
{
int ret;
if (((h->avctx->flags & AV_CODEC_FLAG_OUTPUT_CORRUPT) ||
(h->avctx->flags2 & AV_CODEC_FLAG2_SHOW_ALL) ||
out->recovered)) {
if (h->skip_gray > 0 &&
h->non_gray && out->gray &&
!(h->avctx->flags2 & AV_CODEC_FLAG2_SHOW_ALL)
)
return 0;
if (!h->avctx->hwaccel &&
(out->field_poc[0] == INT_MAX ||
out->field_poc[1] == INT_MAX)
) {
int p;
AVFrame *f = out->f;
int field = out->field_poc[0] == INT_MAX;
uint8_t *dst_data[4];
int linesizes[4];
const uint8_t *src_data[4];
av_log(h->avctx, AV_LOG_DEBUG, "Duplicating field %d to fill missing\n", field);
for (p = 0; p<4; p++) {
dst_data[p] = f->data[p] + (field^1)*f->linesize[p];
src_data[p] = f->data[p] + field *f->linesize[p];
linesizes[p] = 2*f->linesize[p];
}
av_image_copy(dst_data, linesizes, src_data, linesizes,
f->format, f->width, f->height>>1);
}
ret = output_frame(h, dst, out);
if (ret < 0)
return ret;
*got_frame = 1;
if (CONFIG_MPEGVIDEODEC) {
ff_print_debug_info2(h->avctx, dst, NULL,
out->mb_type,
out->qscale_table,
out->motion_val,
out->mb_width, out->mb_height, out->mb_stride, 1);
}
}
return 0;
}
static int send_next_delayed_frame(H264Context *h, AVFrame *dst_frame,
int *got_frame, int buf_index)
{
int ret, i, out_idx;
H264Picture *out;
h->cur_pic_ptr = NULL;
h->first_field = 0;
while (h->delayed_pic[0]) {
out = h->delayed_pic[0];
out_idx = 0;
for (i = 1;
h->delayed_pic[i] &&
!(h->delayed_pic[i]->f->flags & AV_FRAME_FLAG_KEY) &&
!h->delayed_pic[i]->mmco_reset;
i++)
if (h->delayed_pic[i]->poc < out->poc) {
out = h->delayed_pic[i];
out_idx = i;
}
for (i = out_idx; h->delayed_pic[i]; i++)
h->delayed_pic[i] = h->delayed_pic[i + 1];
if (out) {
h->frame_recovered |= out->recovered;
out->recovered |= h->frame_recovered & FRAME_RECOVERED_SEI;
out->reference &= ~DELAYED_PIC_REF;
ret = finalize_frame(h, dst_frame, out, got_frame);
if (ret < 0)
return ret;
if (*got_frame)
break;
}
}
return buf_index;
}
static int h264_decode_frame(AVCodecContext *avctx, AVFrame *pict,
int *got_frame, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
H264Context *h = avctx->priv_data;
int buf_index;
int ret;
h->flags = avctx->flags;
h->setup_finished = 0;
h->nb_slice_ctx_queued = 0;
ff_h264_unref_picture(&h->last_pic_for_ec);
/* end of stream, output what is still in the buffers */
if (buf_size == 0)
return send_next_delayed_frame(h, pict, got_frame, 0);
if (av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA, NULL)) {
size_t side_size;
uint8_t *side = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA, &side_size);
ff_h264_decode_extradata(side, side_size,
&h->ps, &h->is_avc, &h->nal_length_size,
avctx->err_recognition, avctx);
}
if (h->is_avc && buf_size >= 9 && buf[0]==1 && buf[2]==0 && (buf[4]&0xFC)==0xFC) {
if (is_avcc_extradata(buf, buf_size))
return ff_h264_decode_extradata(buf, buf_size,
&h->ps, &h->is_avc, &h->nal_length_size,
avctx->err_recognition, avctx);
}
buf_index = decode_nal_units(h, buf, buf_size);
if (buf_index < 0)
return AVERROR_INVALIDDATA;
if (!h->cur_pic_ptr && h->nal_unit_type == H264_NAL_END_SEQUENCE) {
av_assert0(buf_index <= buf_size);
return send_next_delayed_frame(h, pict, got_frame, buf_index);
}
if (!(avctx->flags2 & AV_CODEC_FLAG2_CHUNKS) && (!h->cur_pic_ptr || !h->has_slice)) {
if (avctx->skip_frame >= AVDISCARD_NONREF ||
buf_size >= 4 && !memcmp("Q264", buf, 4))
return buf_size;
av_log(avctx, AV_LOG_ERROR, "no frame!\n");
return AVERROR_INVALIDDATA;
}
if (!(avctx->flags2 & AV_CODEC_FLAG2_CHUNKS) ||
(h->mb_y >= h->mb_height && h->mb_height)) {
if ((ret = ff_h264_field_end(h, &h->slice_ctx[0], 0)) < 0)
return ret;
/* Wait for second field. */
if (h->next_output_pic) {
ret = finalize_frame(h, pict, h->next_output_pic, got_frame);
if (ret < 0)
return ret;
}
}
av_assert0(pict->buf[0] || !*got_frame);
ff_h264_unref_picture(&h->last_pic_for_ec);
return get_consumed_bytes(buf_index, buf_size);
}
#define OFFSET(x) offsetof(H264Context, x)
#define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
#define VDX VD | AV_OPT_FLAG_EXPORT
static const AVOption h264_options[] = {
{ "is_avc", "is avc", OFFSET(is_avc), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, VDX },
{ "nal_length_size", "nal_length_size", OFFSET(nal_length_size), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 4, VDX },
{ "enable_er", "Enable error resilience on damaged frames (unsafe)", OFFSET(enable_er), AV_OPT_TYPE_BOOL, { .i64 = -1 }, -1, 1, VD },
{ "x264_build", "Assume this x264 version if no x264 version found in any SEI", OFFSET(x264_build), AV_OPT_TYPE_INT, {.i64 = -1}, -1, INT_MAX, VD },
{ "skip_gray", "Do not return gray gap frames", OFFSET(skip_gray), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, VD },
{ "noref_gray", "Avoid using gray gap frames as references", OFFSET(noref_gray), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, VD },
{ NULL },
};
static const AVClass h264_class = {
.class_name = "H264 Decoder",
.item_name = av_default_item_name,
.option = h264_options,
.version = LIBAVUTIL_VERSION_INT,
};
const FFCodec ff_h264_decoder = {
.p.name = "h264",
CODEC_LONG_NAME("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),
.p.type = AVMEDIA_TYPE_VIDEO,
.p.id = AV_CODEC_ID_H264,
.priv_data_size = sizeof(H264Context),
.init = h264_decode_init,
.close = h264_decode_end,
FF_CODEC_DECODE_CB(h264_decode_frame),
.p.capabilities = AV_CODEC_CAP_DR1 |
AV_CODEC_CAP_DELAY | AV_CODEC_CAP_SLICE_THREADS |
AV_CODEC_CAP_FRAME_THREADS,
.hw_configs = (const AVCodecHWConfigInternal *const []) {
#if CONFIG_H264_DXVA2_HWACCEL
HWACCEL_DXVA2(h264),
#endif
#if CONFIG_H264_D3D11VA_HWACCEL
HWACCEL_D3D11VA(h264),
#endif
#if CONFIG_H264_D3D11VA2_HWACCEL
HWACCEL_D3D11VA2(h264),
#endif
#if CONFIG_H264_D3D12VA_HWACCEL
HWACCEL_D3D12VA(h264),
#endif
#if CONFIG_H264_NVDEC_HWACCEL
HWACCEL_NVDEC(h264),
#endif
#if CONFIG_H264_VAAPI_HWACCEL
HWACCEL_VAAPI(h264),
#endif
#if CONFIG_H264_VDPAU_HWACCEL
HWACCEL_VDPAU(h264),
#endif
#if CONFIG_H264_VIDEOTOOLBOX_HWACCEL
HWACCEL_VIDEOTOOLBOX(h264),
#endif
#if CONFIG_H264_VULKAN_HWACCEL
HWACCEL_VULKAN(h264),
#endif
NULL
},
.caps_internal = FF_CODEC_CAP_EXPORTS_CROPPING |
FF_CODEC_CAP_INIT_CLEANUP,
.flush = h264_decode_flush,
UPDATE_THREAD_CONTEXT(ff_h264_update_thread_context),
UPDATE_THREAD_CONTEXT_FOR_USER(ff_h264_update_thread_context_for_user),
.p.profiles = NULL_IF_CONFIG_SMALL(ff_h264_profiles),
.p.priv_class = &h264_class,
};